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Simple Summary: Neoadjuvant chemotherapy (NACT) is offered to breast cancer (BC) patients to
downstage the disease. However, some patients may not respond to NACT, being resistant. We
used the serum metabolic profile by Nuclear Magnetic Resonance (NMR) combined with disease
characteristics to differentiate between sensitive and resistant BC patients. We obtained accuracy
above 80% for the response prediction and showcased how NMR can substantially enhance the
prediction of response to NACT.

Abstract: Neoadjuvant chemotherapy (NACT) is offered to patients with operable or inoperable
breast cancer (BC) to downstage the disease. Clinical responses to NACT may vary depending on
a few known clinical and biological features, but the diversity of responses to NACT is not fully
understood. In this study, 80 women had their metabolite profiles of pre-treatment sera analyzed for
potential NACT response biomarker candidates in combination with immunohistochemical parame-
ters using Nuclear Magnetic Resonance (NMR). Sixty-four percent of the patients were resistant to
chemotherapy. NMR, hormonal receptors (HR), human epidermal growth factor receptor 2 (HER2),
and the nuclear protein Ki67 were combined through machine learning (ML) to predict the response to
NACT. Metabolites such as leucine, formate, valine, and proline, along with hormone receptor status,
were discriminants of response to NACT. The glyoxylate and dicarboxylate metabolism was found to
be involved in the resistance to NACT. We obtained an accuracy in excess of 80% for the prediction of
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response to NACT combining metabolomic and tumor profile data. Our results suggest that NMR
data can substantially enhance the prediction of response to NACT when used in combination with
already known response prediction factors.

Keywords: 1H-NMR; breast neoplasms; magnetic resonance spectroscopy; metabolism; untargeted
metabolomics; drug resistance

1. Introduction

Breast cancer (BC) is the most common cancer worldwide [1] and the leading cause of
cancer-related mortality among women in Brazil [2]. Although BC presents histological
similarity, clinically it can be very heterogeneous, with several phenotypic and genotypic
subtypes [3], which results in a challenge in treatment effectiveness. Molecular and im-
munohistochemical markers generally are used to classify BC subtypes. The classification
is based on the expression of hormonal receptors (HR) such as estrogen and progesterone
receptors (ER; PR), human epidermal growth factor receptor 2 (HER2), and the cell prolifer-
ation marker (nuclear protein Ki67). These markers are also related to therapeutic decisions
and prognostics [4,5].

One of the treatments used prior to definitive surgical therapy is neoadjuvant chemother-
apy (NACT), which has gained attention due to its ability to reduce tumor size and cancer
burden, avoiding mutilating surgical procedures [6]. It also has the potential for increasing
resectability and controlling the micrometastatic disease. NACT provides a viable alternative
when there is poor radiotherapy access or there are unavoidable delays in delivering radiother-
apeutic treatment. To evaluate whether the patient had a favorable response after completion
of NACT, pathological complete response (pCR) is defined as the absence of invasive tumors
in the breast and axilla. This response is associated with improved long-term survival rates or
far lower risk of subsequent recurrence [7]. BC patients who achieved a pCR after the NACT
showed higher rates of disease-free survival (DFS) and overall survival (OS) than women with
residual disease in their surgical specimens obtained after NACT [8]. Unfortunately, about
30% of patients show a pCR to NACT.

Patients with HR-positive tumors have a lower probability of pCR after NACT than
patients with HER2-positive and triple-negative tumors [9]. The well-known HR, HER2,
as well as the Ki67 markers triad, explain a substantial portion of the NACT response
variability. Nevertheless, a better understanding of the mechanisms that define the response
to NACT is still needed to determine which patients will gain clinical benefits from NACT.
Many patients undergoing NACT have the adverse effects of therapy without enjoying
pCR, and oncologists are largely incapable of predicting unsuccessful outcomes. To further
improve the knowledge of the molecular events leading to pCR after NACT, we designed
and carried out the present metabolomic study to construct a biomolecular and metabolic
portrait of the biochemical processes in fluids and tissues of BC patients who had undergone
NACT [10–12].

