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Abstract: This review summarizes recent progress and developments as well as the most important
pitfalls in targeted alpha-particle therapy, covering single alpha-particle emitters as well as
in vivo alpha-particle generators. It discusses the production of radionuclides like 211At, 223Ra,
225Ac/213Bi, labelling and delivery employing various targeting vectors (small molecules, chelators
for alpha-emitting nuclides and their biomolecular targets as well as nanocarriers), general
radiopharmaceutical issues, preclinical studies, and clinical trials including the possibilities of
therapy prognosis and follow-up imaging. Special attention is given to the nuclear recoil effect
and its impacts on the possible use of alpha emitters for cancer treatment, proper dose estimation,
and labelling chemistry. The most recent and important achievements in the development of alpha
emitters carrying vectors for preclinical and clinical use are highlighted along with an outlook for
future developments.
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1. Introduction

Targeted alpha-particle therapy (TAT) is the most rapidly developing field in nuclear medicine
and radiopharmacy. The basic advantage of TAT over commonly used β− emitting radionuclides
therapy lies in the irradiation of fewer cancer cells, micrometastases or tumors by an emission of a
single alpha particle or by a cascade of heavy alpha particles from close vicinity. The 2+ charged α

particles with high linear-energy transfer (LET) lose the maximum of their energy close to the Bragg
peak at the end of their track. The range in tissues is about 50–100 µm depending on the alpha-particle
energy. The energy deposition then occurs in a very small tissue volume and with high relative
biological effectiveness (RBE) [1]. This is fully true for single α particle decays. However, so called
in vivo generators [2] that provide, typically, four α decays, depending on the selected radionuclide
system, suffer from the nuclear recoil effect, causing at least partial release of daughter radioactive
nuclei from the targeting molecule or a delivery vehicle. In such cases, an unwanted radioactive
burden is spread over the body and its elimination is limited [3].

Even though recent developments brought significant clinical results [4,5] and novel insights into
the problem of the nuclear recoil effect were gained [6–9], neither a detailed analysis nor exhaustive
discussion has been undertaken to solve this problem. Furthermore, proper targeting and dosimetry
on a subcellular level has become crucial, and advantageous use of theranostic isotopes or theranostic
isotope pairs is becoming very important in therapy prognosis [10].
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The nuclear recoil effect causes the release of radioactive daughter nuclei from the original
radiopharmaceutical preparations. It may lead to unwanted irradiation of healthy tissues that
may cause severe radiotoxic effects like organ dysfunction (e.g., kidneys), secondary tumorigenesis,
etc. [11]. The released activity and radioactive daughter nuclei fraction as well as their metabolic
fate, therefore, need to be estimated and carefully evaluated. Additionally, the key in vivo parameters
of the radiopharmaceuticals for TAT like e.g., biological half-life, carrier in vivo stability, uptake
in the reticulo-endothelial system (RES), plasma clearance, elimination routes, etc. may play an
important role.

Dosimetric studies should separately evaluate in detail the contributions of a radiolabelled
targeted vector, its labelled metabolites, liberated mother nuclide as well as daughter recoils.
The evaluation should be performed either experimentally or using mathematical models. Various
techniques were used for ex vivo evaluation of activity distribution in tissue samples. They include,
e.g., an alpha camera [12] or a timepix detector [13] to assess the distribution in sub-organ or cellular
levels. Also the possibility of the Cherenkov radiation luminescence imaging technique for α emitters
employing the co-emitted β− radiations [14] was reported.

Several different approaches were developed regarding the carriers for TAT. Small molecules,
particularly those labelled with single α emitters, brought the advantage of fast kinetics even though
their in vivo stability was not always good. Additional approaches to mitigate radiotoxic effects
were studied, e.g., to protect kidneys [15]. Immunoactive molecules like antibodies, antibody
fragments, nanobodies or receptor-specific peptides represent another group of highly selective
targeting vectors [16].

A relatively novel concept of at least partially recoil-resistant carriers for TAT was developed.
It employs nanoconstructs composed of various nanoparticulate materials [6,8,17] that allow further
surface chemistry, including antibody targeting. However, the major disadvantageous property of
large molecular vectors, e.g., of TiO2 nanoparticles (NPs) [18], is their typical uptake in RES and slower
in vivo kinetics, e.g., when using antibody without surface detergent modulation [19].

This review tries to cover all aspects of TAT from the research and development of production
of alpha emitters and labelling techniques to the preclinical and clinical research and applications
of the developed radiopharmaceuticals. In order to estimate the potential risks and benefits of TAT,
we survey important features of different stages of radiopharmaceutical preparation and the directions
of required investigation and development.

2. Production of Alpha Emitters

Production of alpha-particle emitters includes, in general, practically all methods for preparation
of radionuclide sources—irradiation with charged particles in accelerators, neutron irradiation in a
nuclear reactor, separation from long-lived natural radionuclides and various combinations thereof [20–35].
The great advantage of nuclides decaying in a series over single alpha particle emitters is not only in
the higher energy deposition in target tissue but, thanks to the good nuclear characteristics, also the
possibility of construction of a radionuclide generator. Selected characteristics and the main production
methods for the most common alpha emitters used in various phases of research and use in nuclear
medicine are summarized in Table 1. The challenges encountered in the production of alpha emitters
were discussed in a recent review [21]; however, a wider clinical spread of alpha emitters depends
more on the end-users’ confidence and better understanding of the TAT concept that should help in
overcoming the sometimes negative historical experience (e.g., with 226Ra).
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Table 1. Summary and properties of the most relevant alpha particle emitters suitable for nuclear
medicine applications.

Radionuclide System * Half-Life Eαmax/Echain [MeV] Production Status References
149Tb 4.12 h 3.97 152Gd(p, 4n)149Tb Research [22,23]
211At 7.2 h 5.87 209Bi(α, 3n)211At Clinical trials [24,25]

229Th/ 7340 years
5.83/27.62

229Th decay
Clinical trials [26–28]225Ac// 10 days 226Ra(p, 2n)225Ac

213Bi 46 min 232Th(p, x)225Ac
227Ac/ 27 years

5.87/26.70 227Ac/227Th/223Ra decay Clinical praxis [29–32]227Th/ 18 days
223Ra 11 days

228Th/ 1.9 years
5.69/27.54 228Th/224Ra decay

Formerly in
c.p., Research [33–35]224Ra/ 3.7 days

212Pb 10.6 h

* