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Microglial p38a MAPK is critical for LPS-induced
neuron degeneration, through a mechanism
involving TNFa
Bin Xing1†, Adam D Bachstetter1† and Linda J Van Eldik1,2*

Abstract

Background: The p38a MAPK isoform is a well-established therapeutic target in peripheral inflammatory diseases,
but the importance of this kinase in pathological microglial activation and detrimental inflammation in CNS
disorders is less well understood. To test the role of the p38a MAPK isoform in microglia-dependent neuron
damage, we used primary microglia from wild-type (WT) or p38a MAPK conditional knockout (KO) mice in co-
culture with WT cortical neurons, and measured neuron damage after LPS insult.

Results: We found that neurons in co-culture with p38a-deficient microglia were protected against LPS-induced
synaptic loss, neurite degeneration, and neuronal death. The involvement of the proinflammatory cytokine TNFa
was demonstrated by the findings that p38a KO microglia produced much less TNFa in response to LPS
compared to WT microglia, that adding back TNFa to KO microglia/neuron co-cultures increased the LPS-induced
neuron damage, and that neutralization of TNFa in WT microglia/neuron co-cultures prevented the neuron
damage. These results using cell-selective, isoform-specific KO mice demonstrate that the p38a MAPK isoform in
microglia is a key mediator of LPS-induced neuronal and synaptic dysfunction. The findings also provide evidence
that a major mechanism by which LPS activation of microglia p38a MAPK signaling leads to neuron damage is
through up-regulation of the proinflammatory cytokine TNFa.
Conclusions: The data suggest that selective targeting of p38a MAPK signaling should be explored as a potential
therapeutic strategy for CNS disorders where overproduction of proinflammatory cytokines is implicated in disease
progression.
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Background
Extensive evidence, both clinical and preclinical, impli-
cates neuroinflammation and overproduction of proin-
flammatory cytokines as a contributor to pathophysiology
of chronic neurodegenerative disorders such as Alzhei-
mer’s disease (AD), Parkinson’s disease, and multiple
sclerosis [for review, see: [1]]. Proinflammatory cytokine
overproduction has also been documented as detrimental
to recovery in acute brain injuries such as trauma or
stroke [2-5]. In the brain, activated microglia are a major

mediator of neuroinflammation and can release a number
of potentially neurotoxic substances, such as reactive oxy-
gen species, nitric oxide, and various proinflammatory
cytokines, of which two main proinflammatory cytokines
TNFa and IL-1b are generally considered primary media-
tors leading to neurotoxicity [for detailed reviews on
microglia, see: [6,7]].
There are many critical roles for innate immunity, and

thereby the primary effector cells, microglia, in the clas-
sically immune privileged CNS. For example, microglia
are rapid responders to local tissue stressors [8,9], can
efficiently clear apoptotic cells during neurodevelopment
[10], and can promote neuro-repair through the produc-
tion of growth factors [7]. The spectrum of activated
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microglia phenotypes is diverse and generally beneficial.
It is only when the activation becomes exaggerated or
dysregulated does the response become neurotoxic.
Therefore, it is of critical importance to elucidate the
mechanisms that are specifically involved in the dysre-
gulated response of microglia which contribute to neu-
ronal damage.
Intracellular signal transduction cascades regulate the

production of proinflammatory cytokines. By targeting a
specific signal transduction pathway it is possible to
determine if a pathway is involved in the dysregulated
response that is neurotoxic and if the dysregulated
response is amenable to intervention. One of the most
well established signal transduction cascades that regu-
late the production of proinflammatory cytokines in per-
ipheral tissue inflammatory diseases, such as rheumatoid
arthritis, is the p38 mitogen activated protein kinase
(MAPK) family [11,12]. The p38 MAPK family consists
of at least four isoforms (p38a, b, δ, g), which are
encoded by separate genes, expressed in different tissues
and have distinct functions [13]. Activation of p38
MAPK signaling has been shown to regulate gene
expression and lead to increased production of proin-
flammatory cytokines by a number of different mechan-
isms [for review, see: [14]]. The p38 MAPK pathway has
been suggested to play a central role in various patholo-
gical CNS conditions including cerebral ischemia [15,16]
and Parkinson’s disease [17-19], as well as in AD
[20,21], where postmortem studies find p38 MAPK acti-
vation occurs at the very early stage of the disease
[20,22].
Previously we have shown using both a pharmacologi-