Metabolites are final byproducts acquired from the interaction between intracellular
pathways and their microenvironment [13]. Metabolomics, when faced with a stimulus
such as a disease, measure a comprehensive set of metabolites, thus representing the bioac-
tivity of a system [14]. Thus, in cancer, metabolomics detects oncological developments
by evaluating measurable metabolic profiles and selecting metabolic pathways through
global variations in metabolites [15,16]. Specifically for breast cancer, several articles have
proposed that assessing a metabolite profile might allow for an understanding of the bio-
chemical processes that occurred or were occurring at the time of diagnosis [17–19]. In
addition, in the chemoresistance field, metabolomics allows for the individual character-
ization of the patient, enabling the personalization of treatment with strategies focused
on maximizing the action of drugs. Thus, metabolomics can be developed as a sensitive
prognostic tool for associated therapy for diseases such as breast cancer [20,21]. However,
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a few studies have evaluated metabolites associated with better response to NACT using
metabolomics [22–24].

The use of bioinformatics allows the use of approaches for predictive modeling, using
medical data, for cancer evaluation [25]. For example, machine learning is able to generate
models for prediction by testing vastly through model and parameter space, as opposed to
traditional statistics approaches, which have a limited set of hypotheses [26–30].

In our study, we analyzed the serum metabolites of patients with different molecular
subtypes of BC who had undergone NACT using Nuclear Magnetic Resonance (NMR).
We also created machine learning classifiers by correlating the observed metabolites with
the expression of BC markers and creating models to predict the response to NACT. These
models were able to predict the response to NACT using pre-treatment serum samples.

2. Materials and Methods
2.1. Subjects

This is a prospective cohort study on 80 women aged between 29 and 77 years with
invasive breast carcinoma who underwent NACT followed by surgery. Participants were
diagnosed and treated at the Women’s Hospital (Hospital da Mulher Prof. Dr. José Aris-
todemo Pinotti, Centro de Atenção Integral à Saúde da Mulher–CAISM) of the University
of Campinas (UNICAMP) in Brazil between January 2017 and January 2019. Demographic
and clinical data from patients’ records are summarized in Table 1. The biological samples
were stored in the CAISM’s biobank (CONEP 56, Campinas, SP, Brazil). All study sub-
jects signed informed consent forms before removing their biological samples and being
included in the institutional biobank. The Research Ethics Committee approved the study
of UNICAMP (CAAE, 69699717.0.0000.5404).

Table 1. Key patient information as related to response to neoadjuvant chemotherapy.

Characteristic n (%)
Sensitive Resistant OR p-Value
n = 16 (%) n = 64 (%) (95% CI)

Age ≥50 46 (57.5) 8 (50.0) 38 (59.4) ref
<50 34 (42.5) 8 (50.0) 26 (40.6) 0.68 (0.23–2.05) 0.499

Race Caucasian 69 (86.3) 15 (93.8) 54 (84.4) ref
Non-Caucasian 11 (13.8) 1 (6.2) 10 (15.6) 2.78 (0.33–23.45) 0.293

Age of menarche >12 42 (52.5) 9 (56.2) 33 (51.6) ref
≤12 38 (47.5) 7 (43.8) 31 (48.4) 1.21 (0.4–3.64) 0.737

Menopause No 36 (45.0) 9 (56.2) 27 (42.2) ref
Yes 44 (55.0) 7 (43.8) 37 (57.8) 1.76 (0.58–5.32) 0.313

Hormone therapy No 68 (85.0) 15 (93.8) 53 (82.8) ref
Yes 12 (15.0) 1 (6.2) 11 (17.2) 3.11 (0.37–26.09) 0.233

Pregnancy
(previous or

current)

Yes 73 (91.3) 15 (93.8) 58 (90.6) ref
No 7 (8.7) 1 (6.2) 6 (9.4) 1.55 (0.17–13.89) 0.681

Lactation *
Yes 63 (78.8) 13 (81.2) 50 (78.1) ref
No 17 (21.2) 3 (18.8) 14 (21.9) 1.21 (0.3–4.86) 0.782

Smoking Yes 17 (21.2) 4 (25.0) 13 (20.3) ref
No 63 (78.8) 12 (75.0) 51 (79.7) 1.31 (0.36–4.73) 0.686

Chronic
alcoholism

No 79 (98.8) 16 (100.0) 63 (98.4) ref
Yes 1 (1.2) 0 (0.0) 1 (1.6) NC 0.503

BMI
Normal weight 24 (30.0) 6 (37.5) 18 (28.1) ref

Overweight 21 (26.3) 2 (12.5) 19 (29.7) 3.17 (0.56–17.77) 0.19
Obese 35 (43.7) 8 (50.0) 27 (42.2) 1.13 (0.33–3.79) 0.849

Diabetes
No 71 (88.7) 15 (93.8) 56 (87.5) ref
Yes 9 (11.3) 1 (6.2) 8 (12.5) 2.14 (0.25–18.5) 0.452

