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Abstract: Accumulating evidence suggests a relationship between type 2 diabetes mellitus and sleep
problems. A comprehensive study is needed to decipher whether shared polygenic risk variants exist
between diabetic traits and sleep traits. Methods: We integrated summary statistics from different
genome-wide association studies and investigated overlap in single-nucleotide polymorphisms
(SNPs) associated with diabetes-related traits (type 2 diabetes, fasting glucose, fasting insulin, and
glycated hemoglobin) and sleep traits (insomnia symptoms, sleep duration, and chronotype) using a
conditional/conjunctional false discovery rate approach. Pleiotropic genes were further evaluated for
differential expression analysis, and we assessed their expression pattern effects on type 2 diabetes
by Mendelian randomization (MR) analysis. Results: We observed extensive polygenic pleiotropy
between diabetic traits and sleep traits. Fifty-eight independent genetic loci jointly influenced the
risk of type 2 diabetes and the sleep traits of insomnia, sleep duration, and chronotype. The strongest
shared locus between type 2 diabetes and sleep straits was FTO (lead SNP rs8047587). Type 2 diabetes
(z score, 16.19; P = 6.29 × 10−59) and two sleep traits, sleep duration (z score, −6.66; P = 2.66 × 10−11)
and chronotype (z score, 7.42; P = 1.19 × 10−13), were shared. Two of the pleiotropic genes, ENSA
and PMPCA, were validated to be differentially expressed in type 2 diabetes, and PMPCA showed a
slight protective effect on type 2 diabetes in MR analysis. Conclusions: Our study provided evidence
for the polygenic overlap between diabetic traits and sleep traits, of which the expression of PMPCA
may play a crucial role and provide support of the hazardous effect of being an “evening” person on
diabetes risk.

Keywords: type 2 diabetes; genetic pleiotropy; genome-wide association study; sleep

1. Introduction

Type 2 diabetes mellitus is a complex disease induced by a combination of environ-
mental and genetic factors. It is estimated that approximately 463 million adults aged
20–79 years suffer from diabetes globally, which is expected to surge to 700 million by
2045 [1,2]. Complications of diabetes seriously affect the physical health of patients and
lead to a heavy health burden of disability and mortality, consuming massive loss of social
resources [1]. Genome-wide association studies (GWAS) have identified more than 500 sus-
ceptibility loci that demonstrate a robust association with type 2 diabetes [3]. In contrast to
the tremendous stride in GWAS research, the conundrum of “missing heritability” in type
2 diabetes has progressed slowly and arduously. The identified genetic variants explain
only 19% of the familial clustering of type 2 diabetes [4,5].

An extensive overview of pleiotropy and genetic architecture showed that 90% of
trait-associated loci overlap with loci from multiple traits [6]. Combining GWAS from
multiple phenotypes provides insights into genetic pleiotropy and could elucidate shared

Biomedicines 2022, 10, 368. https://doi.org/10.3390/biomedicines10020368 https://www.mdpi.com/journal/biomedicines

https://doi.org/10.3390/biomedicines10020368
https://doi.org/10.3390/biomedicines10020368
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/biomedicines
https://www.mdpi.com
https://orcid.org/0000-0003-0390-9597
https://orcid.org/0000-0002-5554-1678
https://orcid.org/0000-0001-8226-5413
https://doi.org/10.3390/biomedicines10020368
https://www.mdpi.com/journal/biomedicines
https://www.mdpi.com/article/10.3390/biomedicines10020368?type=check_update&version=2


Biomedicines 2022, 10, 368 2 of 15

pathobiology [7]. The conjunctional false discovery rate (conjFDR), an extension of the
conditional false discovery rate (condFDR), is such an approach that boosts GWAS discov-
ery by leveraging auxiliary genetic information to readjust the GWAS test statistics in a
primary phenotype and was applied for cross-trait analysis by leveraging overlapping SNP
associations between separate GWAS to rerank the test statistics in a primary phenotype
conditional on the associations in a secondary phenotype [8,9]. This method is a model-free
strategy for the analysis of GWAS summary statistics inspired by the empirical Bayes
statistical framework, which is designed for situations with dense elements, such as the
large number of small genetic effects seen in polygenic traits and disorders [8,9].

Accumulating evidence suggests that sleep traits may have indispensable effects on
the development of type 2 diabetes, such as insomnia and chronotype. Insomnia disorder
is the second-most prevalent mental disorder with prevalence estimates ranging from 10%
(adults) to 22% (elderly) and is characterized by lasting problems falling asleep or waking
up in the night or early morning, with subjective repercussions for daytime functioning [10].
The adverse effect of insomnia on type 2 diabetes risk was verified by multiple observa-
tional studies and Mendelian randomization studies [11–13]. A 12-day inpatient General
Clinical Research Center study found that sleep restriction significantly reduces insulin
sensitivity [14], and simple sleep interventions such as sleep extension are associated with
improvements in fasting insulin sensitivity [15]. In addition to the above epidemiological
evidence, genome-wide association studies (GWAS) have provided new insights into the
complex genetic mechanisms between type 2 diabetes and sleep traits. Polygenic risk
scores for sleep duration obtained from GWAS summary statistics are associated with an
increased likelihood of various metabolic traits [16]. There is also a correlation between
genetic risk factors for insomnia and the risk of type 2 diabetes (rg = 0.20) [17]. Chronotype
of an individual refers to the specific entrainment and/or activity-rest preference of that
individual in a given 24-h day [18]. It can be denoted as circadian topology or diurnal
preference and may manifest as measures of the timing of actual sleep-wake behaviors
or preference for sleep-wake timing under idealized conditions [19]. Early risers who are
preferentially active in the mornings are said to have a morning chronotype and are often
dubbed as larks, and late risers with more nocturnal activities have late chronotypes and
are popularly dubbed owls. The literature suggests that circadian rhythms are important
to weight regulation and metabolism. Suggested mechanisms include dietary behavior,
appetite-stimulating hormones, and glucose metabolism [20]. Therefore, shared genetic
influences of sleep traits can be highly valuable for type 2 diabetes to provide biological
insights and uncover shared biological underpinnings. A comprehensive study is needed
to decipher whether shared polygenic risk variants exist between diabetic traits and sleep
traits, which is essential to unveil the genetic mechanisms of type 2 diabetes and impel
early prevention and therapy.