cal approach with a selective small molecule p38a
MAPK inhibitor and a genetic approach with primary
microglia that are deficient in p38a that the a isoform
of p38 MAPK is critical for the production of IL-1b and
TNFa from activated microglia [23]. Moreover, suppres-
sion of p38a MAPK with the small molecule inhibitor
in an AD-relevant mouse model was also found to
decrease brain proinflammatory cytokine production,
and attenuate synaptic protein loss [24]. These data sug-
gested that microglia p38a MAPK is critical to inflam-
mation-induced neurotoxicity. In the current study, we
explored whether there is a causative link between
microglia p38a MAPK signaling and neuronal damage,
as well as a potential mechanism for microglia-depen-
dent neurotoxicity. We used primary microglia from
either wild-type (WT) mice or from p38a MAPK condi-
tional knockout (KO) mice in co-culture with cortical
neurons from WT mice. In WT microglia/neuron co-
cultures, LPS treatment led to a significant increase in
TNFa production, loss of synaptic proteins, and neuro-
nal death. Neurons in co-culture with p38a-deficient
microglia showed reduced LPS-induced TNFa

production and were protected against synaptic loss and
neuronal death. The mechanism of neurotoxicity was
explored by showing that addition of a neutralizing
TNFa antibody prevented neuronal degeneration in WT
microglia-neuron co-cultures, and addition of recombi-
nant TNFa to KO microglia-neuron co-cultures led to
enhanced neuronal degeneration. Our data support the
conclusion that activation of p38a MAPK and the
downstream overproduction of the proinflammatory
cytokine TNFa play a major role in the dysregulated
microglial response to LPS that leads to neuron
degeneration.

Results
Validation of microglia p38a MAPK deletion in
conditional KO mice
In the CNS, p38a MAPK is not restricted to microglia;
therefore, to determine the importance of p38a MAPK
specifically in microglia, we used primary microglia iso-
lated from p38a conditional KO mice, where p38a is
genetically deficient in microglia [25]. Microglia isolated
from mice with the loxP-flanked p38a allele but not
carrying the Cre allele (p38a WT) were found to have
levels of p38a MAPK similar to microglia from C57BL/
6 mice (data not shown). We confirmed that this condi-
tional gene deletion approach was highly efficient at
eliminating the levels of p38a MAPK from microglia as
determined by immunoblotting. Specifically, microglia
isolated from p38a KO mice showed essentially no
p38a compared to the p38a WT microglia cells, either
under control conditions or after treatment with LPS
(Figure 1A). In addition, we confirmed the absence of
p38a in the microglia cultures from KO mice by immu-
nocytochemistry (Figure 1B).
The absence of p38a MAPK did not affect the num-

ber of microglia that were isolated from the p38a KO
mice. It also did not affect the overall morphological
appearance of the microglia in culture. For example,
there was no obvious difference in the morphology of
microglia in the p38a KO group compared to the p38a
WT group, as demonstrated by the microglia marker
F4/80 (Figure 1B). These results were confirmed with
two additional microglia-specific markers IBA1 and
CD11b (data not shown). These data also documented
that the microglia isolation method used resulted in a
highly enriched population of microglia, with essentially
> 99% purity for both the p38a WT and KO microglia
cells.

Microglial p38a MAPK deficiency prevents LPS-induced
neurotoxicity in microglia/neuron co-cultures
Activated microglia are capable of secreting bioactive
molecules, such as reactive oxygen and reactive nitrogen
species, as well as proinflammatory cytokines, all of
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which have the potential to be neurotoxic [7]. We have
previously implicated p38a MAPK signaling as impor-
tant for glia-induced neuronal death in a mixed glia/
neuron co-culture system [26]. However, p38a MAPK
is present in multiple CNS cell types, including micro-
glia, astrocytes, and neurons. Therefore, in this study,
we took a different approach to determine the specific
contribution of microglia p38a MAPK to glia-induced
neuronal death. Specifically, we isolated microglia from
either p38a KO or p38a WT mice, placed them in co-
culture with WT primary cortical neurons, and tested
whether the absence or presence of microglia p38a
would affect LPS-induced neurotoxicity. Consistent
with what we previously reported [26], LPS had no
effect on neuronal viability in the absence of microglia

(100 ± 1.3; 93.4 ± 7.7; % survival without and with
LPS, respectively). Also as expected, treatment of WT
microglia/neuron co-cultures with LPS for 72 h led to
significant neuronal death, as determined by trypan
blue exclusion assay (Figure 2). In contrast, WT neu-
rons co-cultured with p38a KO microglia were resis-
tant to LPS-induced neurotoxicity, showing essentially
100% survival (Figure 2).