Family history of
breast or ovarian

cancer

No 59 (73.8) 9 (56.2) 50 (78.1) ref
Yes 21 (26.2) 7 (43.8) 14 (21.9) 0.36 (0.11–1.14) 0.087

Sensitive (pCR and RCB I); resistant (RCB II and RCB III); NC, non-calculable; BMI, body mass index; * women
who had no pregnancies. The following demographic and clinical data were obtained: age at diagnosis; self-
declared ethnicity; age of menarche; menopausal status (premenopausal and postmenopausal); hormone therapy
history; number of pregnancies; lactation regardless of the number of pregnancies or duration; smoking; chronic
alcoholism; body mass index before the beginning of neoadjuvant chemotherapy (NACT) (normal weight:
<25 kg/m2; overweight: 25 < 30; obese: ≥30); diabetes mellitus; family history of breast and/or ovarian cancer.
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2.1.1. Clinical and Histopathologic Diagnosis of Breast Cancer

Tissue samples were collected with an ultrasound-guided percutaneous needle (core)
biopsy either at biopsy (pre-treatment specimens) or during surgical resection after NACT
(post-treatment specimens). The samples were formalin-fixed and paraffin-embedded.
Hematoxylin-eosin-stained sections were reviewed to confirm the histologic diagnosis.
NACT was prescribed according to the standard protocols, including doxorubicin and
cyclophosphamide, followed by paclitaxel (with carboplatin in triple-negative cases). HER2-
positive patients received trastuzumab. See Supplementary Tables S1 and S2 for the detailed
information of the therapeutic regimen. After NACT, all women underwent surgical
treatment (mastectomy or quadrantectomy with sentinel lymph node biopsy or axillary
lymph node dissection). All histological diagnoses were determined according to the
World Health Organization (WHO) criteria and following the grade as per the Nottingham
classification (Supplementary Methods) [31].

2.1.2. Immunohistochemical Diagnosis

For BC subtype classification, a conventional manual immunohistochemical technique
was used [31–35]. Anti-estrogen receptor (ER, clone 1D5, diluted at 1:1000 v/v), anti-
progesterone receptor (PR, clone PR636, diluted at 1:800 v/v), anti-HER2 (Clone PN2A,
diluted at 1:1100 v/v), and anti-Ki67 (clone MIB1, diluted at 1:500 v/v) were used as
primary antibodies (all by Dako, Agilent, Santa Clara, CA, USA). Evaluation of ER and
PR was performed accordingly, on the diagnostic (pre-treatment) specimens [32]. Cases
were considered positive when ≥1% of tumor cells were positive. For Ki67, we scored
the percentage of positive tumor cells in a minimum of 500 cells in randomly selected
representative fields [33]. When the mean percentage of stained cells was higher than
the median (40%), cases were assigned as Ki67 high. Human epidermal growth factor
receptor 2 (HER2) staining was scored as 0+/1+ (negative), 2+ (equivocal), or 3+ (positive).
Equivocal (2+) cases were further confirmed by in situ hybridization, according to the
recommendations of the American Society of Clinical Oncology/College of American
Pathologists (ASCO/CAP) [34]. Due to tumor heterogeneity, hormone-receptor-negative
cases and/or HER2-negative had the immunohistochemistry repeated in the surgical
specimen of women with a residual disease for subtype confirmation [35].

2.1.3. Response to NACT

The response to NACT was evaluated on surgical specimens removed after NACT
according to the Residual Cancer Burden (RCB) guidelines [36,37]. For statistical analyses,
all cases were clustered into two major groups based on the response to NACT: (a) cases with
a pCR and RCB-I (minimum residual disease) as sensitive, and (b) cases with residual breast
carcinoma RCB-II (moderate residual disease) and RCB-III (extensive residual disease) as
resistant [38].

2.2. Untargeted Nuclear Magnetic Resonance (NMR) Metabolomic Analysis of Serum Samples

Aliquots of peripheral blood were collected in dry tubes (Vacuette® tube 2.5 mL CAT
Serum Separator Clot Activator 13 × 75 red cap-white ring, non-ridged, North Carolina,
USA) and obtained from women before they initiated the NACT. Immediately after blood
collection, the tubes were mixed by inverting several times and incubated for ≥30 min at
4 ◦C. The tubes were centrifuged for 10 min at 1000× g. The samples were stored at −80 ◦C
until analysis.