In this study, we investigated the polygenic overlap between type 2 diabetes and sleep
traits using the conjFDR approach and focused on pleiotropic genes. In order to better
understand type 2 diabetes pathophysiology, we also included other diabetes-related traits,
including fasting glucose (FG), glycated hemoglobin (HbA1c), and fasting insulin (FI). We
further assessed whether the pleiotropic genes were enriched in particular pathways and
their expression pattern effects on type 2 diabetes.

2. Materials and Methods
2.1. Study Participants

GWAS results in the form of summary statistics on type 2 diabetes were acquired from
Mahajan et al.’s work [21]. In this study, 403 independent association signals were detected
by conditional analyses at each of the genome-wide significant risk loci for type 2 diabetes
(except at the major histocompatibility complex (MHC) region). Summary-level data are
available at the DIAGRAM consortium (http://diagram-consortium.org/, accessed on
13 November 2020). European-specific meta-analysis summary-level results for fasting
glucose (FG), glycated haemoglobin (HbA1c), and fasting insulin data (FI) were acquired
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from a trans-ancestral meta-analysis, which aggregated genome-wide association studies
comprising up to 281,416 individuals without diabetes (70% European ancestry) [22].
European-specific meta-analysis summary-level results were downloaded through the
MAGIC website (https://www.magicinvestigators.org/, accessed on 13 November 2020)
and used for subsequent analysis.

Summary statistics results of sleep traits were obtained from Jansen et al.’s study [23].
The freely available meta-analytic sleep traits (insomnia symptoms, sleep duration, and
chronotype) represent results partly provided by the UK Biobank Study (www.ukbiobank.
ac.uk, accessed on 13 November 2020) [24].

The UK Biobank collected a single self-reported measure at baseline of sleep traits.
Insomnia symptoms were assessed by asking, “Do you have trouble falling asleep at
night or do you wake up in the middle of the night?”, with responses “Never/rarely”,
“Sometimes”, “Usually”, or “Prefer not to answer”. Those who responded “prefer not to
answer” were missing. Insomnia cases (n = 109,402) were defined as participants who
answered this question with “usually”, while participants answering “never/rarely” or
“sometimes” were defined as controls (n = 277,131). “Usually have trouble falling asleep
at night or waking up in the middle of the night” may be the most important part of
the Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition (DSM-5) and
International Classification of Sleep Disorders (ICSD) diagnostic criteria for insomnia
disorder, so this definition of insomnia symptoms from the self-reported measure was
validated to be closer to the DSM-5 and ICSD diagnostic criteria than the commonly used
Insomnia Severity Index (ISI) or Pittsburgh Sleep Quality Index (PSQI). Additionally, it
previously showed excellent sensitivity (98%) and specificity (96%) of the UK Biobank
insomnia phenotype to differentiate between cases that consistently met both the ISI and
PSQI criteria versus controls that consistently were below both the ISI and PSQI cut-
off scores [10]. Thus, we used this phenotype as a proxy for insomnia. Sleep duration,
obtained from 384,317 individuals, was a quantitative variable assessed by asking, “About
how many hours sleep do you get in every 24 h? (please include naps)”. Chronotype
(“Morning/evening person (chronotype)”; data-field 1180, n = 345,552) was assessed by the
question “Do you consider yourself to be?” with one of six possible answers: “Definitely
a ‘morning’ person”, “More a ‘morning’ than ‘evening’ person”, “More an ‘evening’ than
a ‘morning’ person”, “Definitely an ‘evening’ person”, “Do not know”, or “Prefer not
to answer”, which were coded as 2, 1, −1, −2, 0, and missing, respectively. Summary-
level data are available at https://ctg.cncr.nl/software/summary_statistics (accessed on
13 November 2020).

2.2. Statistical Analysis
2.2.1. Conditional Quantile–Quantile (Q–Q) Plots

We constructed conditional Q–Q plots to assess pleiotropic enrichment between
diabetes-relevant traits and sleep traits. Conditional Q–Q plots compare the association with
the primary phenotype (e.g., type 2 diabetes) across all single-nucleotide polymorphisms
(SNPs) and within SNPs stratified by their association with the secondary phenotype (e.g.,
insomnia). Successive leftward deflections from the null distribution of conditional Q–Q
plots denoted the existence of pleiotropic enrichment. Spurious enrichment was controlled
after random pruning by selecting one random SNP per linkage disequilibrium (LD) block
(defined by LD r2 > 0.1) averaged over 100 iterations.