Microglial p38a MAPK deficiency attenuates LPS-induced
synaptic protein loss in microglia/neuron co-cultures
We used the microglia/neuron co-culture system to
address whether secreted factors from activated micro-
glia can produce synaptic changes in the neurons and
whether microglia p38a plays a role in these responses.

Figure 1 Validation of microglia p38a MAPK deletion in conditional KO mice. Microglia were plated at a density of 1 × 105 cells in 24-well
plates for immunoblotting (A) and 5 × 103 cells onto 12-mm glass coverslips for immunocytochemistry (B). Microglia from p38a wild-type (WT)
mice show clear bands for p38a/b MAPK, but essentially no p38a/b was seen in microglia from p38a knockout (KO) mice by either
methodology, confirming the deficiency of p38a in the KO microglia. No obvious difference in the morphology of microglia was observed
between the p38a WT and p38a KO.
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We measured protein levels by immunoblotting (Figure
3A) for a panel of five synaptic proteins: two postsynap-
tic proteins, drebrin (Figure 3B), and PSD95 (Figure
3C); and three presynaptic proteins, synaptophysin (Fig-
ure 3D), syntaxin 1 (Figure 3E), and SNAP25 (Figure
3F). As an initial control, we measured PSD95 and
synaptophysin levels in neuronal cultures treated with
LPS for 72 h in the absence of microglia, and confirmed
no effect on these synaptic proteins (% PSD95 levels:
100 ± 9.2 and 94.5 ± 8.6, without and with LPS respec-
tively; % synaptophysin levels: 100 ± 10.6 and 95.9 ± 1.6,
without and with LPS respectively). However, when LPS
was added to the WT microglia/neuron co-culture (Fig-
ure 3), there was a significant decrease in three of the
five synaptic proteins measured: namely, drebrin, synap-
tophysin, and SNAP25. Microglia p38a is involved in
these responses, as demonstrated by the observation
that the absence of microglia p38a protected against the
LPS-induced decrease in drebrin, synaptophysin and
SNAP25. There were no significant LPS-induced
changes in levels of PSD95 or syntaxin 1 in co-cultures
with either WT microglia or p38a KO microglia.

Microglial p38a MAPK-dependent TNFa is involved in
LPS-induced neuronal death
Activated microglia can produce a variety of secreted
molecules that have the potential to be neurotoxic,
including proinflammatory cytokines such as TNFa. We
have previously reported [23] that the production of
TNFa from activated microglia is dependent on the

p38a MAPK pathway. Therefore, this cytokine was a
logical candidate to test for involvement in the micro-
glia-induced neurotoxicity seen in our co-cultures. We
first determined if LPS-treated microglia/neuron co-cul-
tures are associated with elevated TNFa level. In neu-
rons cultured alone, with or without LPS, TNFa was
below the limit of detection (< 3.4 pg/ml). In WT
microglia/neuron co-cultures, LPS stimulated a ~6-fold
increase in TNFa levels (Figure 4A). The levels of
TNFa reached maximum after 24 h of LPS treatment
and remained high until the 72 h time-point (data for
48 h not shown). In co-cultures with p38a KO microglia
stimulated with LPS, the levels of TNFa were signifi-
cantly (p < 0.0005) less than in co-cultures with WT
microglia at all three time-points.
We next addressed the question of whether TNFa

overproduction is essential for the neurotoxicity
observed in the microglia/neuron co-cultures. To test
this hypothesis, we used a TNFa neutralizing antibody
to decrease the TNFa levels in WT microglia/neuron
co-culture. As shown in Figure 4B, LPS caused ~40%
neuronal death. When a TNFa neutralizing antibody
was added to the culture, we found a concentration-
dependent neuroprotection. At a concentration of 50
ng/ml or higher of the neutralizing antibody there was a
significant reduction in LPS-induced neuronal death,
reaching 100% neuronal survival at 5 μg/ml anti-TNFa
antibody. In contrast, the administration of non-immune
isotype control antibody (5 μg/ml) failed to protect neu-
rons from the LPS-induced neuronal death (Figure 4B).