Serum samples were thawed at room temperature before the spectroscopy analysis.
Then, 400 µL of serum was slowly mixed with 200 µL of D2O (99.9% deuterium oxide with
0.03% of TSP) and transferred to 5 mm NMR tubes. The proton NMR spectra (1H-NMR)
were acquired at 298 K using a Varian Inova® of 599.887 MHz NMR spectrometer (Agilent
Technologies® Inc., Santa Clara, CA, USA) equipped with a triple resonance cryoprobe.

Regular one-dimensional 1H-NMR spectra were obtained using CPMG (Carr–Purcell–
Meiboom–Gill) pulse sequence with ns = 128 with 8 K data points at a spectral sweep width
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of 16 ppm; total relaxation delay of 4 s; water presaturation applied during 2 s delay; T2
filtering was obtained with an echo time of 300 µs repeated 166 times, resulting in a total
duration of effective echo time of 50 ms. The NMR acquisitions were performed at the
Brazilian Biosciences National Laboratory (Brazilian Center for Research in Energy and
Materials, CNPEM, Campinas, SP, Brazil).

2.2.1. NMR Analysis

The obtained spectra were processed using the MestreNova software (MestrelabRe-
search S.L.). The chemical shifts of the spectra were referenced using the doublet corre-
sponding to the lactate’s methyl group (–CH3) at 1.324 ppm (3H, d, 3JHH = 7.0 Hz). The
extent of information was reduced by using a binning of 0.005 ppm. The samples were
normalized by the sum. The processed spectra were converted into data matrices to prepare
them for identification and analysis. In addition, regions of the spectrum corresponding to
substances with a potential for interference in the analyses, such as water (4.40–5.23 ppm),
were removed. The NMR analyses were performed at the Biological Chemistry Laboratory
from UNICAMP. Chenomx NMR® Suite 8.1 software (Chenomx® Inc., Edmonton, AB,
Canada) was used to quantify relative concentrations.

2.2.2. Statistical Analysis

All statistical calculations were performed using the R Foundation for Statistical
Computing (v3.6.2), Vienna, Austria. The epitools package was used for the odds ratio (OR)
calculation of clinical characteristics of the women according to their response to NACT.
Confidence levels of 95% and p-values <0.05 were assumed as statistically significant [39].
In addition, we used standard methodology to calculate the sample size for the study.
Assuming a 0.05 significance level, a Cohen coefficient of 0.8 (high), the power for our
analysis sits at a comfortable 0.801, considering the proportion of NACT sensitive/resistant
patients in the cohort of 80 women with complete clinical data available for analyses. The
caret package was used for recursive feature elimination (RFE) and logistic regression (LR)
modeling [40]. RFE was applied for continuous elimination of features (i.e., metabolites or
clinical markers) with a low contribution to the model [41–43].

Nine classification prediction models for the response to NACT were generated based
on the alternative combinations of HR, Ki67, HER2 statuses, and the metabolite panel
(Supplementary Table S3). We performed separate analyses for the entire (Supplementary
Table S3) and triple-negative/HER2+ tumors (n = 45, Supplementary Table S4).

Models were built based on a training set comprising 75% of the data. To evaluate
the performance of the models, we performed Leave-One-Out Cross-Validation (LOOCV).
The area under the curve (AUC) of the receiver operator characteristics (ROC) curve of
the selected features was also used to evaluate their prediction power. A validation set
comprising 25% of data was also used for performance evaluation in terms of sensitivity,
specificity, and accuracy [44].

For metabolomics analysis, normalization by sum and pareto scaling data were per-
formed using the web platform MetaboAnalyst™ 5.0 [45]. Using this platform, we further
interrogated the KEGG Library for quantitative Metabolite Pool enrichment, and the path-
ways with a p-value < 0.05 were considered significant.

3. Results
3.1. Subjects and Clinical Features

Eighty patients included in this study and undergoing NACT presented invasive
ductal carcinoma (100%), most of which were histological grade 3 (51%), ER-positive (71%),
and PR-positive (65%). Patients with tumors of histological grade 3 had a higher probability
of pCR/RCB-I (OR = 5.57 (1.439–21.470); p = 0.0161) than their counterparts whose tumors
were grade 1/2. In contrast, women with HR-positive tumors were less likely to enjoy
pCR/RCB-I (OR = 0.18 (0.04–0.670); p = 0.005) than the women with non-luminal tumors.
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Table 2 shows the distribution of women according to the disease characteristics and
NACT response.

Table 2. Main breast cancer features as related to response to neoadjuvant chemotherapy.