2.2.2. Identification for Pleiotropic Loci

We identified specific loci jointly involved with diabetes-relevant traits and sleep traits
according to a condFDR statistical framework (https://github.com/precimed/pleiofdr)
(accessed on 25 August 2021) [25]. CondFDR is an extension of the standard FDR. It
incorporates information from GWAS summary statistics of a secondary phenotype to
adjust its significance level. We denoted the condFDR for phenotype 1 given phenotype
2 as FDRtrait1|trait2, which is defined as the posterior probability that a given SNP is
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null for the first phenotype given that the p-values for both phenotypes are as small as or
smaller than the observed ones. Based on CondFDR, we computed the conjunctional false
discovery rate (conjFDR), denoted as FDRtrait1&trait2, the conservative estimate of which
was given by the maximum between FDRtrait1|trait2 and FDRtrait2|trait1. It is defined as
the posterior probability that an SNP is null for either phenotype or both simultaneously,
given that its p-values for associations with both phenotypes are as small as or smaller
than the observed ones. SNPs with a conjFDR value less than 0.01 were considered shared
loci. Based on the 1000 Genome Project LD structure, the significant SNPs identified were
clustered into LD blocks at the LD r2 > 0.1 level.

2.2.3. Functional Annotation

The significant SNPs identified were annotated by SNPNexus (https://www.snp-
nexus.org/v4/) (accessed on 26 August 2021) [26]. SNPs were annotated for functional
consequences on deleteriousness score (CADD score) and potential regulatory functions
(RegulumeDB score) [27,28]. A CADD score above 12.37 is the threshold to be potentially
pathogenic [27]. The RegulumeDB score is based on information from eQTLs and chromatin
marks, ranging from 1a to 7, with lower scores indicating an increased likelihood of having
a regulatory function. In order to clarify the biological mechanism behind the pleiotropic
genes, we conducted pathway enrichment analysis in the Kyoto Encyclopedia of Genes
and Genomes (KEGG) dataset [29].

2.2.4. Expression Analysis of Pleiotropic Genes

In order to evaluate whether the identified pleiotropic genes are differentially ex-
pressed, we used the publicly available expression dataset GSE184050 from the Gene
Expression Omnibus (https://www.ncbi.nlm.nih.gov/geo/) (accessed on 13 September
2021) database. GSE184050 compared changes in gene expression using two longitudinally
collected blood samples from subjects who transitioned to type 2 diabetes between the time
points against those who did not, with a novel analytical network approach. A total of
116 individual samples (50 from type 2 diabetes cases and 66 from healthy controls) were
submitted to the analysis. RNA was extracted, amplified, reverse transcribed, labeled, and
sequenced with an Illumina HiSeq 2000 (GPL11154). We scaled the original data and deleted
outliners defined as more than 3 standard deviations and used a Benjamini–Hochberg
multiple-testing correction with a p-value < 0.05.

2.2.5. Mendelian Randomization Study

In order to investigate causal associations between the expression pattern of pleiotropic
genes and type 2 diabetes, we used eQTLGen 2019 results comprising all cis and some
trans regions of gene expression in whole blood to perform a two-sample Mendelian
randomization study. The eQTLGen consortium was set up to identify the downstream
consequences of trait-related genetic variants. The consortium incorporates 37 datasets,
with a total of 31,684 individuals [30]. We outlined acceptable instrumental variables via
three main assumptions: they were associated with the relevant risk factor (relevance
assumption), they and the outcome had no common cause (independence assumption),
and the outcome was not affected by them except via the risk factor (exclusion restriction
assumption) [31]. Genetic instrumental variables for eQTL summary statistics of pleiotropic
genes were acquired from OpenGWAS, developed by the MRC IEU OpenGWAS project, the
contributor of TwoSampleMR (https://github.com/mrcieu/TwoSampleMR) (accessed on
16 October 2021) package and MR-base [32]. The data setup of the open-access OpenGWAS
database is scalable, open-source, high-performance, and cloud-based, importing and
publishing complete GWAS metadata and summary datasets for scientific society. The
import pipeline matches these datasets to the reference sequence of the human genome,
and dbSNP produces summary reports and systematizes the results and metadata formats.

We used the widely accepted inverse-variance weighted (IVW) method for the main
analysis to estimate the causal effect between pleiotropic genes and type 2 diabetes. The

https://www.snp-nexus.org/v4/
https://www.snp-nexus.org/v4/
https://www.ncbi.nlm.nih.gov/geo/
https://github.com/mrcieu/TwoSampleMR


Biomedicines 2022, 10, 368 5 of 15

IVW estimate is calculated by regressing the coefficient from an outcome regression on
the genetic variant on that from an exposure regression on the variant and weighting
each estimate by the inverse variance of the association between the instrument and the
outcome [33].