Figure 2 Microglial p38a MAPK deficiency prevents LPS-induced neurotoxicity in microglia/neuron co-cultures. Primary cortical neurons
were co-cultured with primary microglia from p38a WT or p38a KO mice. The microglia/neuron co-cultures were stimulated with 3 ng/ml LPS
for 72 h, then neurons analyzed by trypan blue exclusion assay. Representative photomicrographs of the neuron cultures are shown in (A). The
arrow indicates a live neuron typical of the non-LPS stimulated co-culture. The arrowhead shows a dead neuron that is positive for trypan blue.
In microglia from p38a WT mice, LPS produced a significant decrease in neuronal survival (B; ***p < 0.001). No significant neuron death was
seen in microglia from p38a KO mice stimulated with LPS. Data represents 3 independent experiments.
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These results suggest that blocking TNFa in WT micro-
glia/neuron co-cultures is sufficient to prevent LPS-
induced neuronal death.
As a complementary approach to determining the

involvement of TNFa in the LPS-induced neurotoxicity,
we tested whether the enhanced neuronal survival seen
in p38a KO microglia/neuron co-cultures could be
influenced by adding back TNFa to levels seen in WT
microglia/neuron co-cultures. As shown in Figure 4A, in
the p38a KO microglia/neuron co-cultures treated with
LPS, TNFa is decreased on average ~5 ng/ml compared
to WT. Therefore, two concentrations of TNFa (5 and
10 ng/ml) were administered along with LPS to the
p38a KO microglia/neuron co-cultures, and neuronal
survival was measured after treatment for 72 h. At a
concentration of 5 ng/ml or 10 ng/ml TNFa, we found
a significant concentration-dependent increase in

neuronal death compared to the p38a KO microglia/
neuron co-cultures that were stimulated with LPS alone
(Figure 4C). These results demonstrate that addition of
TNFa to p38a KO microglia/neuron co-cultures
increases LPS-induced neurotoxicity to levels compar-
able to that seen in WT microglia/neuron co-cultures.

Microglial p38a MAPK-dependent TNFa is involved in
LPS-induced neurite degeneration
Following LPS stimulation of microglia/neuron co-cul-
tures we found, by immunocytochemistry for MAP-2,
that neurites of surviving neurons had marked swellings,
with an appearance of beads on a string (see arrow, Fig-
ure 5A). These swellings, or blebs, were not seen in co-
cultures without LPS stimulation (see arrowhead, Figure
5A). In order to quantify these observations, we used
Sholl analysis [27] to quantify the total number of

Figure 3 Microglial p38a MAPK deficiency attenuates LPS-induced synaptic protein loss in microglia/neuron co-cultures. Mouse primary
neurons (5 × 104) were co-cultured with either p38a WT microglia or p38a KO microglia (2 × 104) in the absence or presence of LPS (3 ng/ml)
for 72 h. Neuronal lysates were analyzed by immunoblotting; a representative blot is shown in (A). The levels of the post-synaptic protein
drebrin (B) but not PSD95 (C) were significantly decreased by LPS exposure in p38a WT microglia. However, LPS treatment of the p38a KO
microglia/neuron co-cultures did not produce a significant decrease in drebrin or PSD95. (D) LPS treatment of p38a WT microglia/neuron co-
cultures produced a significant decrease in synaptophysin levels, which was not seen in LPS stimulated co-cultures of p38a KO microglia/
neurons. (E) Levels of syntaxin 1 were unaffected by LPS in either WT or KO microglia. (F) Levels of SNAP25 were significantly decreased in the
LPS-stimulated p38a WT microglia co-cultures, but not in microglia co-cultures from p38a KO mice. (*p < 0.05; p38a WT vs. p38a WT+LPS).
Data represents 2-3 independent experiments.
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intersections that neurites made with the concentric cir-
cles (Figure 5B). We found no significant difference
between the groups in terms of the total number of
neurite intersections, irrespective of whether the neurite
was smooth or had blebs (28.9 ± 2.74 average across
groups). However, as shown in Figure 5C, when we
quantified only the neurites that are smooth, indicative
of a ‘healthy’ neurite, we found that LPS-stimulated WT
microglia/neuron co-cultures showed a highly significant
decrease in the healthy neurite arborization compared
to the non-LPS-stimulated co-culture. Moreover, the
degeneration of the neurites was dependent on p38a
MAPK produced TNFa. This was demonstrated by a
significant recovery in the numbers of healthy neurites
either by addition of a TNFa blocking antibody to WT
microglia or by p38a MAPK deficiency in microglia. We
further found that adding back TNFa to the p38a KO
microglia/neuron co-cultures recapitulated the neurode-
generative phenotype seen with the LPS-stimulated WT
microglia.