Characteristic n (%)
Sensitive Resistant OR p-Value
n = 16 (%) n = 64 (%) (95% CI)

Histological
grade 1/2 38 (48.75) 3 (18.8) 36 (56.2) ref

3 41 (51.25) 13 (81.2) 28 (43.8) 0.18 (0.05–0.69) 0.006
Ki67 Low 34 (42.5) 5 (31.2) 29 (45.3) ref

High 46 (57.5) 11 (68.8) 35 (54.7) 0.55 (0.17–1.76) 0.303
HER2 Negative 46 (57.5) 6 (37.5) 40 (62.5) ref

Positive * 34 (42.5) 10 (62.5) 24 (37.5) 0.36 (0.12–1.12) 0.072
Tumor size ** T1/T2 53 (66.25) 12 (75.0) 41 (64.1) ref

T3/T4 27 (33.75) 4 (25.0) 23 (35.9) 1.68 (0.49–5.82) 0.399
Regional lymph

node N0 33 (41.25) 6 (37.5) 27 (42.2) ref

N1 or higher 47 (58.75) 10 (62.5) 37 (57.8) 0.82 (0.27–2.54) 0.732
Metastasis M0 74 (92.5) 16 (100.0) 58 (90.6) ref

M1 6 (7.5) 0 (0.0) 6 (9.4) NC 0.094
Hormonal
Receptor Negative 21 (26.25) 9 (56.2) 12 (18.8) ref

Positive 59 (73.75) 7 (43.8) 52 (81.2) 5.57
(1.73–17.96) 0.004

* Five patients had negative HER2 at core biopsy and positive HER2 in the surgical specimen; therefore, these
patients were not treated with trastuzumab prior to surgery. ** One patient had an occult breast tumor with
axillary disease. Legend: sensitive (pCR and RCB I); resistant (RCB II and RCB III); NC, non-calculable; Ki67, Ki67
protein (low ≤ 30 and high > 30); HER2, human epidermal growth factor receptor (scored as 0+/1+ (negative),
2+ (equivocal), or 3+ (positive), equivocal cases were further confirmed by in situ hybridization); T1, tumor
≤ 20 mm; T2, tumor > 20 mm and ≤ 50 mm; T3, tumor > 50 mm; T4, tumor of any size with direct extension to
the chest wall and/or skin; Regional lymph node negative, no regional lymph node metastasis; positive, included
N1 (mobile ipsilateral lymph node metastases, axillary levels I, II), N2 (clinically fixed or entangled lymph node
metastases I, II, or ipsilateral internal mammary lymph node metastasis) or N3 (axillary level III ipsilateral lymph
node metastasis with or without axillary involvement at levels I and II, or metastasis in internal mammary lymph
node with level I and II axillary involvement, or supraclavicular lymph node metastasis with or without axillary
or internal mammary involvement); M0, without clinical or radiographic evidence of distant metastasis; M1,
distant metastasis determined clinically and radiographically and/or histologically. Hormonal receptor, positive
if ER and/or PR positive; negative if both RE and RP negative.

3.2. NMR-Based Metabolomic Analysis

Untargeted NMR analysis identified and quantified the relative abundances of more than
27 compounds, including 14 amino acids (arginine, asparagine, glutamate, histidine, leucine,
lysine, phenylalanine, proline, serine, threonine, tyrosine, and valine) and other metabolites
(Table S5). Overall, no significant differences in the number of metabolites identified by 1H-NMR
in the spectra of resistant and sensitive patients were observed. Representative spectra obtained
from serum patients in the resistant and sensitive groups are shown in Figure 1. Univariate
analysis shows that leucine and formate were found to be significantly altered when comparing
resistant and sensitive women (p-value < 0.05) (Figure 2 and Table S5); however, their predictive
power evaluated using a logistic regression model showed to be unsatisfactory (AUC = 0.67)
(data not shown).
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Figure 2. Volcano plot showing the metabolite variation by NACT outcomes (log2(resistant/sensitive)) in
function of their statistical significance (log2(p-value)). Non-significant metabolites are plotted below the
horizontal dashed line, and the metabolites above this line presented significant variation (p-value < 0.05).
In addition, we show a boxplot for metabolites with significant variation (blue represents resistant
patients and pink the sensitive ones); p-values were calculated using the Mann–Whitney–Wilcoxon test
or t-test as a function of whether the data came from a normal distribution, proved with the Shapiro test.