3. Results
3.1. Assessment of Pleiotropic Enrichment

We observed successive increments of SNP enrichment for diabetes-relevant phe-
notypes as a function of the significance of the associations with sleep traits (Figure 1).
For a given nominal p-value for each diabetes-relevant trait, an earlier departure from
the null line indicates a greater proportion of true associations. Gradual leftward shifts
for decreasing nominal sleep traits p-values indicate that the proportion of nonnull SNPs
varies considerably across different levels of association with sleep traits, which could be
interpreted as the polygenic overlap between these phenotypes. Type 2 diabetes showed
obvious pleiotropic enrichment with sleep traits. All diabetes-relevant phenotypes showed
significant pleiotropy with chronotype.
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Figure 1. Polygenic overlap between diabetes-related traits (type 2 diabetes, fasting glucose, gly-
cated hemoglobin, and fasting insulin) and sleep traits (insomnia symptoms, sleep duration, and 
chronotype). Conditional Q–Q plots of nominal versus empirical −log10 p-values (corrected for in-
flation) in type 2 diabetes, fasting glucose, glycated hemoglobin, and fasting insulin, below the 
standard genome-wide association study threshold of 5 × 10−8 as a function of significance of asso-
ciation with insomnia, sleep duration, and chronotype, respectively, at the level of −log10 (p) ≥ 1, 
−log10 (p) ≥ 2, and −log10 (p) ≥ 3, corresponding to p ≤ 0.10, p ≤ 0.01, and p ≤ 0.001, respectively. The 
blue lines indicate all SNPs. The dashed lines indicate the null hypothesis. 
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Figure 1. Polygenic overlap between diabetes-related traits (type 2 diabetes, fasting glucose, glycated
hemoglobin, and fasting insulin) and sleep traits (insomnia symptoms, sleep duration, and chrono-
type). Conditional Q–Q plots of nominal versus empirical −log10 p-values (corrected for inflation)
in type 2 diabetes, fasting glucose, glycated hemoglobin, and fasting insulin, below the standard
genome-wide association study threshold of 5 × 10−8 as a function of significance of association with
insomnia, sleep duration, and chronotype, respectively, at the level of −log10 (p) ≥ 1, −log10 (p) ≥ 2,
and −log10 (p) ≥ 3, corresponding to p ≤ 0.10, p ≤ 0.01, and p ≤ 0.001, respectively. The blue lines
indicate all SNPs. The dashed lines indicate the null hypothesis.

3.2. Pleiotropic Gene Loci in Diabetes-Relevant Phenotype and Sleep Traits Identified
with ConjFDR

Based on a conjFDR less than 0.05, we identified 58 independent genetic loci shared
between type 2 diabetes and sleep traits (Figure 2). For FG, FI, and HbA1c, 22, 8, and 11
independent genetic loci were shared with sleep traits (Table 1; Supplemental Tables S1–S3).
The strongest shared locus between type 2 diabetes and sleep straits was FTO (lead SNP
rs8047587). It was shared between type 2 diabetes (z score, 16.19; P = 6.29 × 10−59)
and two sleep traits, sleep duration (z score, −6.66; P = 2.66 × 10−11) and chronotype
(z score, 7.42; P = 1.19 × 10−13), demonstrating the importance of the locus for disease
pathogenesis. Two loci, EHMT2 (lead SNP rs1265945) and lincRNA RP1-230L10.1 (lead
SNP rs66930764), shared by type 2 diabetes and chronotype, were duplicated in FI. The
pleiotropic locus MTNR1B (lead SNP rs4237555) was identified among type 2 diabetes
(z score, −7.86; P = 3.84 × 10−15), FG (z score, −19.19; P = 4.20 × 10−82), HbA1c (z score,
−7.50; P = 6.26 × 10−14), and chronotype (z score, −4.85; P = 1.22 × 10−6).
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Table 1. Genetic loci with conjunction FDR < 0.01 shared between type 2 diabetes and sleep traits.

Locus No. SNP Gene Chr:Pos A1/A2 Z Score
Type 2 Diabetes

Z Score
Sleep Traits ConjFDR p-Value Type 2

Diabetes
p-Value

Sleep Traits

Type 2 diabetes and insomnia
1 rs2820290 NAV1 1:201783682 A/G −3.90 −4.62 0.01 9.69 × 10−5 3.88 × 10−6

1 rs2820290 IPO9-AS1 1:201783682 A/G −3.90 −4.62 0.01 9.69 × 10−5 3.88 × 10−6

2 rs4688760 RBM6 3:49980596 C/T −5.67 −4.42 0.01 1.44 × 10−8 9.82 × 10−6

3 rs67073213 Upstream: SPATA18;
Downstream: RP11-588F10.1 4:53286872 A/G 3.87 −4.48 0.01 1.10 × 10−4 7.57 × 10−6

4 rs26434 PAM 5:102363402 C/T 5.90 −4.40 0.01 3.58 × 10−9 1.10× 10−5

5 rs4526367 MSRA 8:10213462 G/A −4.96 5.49 0.00 7.10 × 10−7 3.99 × 10−8

6 rs4735334 NDUFAF6 8:95955292 G/A 3.98 4.63 0.01 6.91 × 10−5 3.70 × 10−6

6 rs4735334 TP53INP1 8:95955292 G/A 3.98 4.63 0.01 6.91 × 10−5 3.70 × 10−6

Type 2 diabetes and sleep duration
7 rs4949329 PUM1 1:31440361 T/C −4.04 4.78 0.00 5.29 × 10−5 1.80 × 10−6