Discussion
In the current study, we used microglia/neuron co-cul-
tures to document several important findings about the
mechanisms by which activated microglia can produce
neurodegenerative responses. First, the importance of
microglia p38a MAPK signaling was demonstrated by
the observations that neurons in co-culture with p38a-
deficient microglia were protected against LPS-induced
neurotoxicity, synaptic protein loss, and neurite

degeneration. Second, p38a-dependent microglia TNFa
production was shown to be involved in the mechanism
of the LPS-induced neuron damage by the findings that
p38a KO microglia produce much less TNFa in
response to LPS compared to WT microglia, that adding
back TNFa to p38a KO microglia increases the LPS-
induced neurotoxicity, and that neutralization of TNFa
in WT microglia decreases the LPS-induced neuron
damage. Altogether, our results demonstrate the critical
importance of the p38a MAPK signaling pathway and
overproduction of the proinflammatory cytokine TNFa
in the dysregulated microglia inflammatory responses to
an LPS stressor, leading to microglia-induced neuronal
dysfunction.
Our demonstration that microglia p38a MAPK signal-

ing is important in the mechanism of LPS-induced neu-
ron damage is consistent with numerous findings that
have implicated p38 MAPK activation in the process of
neuronal death in a variety of neurodegenerative disor-
ders. In addition, our studies here using cell-selective,
isoform-specific KO mice extend previous findings by
showing that the p38a MAPK isoform in microglia is a
key mediator of LPS-induced neuronal and synaptic dys-
function. We also provide evidence that one mechanism
by which LPS activation of microglia p38a MAPK sig-
naling leads to neuron death is through up-regulation of
the proinflammatory cytokine TNFa.
The p38 MAPK family consists of four major isoforms

(p38a, b, δ, g) that have different cell and tissue expres-
sion patterns, substrate specificities, and functions [for

Figure 4 Microglial p38a MAPK-dependent TNFa is involved in LPS-induced neuronal death. (A) TNFa levels in the conditioned media
were measured at 24 h and 72 h after LPS addition. The TNFa response to LPS was significantly reduced in the p38a KO microglia/neuron co-
cultures (***p < 0.0005; p38a WT+LPS vs. p38a KO+LPS). (B) Addition of a neutralizing antibody to TNFa in p38a WT microglia/neuron co-
culture abolished LPS-induced neurotoxicity in a concentration-dependent manner, with significant protective effects at concentrations of 50 ng/
ml and higher. The non-immune rabbit IgG control antibody at 5000 ng/ml had no protective effect (**p < 0.005 or ***p < 0.0005; compared to
p38a WT+LPS; Bonferroni’s multiple comparison test). (C) Addition of exogenous TNFa (5 ng/ml or 10 ng/ml) to the LPS-stimulated p38a KO
microglia reduced neuronal survival. Compared to the p38a KO microglia stimulated with LPS alone, 5 ng/ml (*p < 0.05) and 10 ng/ml (**p <
0.005) TNFa significantly decreased neuronal survival (Bonferroni’s multiple comparison test). Data represents 3-6 independent experiments.
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reviews, see: [14,28]]. The patterns of expression and
activation of the p38a isoform in peripheral immune
cells [29,30] suggested that this isoform might play a
major role in the inflammatory response. Early attempts
using genetic KO approaches to explore the role of
p38a in inflammatory responses were hampered because

of embryonic lethality seen with global KO of p38a.
However, a number of more recent studies have used
conditional ablation of p38a in specific cell types to
provide direct evidence that the p38a isoform is of cen-
tral importance for many peripheral inflammatory
responses, such as inflammation-induced arthritic bone

Figure 5 Microglial p38a MAPK-dependent TNFa is involved in LPS-induced neurite degeneration. (A) Photomicrographs of MAP-2
immunocytochemistry show the morphology of neurons after 72 h of co-culture with microglia. The arrow points to the appearance of neurites
that have been damaged by LPS-activated WT microglia. In contrast, the arrowhead points to the morphological appearance of healthy,
undamaged neurites. (B) Diagram of the Sholl method for quantifying the total number of healthy neurites that intersect the concentric circles.
(C) Quantification of healthy neurites by the Sholl analysis demonstrates that LPS stimulation of p38a WT microglia in co-culture causes neurite
degeneration as seen by a significant reduction in the number of intersections by healthy neurites in the LPS-stimulated group compared to the
unstimulated group (white bars). This degeneration can be attenuated by the addition of a blocking antibody to TNFa (5 μg/ml), while the non-
immune IgG control was not protective (gray bars). Microglia from p38a KO mice stimulated with LPS (black bar) also have significantly less
neurite degeneration than the LPS-stimulated p38a WT microglia (white bar). However, by adding TNFa back to the p38a KO microglia co-
culture, there is a significant decrease in the healthy neurite arborization compared to the p38a KO microglia stimulated with LPS alone (black
bars). (***p < 0.005; Bonferroni’s multiple comparison test). Data represents 2 independent experiments. Scale bar equals 25 μm.
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loss [31], inflammatory skin injuries [13], inflammatory
responses of myeloid cells in an experimental colitis
model [32], immune cell recruitment and pathogen
clearance in intestinal epithelial cells [33], and LPS-
induced cytokine production in macrophages [25].
These and other studies using selective p38a inhibitors
and drug-resistant forms of the kinase have demon-
strated the importance of p38a signaling in mediating
peripheral inflammatory responses [34-37].
Although there is broad agreement that p38a plays a