3.3. Classification Models for Predicting Response to NACT

Logistic regression (LR) models have supported the assessment of biomarkers in
cancer [46–49] and can also be coupled with RFE [50], as we present in Figure 3. When
compared to the univariate approach, we observed an increase in the predictive power for
the model using only the abundance of the metabolites (AUC = 0.83 – Model I, Figure 3A).
Using the LR-RFE, we found formate, proline, valine, and leucine as potential markers of
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NACT response (Figure 3B). By combining the abundances of these metabolites with the
information on HR status (Model II), HR and HER2 (Model VI), and Ki67, HER, and HR
(Model VIII), we obtained AUC values higher than those obtained for the model that solely
used metabolites.

The contributions of the metabolites were found to be more significant for the models
than the contribution of the molecular markers, as presented by the observed coefficient
values (Figure 3B). For the total contribution of the HR, Ki67, HER2, and serum metabolites
as predictors of the response to NACT in the different models obtained, see Table S6.
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Figure 3. Classification models obtained with the combination of metabolites and clinical information.
(A) The plot of the ROC curves for each model, containing the area under the curve (AUC). (B) The
coefficients of the predictors and (C) performance of models II and V for training (cross-validation)
and validation sets.

The coefficient values display the patient’s chance of being resistant to NACT. A
positive value means a positive correlation with NACT resistance, whereas a negative
value means a positive correlation with NACT sensitivity. For example, formate, proline,
valine, HR+, and HER2− display positive coefficient values, thus being directly related
to the NACT resistance. It means that once any of these predictors show an increase, the
patient’s chance of being resistant to NACT increases. Conversely, leucine, HR−, and
HER2+ have negative coefficient values and are inversely related to NACT resistance or
directly associated with NACT sensitivity. It means that an increase in leucine concentration,
keeping the remaining predictors constant, increases the patient’s chance of being sensitive
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to the treatment, in accordance with what was previously pointed out by the univariate
analysis of the metabolite set. Ki67, both positive and negative, was found to have a low
influence on the models that contain it.

When exploring the performances of the models based on their predictive power and
agreement with the pathologic results, equivalent specificity rates were found for the eight
models when considering the training set (Supplementary Table S3). For the validation sets,
the specificity reached 75% only for the models II and V (Figure 3C), which were considered
the ones with the highest efficiency in the classification. The sensitivity of the models, for
both training and validation sets, was higher than 70% for all the models (Supplementary
Table S3). The results suggest that the interconnection of clinical variables (HR/Ki67/HER2)
and serum metabolites can improve the prediction of the response to NACT. When the
analyses were performed in a restricted cohort of patients with triple-negative and HER2+
tumors, similar performance estimators were obtained (Supplementary Table S4).

To gain insights into metabolome changes associated with resistance and sensitivity to
NACT, the pathway enrichment analysis was carried out with the metabolites found as dis-
criminants for models I–VIII. Glyoxylate and dicarboxylate metabolism was the most enrolled
pathway for acquiring resistance (Supplementary Figure S1, Supplementary Materials).

4. Discussion

The potential of the combination of HR, Ki67, and HER2 statuses and serum metabo-
lites in predicting the response to NACT was evaluated in this study. The untargeted
NMR analysis identified and quantified the relative abundances of 28 compounds, includ-
ing 14 amino acids, carnitine, and other metabolites. Amino acids are an indispensable
source of nutrients for all types of cells. Both essential and non-essential amino acids
have an important role in providing build blocks for cell growth and proliferation. The
critical role of these amino acids is even more important for tumor cells due to their rapid
growth and proliferation, supporting protein synthesis [51]. It is also known that amino
acids cannot cross the cell membrane without the assistance of specific transporters due
to their hydrophilic component [52]. Therefore, since tumor cells require a high demand
of amino acids to satisfy their rapid growth and proliferation, amino acid transporters’
expression is higher than normal cells [53]. Furthermore, the amino acid transporters are
expressed in different levels in types of cancers and exhibit different properties in substrate
selectivity [54].