8 rs61780511 Upstream: PUM1;
Downstream: SEPW1P 1:31546006 G/A 3.83 −4.12 0.01 1.27 × 10−4 3.81 × 10−5

9 rs12137232 LMOD1 1:201885446 T/G −3.90 4.36 0.01 9.69 × 10−5 1.30 × 10−5

10 rs6711622 DNMT3A 2:25531350 A/G −3.85 4.14 0.01 1.19 × 10−4 3.51 × 10−5

11 rs1641155 LINC01122 2:58965211 G/T 4.69 4.90 0.00 2.75 × 10−6 9.36 × 10−7

12 rs12485697 Upstream: RP11-231I13.2;
Downstream: COX6CP6 3:70543116 T/C 3.89 −4.16 0.01 1.01 × 10−4 3.15 × 10−5

13 rs9844666 PCCB 3:135974216 A/G 4.19 4.60 0.00 2.77 × 10−5 4.27 × 10−6

14 rs1291921 PCCB 3:136036226 A/G −4.35 −4.50 0.00 1.36 × 10−5 6.85 × 10−6

15 rs11242483 PAM 5:102323766 T/C 6.07 6.28 0.00 1.31 × 10−9 3.39 × 10−10

16 rs329124 JADE2 5:133865452 G/A 5.14 −4.65 0.00 2.80 × 10−7 3.30 × 10−6

17 rs62442924 MAD1L1 7:1989976 T/C −4.15 5.16 0.00 3.33 × 10−5 2.47 × 10−7

18 rs7790729 AUTS2 7:69598649 T/C 3.76 4.07 0.01 1.69 × 10−4 4.77 × 10−5

19 rs3121426 Upstream: 5-Mar;
Downstream: MARK2P9 10:94153435 T/G −6.69 −4.29 0.00 2.19 × 10−11 1.82 × 10−5

20 rs11037564 HSD17B12 11:43708725 C/T −3.77 5.01 0.01 1.65 × 10−4 5.41 × 10−7

21 rs174533 MYRF 11:61549025 A/G −3.90 4.44 0.01 9.69 × 10−5 8.82 × 10−6

21 rs174533 TMEM258 11:61549025 A/G −3.90 4.44 0.01 9.69 × 10−5 8.82 × 10−6

22 rs12820906 PITPNM2 12:123493123 G/A −5.41 4.11 0.01 6.39 × 10−8 3.90 × 10−5

23 rs12433645 NRXN3 14:80028314 T/C −4.30 −4.12 0.01 1.75 × 10−5 3.75 × 10−5

24 rs4780887 PDILT 16:20393562 C/A −3.92 4.23 0.01 8.78 × 10−5 2.39 × 10−5

25 rs8047587 FTO 16:53798622 T/G 16.19 −6.66 0.00 6.29 × 10−59 2.66 × 10−11
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Table 1. Cont.

Locus No. SNP Gene Chr:Pos A1/A2 Z Score
Type 2 Diabetes

Z Score
Sleep Traits ConjFDR p-Value Type 2

Diabetes
p-Value

Sleep Traits

Type 2 diabetes and chronotype

26 rs148262742 Upstream: CDKN2C;
Downstream: MIR4421 1:51472241 C/T −5.34 −3.95 0.01 9.40 × 10−8 7.93 × 10−5

27 rs12140153 INADL 1:62579891 T/G −5.18 −6.10 0.00 2.21 × 10−7 1.03 × 10−9

28 rs903518 UBE2E2 3:23336968 G/A −3.93 −4.22 0.00 8.32 × 10−5 2.42 × 10−5

29 rs78580841 CCDC12 3:46986452 T/C 4.05 4.78 0.00 5.03 × 10−5 1.72 × 10−6

30 rs1679147 MRAS 3:138097537 A/G 4.45 −3.93 0.01 8.72 × 10−6 8.49 × 10−5

31 rs17774982 ST6GAL1 3:186684460 C/T −4.88 −4.51 0.00 1.07 × 10−6 6.39 × 10−6

32 rs1296328 RP11-775H9.2 4:137083193 A/C 4.98 6.11 0.00 6.37 × 10−7 9.73 × 10−10

33 rs1265945 EHMT2 6:31861815 G/A −4.10 4.71 0.00 4.15 × 10−5 2.51 × 10−6

34 rs734597 Upstream: RPS17P5;
Downstream: RP4-753D5.3 6:50836279 A/G 6.06 5.12 0.00 1.35 × 10−9 2.99 × 10−7

35 rs4434471 Upstream: FTH1P5;
Downstream: RP3-437C15.2 6:51146875 G/A 4.02 4.37 0.00 5.94 × 10−5 1.24 × 10−5

36 rs66930764 Upstream: RP5-826L7.1;
Downstream: RP1-230L10.1 6:164103243 A/G −5.02 −4.38 0.00 5.24 × 10−7 1.21 × 10−5