key role in cytokine production and other inflammatory
responses in peripheral immune cells, the contribution
of p38a to pathological microglial activation and detri-
mental inflammation in CNS disorders is less well
understood. Increasing evidence suggests that p38 sig-
naling cascades contribute to CNS cytokine overproduc-
tion and neurodegenerative sequelae [for reviews, see:
[14,38,39]], but few studies have tested the specific role
of microglia p38a. Expression of the p38a isoform in
microglia was reported to increase early after transient
global ischemia [40], and administration of p38 inhibi-
tors reduced infarct volume [15,41] and suppressed
proinflammatory cytokine production [41]. We recently
demonstrated [23] a direct linkage between microglia
p38a and proinflammatory cytokine production in
response to different stressors by showing that inhibition
of p38a in microglia with either a pharmacologic or
genetic approach suppresses proinflammatory cytokine
up-regulation induced by toll-like receptor ligands or
beta-amyloid.
In the present study, we explored the consequences of

the microglial p38a-dependent proinflammatory cyto-
kine response on neuronal endpoints. By using microglia
deficient in p38a, we showed definitively that microglial
p38a is critical for LPS-induced neuron dysfunction and
we implicated p38a-dependent production of the proin-
flammatory cytokine TNFa in the mechanism of neuron
damage. The potential involvement of TNFa was not
unexpected, as this proinflammatory cytokine has been
shown to induce neurotoxicity in models of CNS neuro-
degenerative disorders [42-44], and blocking TNFa sig-
naling can be neuroprotective [45,46]. However, TNFa
is pleiotropic and can also have neuroprotective func-
tions [for review, see: [47]]. Multiple factors influence
whether TNFa will exert neurotoxic or neuroprotective
actions, including the level and duration of expression
in a particular cell type or brain region, the microglia
activation state, the particular disease or disease stage,
the levels of different TNF receptors and adapter pro-
teins, and the upstream activators and downstream
effectors in the signaling pathways. Thus, it was some-
what surprising that microglia p38a-dependent produc-
tion of TNFa in response to an LPS insult appeared to
be sufficient to induce neuron death, as evidenced by

the observations that anti-TNFa antibody treatment
resulted in increased neuronal survival back to control
values, and addition of TNFa to KO microglia reduced
neuronal survival to the same levels as WT. Altogether,
our data demonstrate that microglia p38a activation in
response to an LPS stressor stimulus and the conse-
quent dysregulated TNFa signaling can lead to neuron
damage.
Of note is our finding that p38a MAPK deficiency in

microglia attenuates LPS-induced loss of specific synap-
tic proteins in the co-cultures. Previous studies have
shown a correlation between p38 MAPK activation and
a decline in synaptophysin levels in AD transgenic
mouse models and in primary microglia and cortical
neuron co-cultures stimulated with LPS [48,49], and
pharmacological inhibition of p38a MAPK significantly
reduced TNFa and IL-1b production and prevented
synaptophysin loss in an AD mouse model [24]. Our
results here demonstrate for the first time a linkage of
p38a MAPK and TNFa to LPS-induced decreases in
SNAP25 and drebrin. Because drebrin, a postsynaptic
protein found within dendritic spines, is important for
spine morphogenesis and maintenance [50,51], future
studies should examine in more detail the mechanisms
by which p38a MAPK influences dendritic pathology
and synaptic deterioration such as seen in many neuro-
degenerative disorders. Future studies should also
explore whether microglia p38a MAPK is involved in
beneficial responses of activated microglia, as the cur-
rent study focused only on detrimental consequences of
microglia p38a activation.

Conclusions
We report that p38a MAPK in microglia plays a critical
role in activated microglia-mediated neurotoxicity, loss
of synaptic proteins, and neurite degeneration via a
mechanism involving TNFa signaling. These results sug-
gest that selective targeting of the p38a MAPK signaling
pathway should be explored as a potential therapeutic
strategy for the treatment of CNS disorders where over-
production of proinflammatory cytokines is implicated
in disease progression.