When studying the serum abundance of this set of metabolites, we noticed the sig-
nificant differences between the concentrations of leucine and formate. Leucine, which
has been extensively studied for its role in breast cancer, showed a lower concentration in
the serum of resistant women [55–57]. Saito et al., 2019, proposed that resistance is based
on the increased expression of transporters that incorporate leucine to fuel the accelerated
proliferation of cells resistant to therapy, which supports our observation of a lower con-
centration of this amino acid in resistant patients to NACT [58]. The higher concentration
of leucine observed in the serum from sensitive in comparison to resistant patients could
reflect less leucine uptake from sensitive tumors. One possible explanation could be a lower
expression of L-type amino acids transporter 1 (LAT1) in sensitive tumors. Leucine is an
essential amino acid [59] that activates the mammalian target of rapamycin (mTOR) which
regulates cell growth and cell cycle progression [60], stimulating insulin signaling [61] or
oxidized for energy purposes by tumors [62]. Therefore, within a lower leucine uptake,
the mTOR pathway will be down-regulated, growth stimuli and energy source will be
decreased, and consequently, less cell growth and proliferation could lead to the sensitive
phenotype. Contrarily, Yang and collaborators (2018) performed a metabolomics study
evaluating the plasma profile associated with response to neoadjuvant chemotherapy for
colorectal cancer patients and found that leucine concentration was decreased in responsive
patients [61]. Compared to Yang et al. (2018), this discrepancy in the present study could
be explained by the heterogeneity among different cancers, such as cell type and histologic
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classification. A study by Saito and colleagues (2019) demonstrated that leucine imported
by LAT1 was involved in tamoxifen resistance in ER-positive breast cancer [58].

In addition to leucine, another amino acid, arginine, had different serum profiles
when comparing sensitive and resistant patients. Arginine is a semi-essential amino acid
that could be derived primarily from diet and synthesis in the kidney [63]. Arginine is
crucial in many biologic processes, including the immune system. Furthermore, arginine is
essential to cellular growth and may become limited in cases of rapid proliferation such as
malignancy [64]. Jayant and Anant (2017) evaluated the serum levels of arginine in breast
cancer patients and found lower levels in cancer patients, independent of stage, compared
to healthy controls [65]. In the present study, we found higher levels of arginine in resistant
patients in comparison to sensitive ones. This result could reflect that the required arginine
may differ between sensitive and resistant tumors.

In addition to alterations in the serum amino acid profile, other metabolites such as
formate have their profile changed among sensitive and resistant breast cancer patients.
Formate is produced by many metabolic pathways such as serine catabolism, through the
mitochondrial pathway. Sterol synthesis and tryptophan catabolism are also involved in this
process. Formate may have different directions depending on cell type and environmental
conditions. In proliferating cells, such as cancer, formate contributes to the one-carbon (1C)
demand for the synthesis of nucleotides [66]. The high demand for nucleotide, RNA, and
DNA is essential for rapid tumor growth [67]. For this reason, the circulating formate levels
are reduced in some cancer patients, such as breast and lung cancer, relative to healthy
controls [68]. Formate was increased in resistant women and can be considered a potential
predictive biomarker, in agreement with several publications on cancer [22,68,69]. Jiang
et al. (2018) performed a pharmacometabolomics study in metastatic breast cancer patients
evaluating the response to gemcitabine–carboplatin chemotherapy. The authors found that
significantly lower baseline levels of serum formate in patients with the resistant disease
may reflect the higher demand from them for alternate/additional nutritional sources
to fuel the accelerated proliferation of breast cancer cells biologically more aggressive
or resistant to therapy [70]. Contrarily, our results revealed significantly higher serum
formate in resistant patients. This controversial result could be explained by the fact that
the oxidative nature of cancers and the chemotherapy treatment for our patients may differ
from those included in the study performed by Jiang.

Subsequently, we used the recursive feature elimination (RFE) method to assist in the
selection of putative biomarkers. RFE continually removes the resources with low contribution
scores based on the iterative method and then classifies each resource in each cycle to exclude
the resources with low scores [43]. Studies have proposed that RFE allows the extraction
of potential biomarker subsets among different cancer types [71–73]. Specifically, for breast
cancer, RFE was applied to classify the complete pathological response and distinguish triple-
negative breast cancer from other subtypes of breast cancer based on the selection of miRNA
biomarkers [74,75]. Logistic regression (LR) models, following the RFE approach, are also
widely used in classification problems applied to breast cancer [76–79].

In our study, RFE + LR was applied as a supervised learning machine by combining
the abundance of metabolites with the clinical information on HR, Ki67, and HER2 status.
The resulting classification models presented sensitivity and specificity values greater than
70% and 80%, respectively, for the training set. Remarkable performance was achieved for
Model II, with 75% sensitivity and 83% specificity for the training set and 81% sensitivity
and 75% specificity for the validation set. This indicates that combining the HR status with
the metabolite panel (leucine/valine/formate/proline) can generate good classifiers of the
response to NACT.