37 rs11555134 GRB10 7:50659193 T/C 4.30 −5.30 0.00 1.75 × 10−5 1.17 × 10−7

38 rs77655131 ORAI2 7:102086552 T/C 4.94 −5.54 0.00 7.70 × 10−7 3.03 × 10−8

39 rs11496066 FBXL13 7:102486254 C/T −5.18 5.90 0.00 2.21 × 10−7 3.62 × 10−9

40 rs62482405 PSMC2 7:102987583 G/T 4.36 −4.09 0.01 1.29 × 10−5 4.23 × 10−5

41 rs3808478 TRPS1 8:116678277 C/T −4.00 4.86 0.00 6.43 × 10−5 1.15 × 10−6

42 rs6559752 C9orf64 9:86570075 T/C −3.80 4.17 0.01 1.44 × 10−4 3.09 × 10−5

43 rs6478623 DENND1A 9:126315123 G/T 3.88 −4.68 0.01 1.06 × 10−4 2.81 × 10−6

44 rs11145756 SEC16A 9:139364585 G/A −4.63 4.09 0.01 3.64 × 10−6 4.24 × 10−5

45 rs10998304 TET1 10:70342775 C/T 4.08 −4.36 0.00 4.41 × 10−5 1.28 × 10−5

46 rs143539037 CPEB3 10:93827055 T/C 5.92 −3.92 0.01 3.26 × 10−9 8.80 × 10−5

47 rs11039307 Upstream: FAM180B;
Downstream: C1QTNF4 11:47611152 T/C 5.22 4.83 0.00 1.77 × 10−7 1.37 × 10−6

48 rs11039358 FNBP4 11:47746962 G/A 4.52 4.30 0.00 6.10 × 10−6 1.72 × 10−5

49 rs4237555 Upstream: MTNR1B;
Downstream: RPL26P31 11:92725803 C/T −7.86 −4.85 0.00 3.84 × 10−15 1.22 × 10−6

50 rs4606726 PDILT 16:20383700 G/A −3.83 −3.97 0.01 1.27 × 10−4 7.10 × 10−5

51 rs8047587 FTO 16:53798622 T/G 16.19 7.42 0.00 6.29 × 10−59 1.19 × 10−13
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Table 1. Cont.

Locus No. SNP Gene Chr:Pos A1/A2 Z Score
Type 2 Diabetes

Z Score
Sleep Traits ConjFDR p-Value Type 2

Diabetes
p-Value

Sleep Traits

52 rs217184 TXNL4B 16:72105965 C/T −3.98 4.06 0.01 6.91 × 10−5 4.99 × 10−5

52 rs217184 HPR 16:72105965 C/T −3.98 4.06 0.01 6.91 × 10−5 4.99 × 10−5

53 rs3816511 PEMT 17:17409401 G/A 3.77 4.79 0.01 1.61 × 10−4 1.63 × 10−6

54 rs1371319 Upstream: RP11-687D19.1;
Downstream: RN7SKP182 18:36277087 C/T 4.50 4.22 0.00 6.94 × 10−6 2.45 × 10−5

55 rs17596995 TCF4 18:53166594 A/G −4.25 −4.94 0.00 2.12 × 10−5 7.66 × 10−7

56 rs5762622 TTC28 22:28835458 A/G 4.28 −4.32 0.00 1.87 × 10−5 1.57 × 10−5

57 rs5757906 TNRC6B 22:40687757 C/T −3.91 −4.27 0.00 9.24 × 10−5 1.91 × 10−5

58 rs28741121 XRCC6 22:42025823 A/G −4.07 −4.19 0.00 4.72 × 10−5 2.74 × 10−5

Abbreviations: SNP, single nucleotide polymorphisms; Chr, chromosome; Pos, position; A1, allele 1; A2, allele 2; FDR, false discovery rate.



Biomedicines 2022, 10, 368 10 of 15

3.3. Functional Annotation of Pleiotropic Gene

Five SNPs (rs10881959, rs11039358, rs2236950, rs12485697, rs1296328) had CADD
scores greater than 12.37, suggesting that they might be deleterious mutations (Supple-
mental Table S4). One SNP (rs174555), shared among FG, HbA1c, and sleep duration, had
Regulome DB scores of 1f, indicating that it was likely affecting binding sites (Supplemen-
tal Table S5). At the false discovery rate 0.05 level, KEGG pathway enrichment analysis
found that HSD17B12, FADS2, and FADS1 were significantly enriched in the biosynthesis
of unsaturated fatty acids (hsa01040), of which FADS2 and FADS1 were the overlapping
genes with SNP rs174555.

3.4. Differential Expression of Pleiotropic Genes

Among the pleiotropic genes screened, we found 12 genes differentially expressed in
blood samples of type 2 diabetes cases (p < 0.05, Supplemental Table S8). ENSA and PMPCA
remained significant after the stringent statistical analysis using the Benjamini–Hochberg
corrected two-tailed t-test (Supplementary Figure S1). ENSA (lead SNP rs2055975), overex-
pressed in type 2 diabetes cases, was shared by HbA1c (z score, −5.15; P = 2.57 × 10−7)
and chronotype (z score, 5.73; P = 1.00 × 10−8). PMPCA (lead SNP rs10747046), which
was downregulated in type 2 diabetes cases, was shared between FG (z score, −4.32;
P = 1.53 × 10−5) and chronotype (z score, 4.47; P = 7.79 × 10−6).