Methods
Animals
All experiments were conducted in accordance with the
principles of animal care and experimentation in the
Guide For the Care and Use of Laboratory Animals.
The Institutional Animal Care and Use Committee of
the University of Kentucky approved the use of animals
in this study. C57BL/6 mice were obtained from Harlan
Laboratories. The p38a MAPK conditional knockout
mice were generated as previously described [23,25], fol-
lowing a standard breeding scheme for conditional gene
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inactivation [52]. The first exon of the p38a gene
(MAPK14) was flanked by two loxP sites. The mice
were backcrossed to homozygosity so that both alleles
of the p38a gene contained loxP sites (p38afl/fl) and
maintained on a C57BL/6 background. LysM-Cre mice
expressing the Cre recombinase transgene under control
of the lysozyme M promoter (B6.129-Lyzstm1(cre)Ifo/J)
were then crossed with the p38afl/fl mice. The LysMCre
+ p38afl/fl offspring were then crossed with the p38afl/fl

mice to generate experimental and control animals. This
generates litters where ~50% mice are p38afl/fl(+cre) (KO)
and ~50% are p38afl/fl(-cre) (used as WT controls). The
restricted cell-type expression of the lysozyme promoter
[53,54] results in cell-specific deletion of p38a MAPK in
myeloid cells including microglia. Genotyping was per-
formed by Transnetyx, Inc (Cordova, TN).

Primary neuronal culture
Primary neuronal cultures were derived from embryonic
day 18, C57BL/6 mice, as previously described [26].
Briefly, cerebral cortices were dissected and the
meninges were removed. Cells were dissociated by tryp-
sinization (0.25% trypsin, 2.21 mM EDTA) for 15 min at
37°C and triturated, followed by passing through a 70
μm nylon mesh cell strainer. The neurons were plated
onto poly-D-lysine-coated 12-mm glass coverslips at a
density of 5 × 104/well in 24 well plates. Neurons were
grown in neurobasal medium (Invitrogen) containing 2%
B27 supplement (Invitrogen), 0.5 mM L-glutamine,
(Mediatech), and 100 IU/ml penicillin, 100 μg/ml strep-
tomycin (Mediatech); no serum or mitosis inhibitors
were used. Every 3 days, 50% of the media was replen-
ished with fresh medium. The purity of the primary
neuronal cultures was verified as 93% by immunocyto-
chemistry for the neuronal marker NeuN, astrocyte
marker GFAP, and microglia marker Iba-1 (data not
shown).

Microglia culture
Microglia cultures were prepared as previously described
[23]. Briefly, mixed glial cultures (~95% astrocytes, ~5%
microglia) were prepared from the cerebral cortices of
1-3 day old mice. The tissue was trypsinized as above,
and the cells were resuspended in glia complete medium
[a-minimum essential medium (a-MEM; Mediatech)
supplemented with 10% fetal bovine serum (FBS) (US
Characterized FBS; Hyclone; Cat no. SH30071.03), 100
IU/ml penicillin, 100 μg/ml streptomycin (Mediatech)
and 2 mM L-Glutamine (Mediatech)]. After 10-14 days
in culture, microglia were isolated from the mixed glial
cultures by the shake-off procedure [55]. Specifically,
loosely attached microglia were shaken off in an incuba-
tor shaker at 250 rpm for 2 h at 37°C, the cell-contain-
ing medium was centrifuged at 1100 rpm for 3 min, and

the cells were seeded onto 12-mm glass coverslip at the
density of 2 × 104 in 24 well plates, unless otherwise
specified. Prior to plating the microglia on the coverslip,
three equally spaced 1 mm glass beads (Borosilicate;
Sigma) were attached to the coverslip with paraffin wax.
The microglia cultures were verified to be > 99% micro-
glia by immunocytochemistry. Microglia were incubated
for one day before placing into co-culture with neurons.

Primary neuron/microglia co-culture and cell treatments
Following previously described methods [26], after 7-9
days in culture, neurons on coverslips were co-cultured
with mouse microglia by placing the microglia-contain-
ing coverslips cell side down into the neuron-containing
wells. In this co-culture system, the microglia and neu-
rons are in close apposition and share the same neuro-
basal/B27 culture media, but are separated by the 1 mm
glass beads and do not have direct cell-cell contact.
Lipopolysaccharide (LPS) from Salmonella typhimurium
(Sigma) was resuspended in sterile saline at 100 mg/ml,
and was used at a final concentration of 3 ng/ml for all
experiments. A rat monoclonal IgG1, anti-mouse TNFa
neutralization antibody (clone # MP6-XT22) with a
reported 50% neutralization dose in the range of 0.15-
0.75 μg/ml, was reconstituted in sterile PBS according
to manufacturer specifications (R&D Systems). A rat
IgG1 monoclonal antibody (clone # 43414) was used as
a non-immune isotype control antibody (R&D Systems).
Treatment with either antibody occurred 1 h prior to
LPS treatment. Recombinant mouse TNFa (aa 80-235;
R&D systems) was added at the same time as the LPS
treatment.