A few studies reported similar results for predicting the response to NACT in BC patients
based on metabolite panels [22–24]. Lin et al. (2019) assessed the metabolic biomarker
signature of serum samples of BC patients by liquid chromatography–mass spectrometry
(LC-MS). The authors applied partial least squares discriminant analysis (PLS-DA) to build
the statistical model of classification, which identified nine informative metabolites and
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achieved performances with a specificity of 100% and sensitivity of 81.2% [23]. Some authors
recently examined serum metabolite levels during chemotherapy treatment. Debik et al. (2019)
observed unfavorable changes in lipid levels during NACT. By using NMR, they observed
no metabolic difference in serum samples from survivors and non-survivors, although a
PLS-DA model based on their analysis of tissue achieved 72% accuracy in predicting a 5-year
survival rate. Among other metabolites, lactate, glycine, choline, and alanine were reported
as the critical variables useful for the model set-up [22]. Vignoli et al. (2020) also studied
metabolic profiles capable of codifying a complete response to NACT within the ER-positive
group. After investigating the plasma by NMR, they built a classifier with low performance.
Among other findings, branched-chain amino acids, such as valine and isoleucine, were
reported as the key differentiators of their groups of study [24]. Unlike the previous studies
mentioned above, applying the RFE + LR method allowed us to obtain models with successful
results in predicting the response to NACT that links the selected biomarkers with the clinical
information of patients.

Glyoxylate and dicarboxylate metabolism was the pathway most impacted by the
acquisition of resistance (Supplementary Figure S1). This pathway has been associated
with breast cancer cell metastasis by gas chromatography–mass spectrometry (GC-MS) and
direct infusion mass spectrometry [80]. In addition, other pathways represented by our
panel of metabolites are associated with breast cancer, such as the metabolism of branched-
chain amino acids (BCAAs, i.e., valine, leucine, and isoleucine), the Aminoacyl-tRNA,
arginine and proline, Pantothenate, and CoA [50,81]. Together, this set of relationships
highlights the metabolic alterations involved in the cellular reprogramming that provoked
the BC resistance to chemotherapy.

The current analysis is based on a strong dataset of comprehensive clinical and
metabolomic data, derived from a well-maintained biobank, coupled with clinical facilities
designed to collect world-class clinical data. We acknowledge, on the other hand, that a
larger cohort of patients with non-luminal tumors would have enhanced the possibility
of subset analyses aimed at refining the performance estimations on less common tumor
types, such as triple-negative and HER2+ tumors. Although untreatable at this point, we
are conducting further recruitment of patients with these less common tumor types.

5. Conclusions

In conclusion, NMR of serum offered rapid access to metabolic alterations in BC associ-
ated with resistance and sensitivity to NACT. The reported proof-of-principle study attested
the power of these techniques in accelerating the definition of BC prognosis with excellent
accuracy. Screening methods for predicting the response and effects of chemotherapies are
much desired and would be of paramount importance for cancer patients. Despite BC being
one of the most treatable cancers, a massive number of women do not benefit from NACT
pre-treatment because of resistance to chemotherapy. Capitalizing on the close relationship
between cancer formation and changes in serum, the analysis of the metabolites by NMR
allowed insights into the metabolic alterations associated with marker status and resistance
to NACT. When coupled by LR + RFE to the clinical marker status, a simple metabolomic
panel can be applied successfully as an add-in prognosis and clinical forecasting for the
response to NACT of BC patients. Although rigorous multisite validation of this untargeted
approach with a larger patient pool is needed, this is the first milestone for developing an
efficient strategy for the early discovery of NACT-resistant BC patients.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/cancers14205055/s1, Table S1: Standard NACT regimens and re-
sponse evaluation parameters according to the molecular subtype of breast cancer. Table S2: Women’s
distribution into the therapeutic regimen. Table S3: Performance for the training and validation sets
based on the models built using logistic regression and recursive feature elimination considering
the different combinations of metabolites, hormone receptor (HR), ki67, and HER2 statuses. Table
S4: Performance for the models built using logistic regression and recursive feature elimination
considering only triple-negative or HER2+ patients. Table S5: Average relative abundances of the
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serum metabolites detected by 1H-NMR according to response to NACT. Table S6: Contribution
of the HR, Ki67, HER2, and serum metabolites as predictors of the response to NACT in different
models obtained with RFE + LR. Figure S1: Pathway enrichment analysis for the metabolites found
as discriminatory, assuming as relevant those pathways with a p-value < 0.05.
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