3.5. Mendelian Randomization Study

In a two-sample MR study, IVW yielded proof of causal relationships between the
expression level of pleiotropic genes and the risk of type 2 diabetes (Table 2; Supplemental
Tables S6 and S7). Overexpression of CPEB3(OR = 1.43, 95% CI: 1.30–1.56, p < 0.0001),
INPP5E (OR = 1.10, 95% CI: 1.07–1.13, p < 0.0001), and SEC16A (OR = 1.08, 95% CI: 1.05–
1.12, p < 0.0001) were associated with higher risk for developing type 2 diabetes, while
MYBPC3(OR = 0.95, 95% CI: 0.92–0.99, p = 0.0173), MYRF(OR = 0.94, 95% CI: 0.90–0.98,
p = 0.0049), and PMPCA (OR = 0.74, 95% CI: 0.62–0.87, p = 0.0003) showed slightly protective
effect on type 2 diabetes (Table 2). The weighted medians for MYBPC3 and INPP5E revealed
similar estimates. Intriguingly, both PMPCA and INPP5E showed a significant association
with chronotype, which is in opposite directions to type 2 diabetes, indicating that people
who are prone to be more an “evening” than a “morning” person have a higher risk for
developing type 2 diabetes. IVW yielded an association between chronotype and type 2
diabetes (OR = 1.37, 95% CI: 1.09–1.72, p = 0.0068), while other estimates showed that it
was not robust. We also considered the causal effect of the differentially expressed genes
ENSA and PMPCA on the shared phenotypes. Wald’s ratio method estimated that the
overexpression of PMPCA had slight effects on lowering FG (OR = 0.90, 95% CI: 0.86–0.94,
p < 0.0001).
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Table 2. Causal relationship between gene expression and type 2 diabetes, insomnia, chronotype, and sleep duration.

Genes
Type 2 Diabetes Insomnia Chronotype Sleep Duration

NIV OR 95% CI p NIV OR 95% CI p OR 95% CI p OR 95% CI p

ENSA 2 1.10 1.10
(0.98–1.23) 0.1119 2 1.14 1.14

(1.05–1.24) 0.0013 0.96 0.96
(0.88–1.06) 0.4454 1.01 1.01

(0.97–1.05) 0.6732

CPEB3 1 1.43 1.43
(1.30–1.56) 0.0000

MYBPC3 6 0.95 0.95
(0.92–0.99) 0.0173 5 1.02 1.02

(0.98–1.06) 0.2920 1.00 1.00
(0.98–1.01) 0.5591 0.99 0.99

(0.98–1.00) 0.0880

MYRF 1 0.94 0.94
(0.90–0.98) 0.0049 1 1.03 1.03

(1.00–1.07) 0.0581 1.00 1.00
(0.98–1.01) 0.8016 1.01 1.01

(1.00–1.03) 0.1302

KLHL29 2 0.99 0.99
(0.91–1.07) 0.7417 2 0.89 0.89

(0.83–0.95) 0.0008 1.00 1.00
(0.97–1.03) 0.9629 1.03 1.03

(0.99–1.06) 0.1057

DNMT3A 1 1.07 1.07
(0.98–1.15) 0.1161

XRCC6 2 1.06 1.06
(0.91–1.23) 0.4503 2 1.03 1.03

(1.00–1.07) 0.0469 0.97 0.97
(0.96–0.99) 0.0002 1.01 1.01

(0.99–1.03) 0.1748

PCCB 3 1.03 1.03
(0.96–1.1) 0.4567 3 1.00 1.00

(0.97–1.02) 0.8452 1.01 1.01
(0.99–1.02) 0.3804 1.00 1.00

(0.96–1.03) 0.8049

MAD1L1 4 1.00 1.00
(0.97–1.04) 0.8834 4 1.02 1.02

(0.99–1.04) 0.1612 1.00 1(0.98–1.02) 0.7269 0.99 0.99
(0.97–1.00) 0.0167

PMPCA 1 0.74 0.74
(0.62–0.87) 0.0003 1 0.93 0.93

(0.82–1.07) 0.3157 1.15 1.15
(1.08–1.22) 0.0000 0.99 0.99

(0.93–1.06) 0.7955

INPP5E 4 1.10 1.10
(1.07–1.13) 0.0000 4 1.00 1.00

(0.98–1.02) 0.9185 0.98 0.98
(0.97–0.99) 0.0001 1.00 1.00

(0.99–1.02) 0.8376

SEC16A 2 1.08 1.08
(1.05–1.12) 0.0000

NIV, number of instrumental variables; OR, odds ratio; CI, confidence interval; p, strength of evidence against the null hypothesis of no association between variant and outcome.



Biomedicines 2022, 10, 368 12 of 15

4. Discussion

In the current study, we observed extensive polygenic pleiotropy between diabetic
traits and sleep traits using conjFDR analysis. Fifty-eight independent genetic loci jointly
influenced the risk of type 2 diabetes and the sleep traits of insomnia, sleep duration,
and chronotype. Two of the pleiotropic genes, ENSA and PMPCA, were validated to be
differentially expressed in type 2 diabetes, and PMPCA showed a slight protective effect
on type 2 diabetes in MR analysis. Our study provides integrative evidence of a shared
genetic mechanism between diabetes and sleep traits.

The strongest shared locus between type 2 diabetes and sleep traits was FTO (lead SNP
rs8047587), a well-known gene associated with body mass index, obesity risk, and type
2 diabetes. However, the association between FTO and sleep traits has not been well dis-
cerned. Prats-Puig et al. showed that TT homozygotes for the FTO SNP exhibited nominal
associations between decreasing sleep duration and increasing BMI, waist circumference,
visceral fat, and HOMA-IR (all p < 0.05) in 297 asymptomatic children aged 5–9 years [34].
It is worth noting that FTO is predominantly expressed in the brain. Disruption in mice
of Fto showed diet- or obesity-related changes in expression in the hypothalamus [35,36].
Abundant evidence supports multiple possible roles of the central nervous system in body
weight regulation [37], and our study emphasized the role of sleep in the regulatory process.