Neuronal Viability Assay
Neuron viability was assayed by trypan blue exclusion
[26]. Neuron-containing coverslips were incubated with
0.2% trypan blue in Hanks’ Balanced Salt Solution
(HBSS) for 2 min in 37°C incubator and then rinsed 3
times with HBSS. Neurons were viewed under bright-
field microscopy at 200× final magnification. Three to
five fields were chosen per coverslip, and a total of 150
to 560 cells were counted per coverslip. Trypan blue-
positive and negative neurons were counted per field
and the ratio of negative cells to the total cells was
taken as the index of neuronal survival rate.

Immunocytochemistry
Cells were fixed with 3.7% formalin containing 0.1% Tri-
ton X-100 in PBS for 10 min at room temperature.
After washing three times with PBS, the coverslips were
incubated with blocking buffer (PBS containing 5% goat
serum, 3% bovine serum albumin (BSA; Fisher Scienti-
fic), 0.1% Triton X-100) for 30 min at room tempera-
ture. Primary antibodies were diluted in blocking buffer
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and incubated with the cells at room temperature for 2
h. Primary antibodies used in this study were: chicken
anti-MAP-2 antibody (1:100, Neuromics); mouse anti-
NeuN (1:100, Millipore); rat anti-GFAP (1:1000, Invitro-
gen); rabbit anti-IBA1 (1:1000, Wako); rat anti-CD11b
(1:100, Serotec); rat anti-F4/80 (1:100, Serotec); and
p38a (1:100, R&D Systems). For detection of primary
antibodies, species-appropriate Alexa Fluor® fluorescent
conjugated secondary antibodies (1:1000, Invitrogen)
were incubated in blocking buffer at room temperature
for 2 h. Wide field fluorescent photomicrographs were
obtained using a Zeiss Axioplan 2 microscope with an
Axiocam MRc5 digital camera (Carl Zeiss).

Western blotting and ELISA assays
Western blotting was performed as previously described
[55]. Briefly, whole cell lysates were prepared in sodium
dodecyl sulfate (SDS)- containing sample buffer, and
equal volumes of lysates were separated by 10.5-14%
SDS-PAGE Criterion precast gel (Bio-Rad Laboratories).
Proteins were transferred to nitrocellulose membrane
using a dry blotting system (iBlot® Invitrogen). Blots
were probed using reagents and manufacturer recom-
mendations for Odyssey Infrared Imaging system (LI-
COR Biosciences), with the following primary antibo-
dies: mouse anti-drebrin (1:5000, Abcam); rabbit anti-
PSD95 (1:2000, Cell Signaling); mouse anti-synaptophy-
sin (1:1000, Millipore); rabbit anti-syntaxin 1 (1:10, 000,
Millipore), mouse anti-SNAP 25 (1:4000, BD Bios-
ciences); rabbit anti-p38a/b (1:1000, Cell Signaling), and
mouse anti-b-Actin (1:10, 000, Cell Signaling). Blots
were visualized and analyzed on the Odyssey Infrared
imaging system (LI-COR Biosciences), and integrated
intensity values were used in statistics.
After 24 h, 48 h, and 72 h in the co-cultures, 20 μl

conditioned medium was harvested for TNFa ELISA
assay using kits from Meso Scale Discovery (MSD)
according to the manufacturer’s instructions.

Sholl analysis
The Sholl method [27] was used in the quantification of
MAP-2 labeled neurites. A series of concentric circles
were drawn at 10 μm intervals starting with a diameter
of 20 μm to a final diameter of 200 μm. Intersections of
smooth or blebbed neurites with the concentric circles
were counted. The total number of intersections for
each neuron was plotted as a measure of neurite arbori-
zation. Per experimental condition, 20-30 neurons were
analyzed from two independent experiments by an
observer blinded to treatment conditions.

Statistics
Statistical analysis was conducted using GraphPad prism
software V.5 (GraphPad Software, La Jolla, CA). Unless

otherwise indicated, values are expressed as mean ±
SEM. Groups of two were compared by unpaired t-Test.
One-way ANOVA followed by Bonferroni’s multiple
comparison test was used for comparisons among three
or more groups. Statistical significance was defined as p
< 0.05.
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