Two notable pleiotropic genes were ENSA (lead SNP rs2055975) and PMPCA (lead
SNP rs10747046), which were differentially expressed in type 2 diabetes cases. ENSA is
expressed in brain and endocrine tissues and was proposed as a candidate gene for type
2 diabetes. It encodes alpha-endosulfine, which has the ability to block ATP-sensitive
potassium (K(ATP)) channels and stimulate insulin release in beta cells such as sulfony-
lurea [38]. The considerably decreased alpha-endosulfine could result in a decrease in
neurotransmitter release associated with cognition [38]. In our study, PMPCA showed
a slight protective effect on type 2 diabetes and lowered FG. The literature on the direct
role of PMPCA in diabetes is sparse, while a homozygous mutation in PMPCA has been
reported to be crucial for autosomal recessive cerebellar ataxia [39,40]. PMPCA encodes the
α-subunit of mitochondrial processing peptidase (MPP), a heterodimeric enzyme respon-
sible for the cleavage of nuclear-encoded mitochondrial precursor proteins after import
into mitochondria [41]. As previously mentioned, mitochondrial dysfunction leads to
impairment of insulin sensitivity by reducing the activity of AMPK, an important cellular
fuel sensor and regulator [42]. Agents addressing impaired mitochondrial function were
thought to have the greatest potential for supporting a substantial improvement of glycemic
and body weight control in the growing population with type 2 diabetes [43]. This may
partly explain the pleiotropy of PMPCA in type 2 diabetes and sleep traits.

Our study showed that both PMPCA and INPP5E showed a significant association
with chronotype, which is in opposite directions with type 2 diabetes, which suggested that
people who are prone to be more of an “evening” than a “morning” person have a higher
risk for developing type 2 diabetes. This is consistent with the latest systematic review
and a cross-sectional study showing that evening chronotype was associated with a worse
cardiometabolic risk profile and a higher risk of diabetes, cancer, and depression [44,45]. The
latest research showed circadian rhythm disruption perturbed glucose homeostasis through
disruption of pancreatic β cell function and loss of circadian transcriptional and epigenetic
identity [46]. However, the opposite result was found in MR analysis, in which the IVW
estimate yielded a morning chronotype and had an adverse effect on type 2 diabetes
(OR = 1.37, 95% CI: 1.09–1.72, p = 0.0068). On the one hand, the odd results of the unrobust
MR analysis suggest that MR studies should be validated more widely with multiple
methods. On the other hand, Reis-Canaan’s study showed that most morning chronotype
individuals were elderly thin males with lower consumption of omega-6 and omega-3,
sodium, zinc, thiamine, pyridoxine, and niacin, whereas evening individuals were younger,
had higher BMI, and had higher consumption of the studied micronutrients [47]. This
indicates that the association between diabetes and chronotype is extremely entangled. The
interpretation should be careful, and further well-designed studies should be conducted.
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Our research had some limitations. First, overlapping participants between the inves-
tigated GWAS may inflate the cross-trait enrichment in the condFDR statistical framework.
However, we had to choose a stringent threshold (conjFDR < 0.01) instead of the default
parameter setting (0.05) to control for false positives. Another limitation is the use of self-
reported sleep symptoms rather than clinical diagnostic criteria. Measurement errors and
recall bias would result in misclassification of case status, especially for insomnia which
we used insomnia complain as a proxy. Although a previous study showed that the UK
Biobank insomnia phenotype is predictive of insomnia disorder, with little confounding by
comorbidity [10], large-scale summary statistics for a precise definition of clinical diagnostic
insomnia was desired in subsequent studies. Finally, our study requires more fundamental
work to detect the underlying biological mechanisms between diabetes and sleep traits.

5. Conclusions

Our study provided evidence for the polygenic overlap between diabetic traits and
sleep traits, of which the expression of PMPCA may play a crucial role and provide support
of the hazardous effect of being an “evening” person on diabetes risk.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/biomedicines10020368/s1, Figure S1: Dysregulation of pleiotropic
genes ENSA (A) and PMPCA (B) in type 2 diabetes. ENSA overexpressed in type 2 diabetes cases
while PMPCA downregulated in type 2 diabetes cases; Table S1: Genetic loci with conjunction FDR
<0.01 shared between fasting glucose(FG) and sleep traits; Table S2: Genetic loci with conjunction
FDR <0.01 shared between fasting insulin (FI) and sleep traits; Table S3: Genetic loci with conjunction
FDR <0.01 shared between glycated hemoglobin (HbA1c) and sleep traits; Table S4: Consequences on
deleteriousness score (CADD) of pleiotropic variations; Table S5: Regulatory functions (RegulumeDB
score) of pleiotropic variations; Table S6: Causal relationship between chronotype and type 2 dia-
betes; Table S7: Causal relationship between gene expression and diabetes-related traits; Table S8:
Dysregulation of pleiotropic genes in type 2 diabetes.
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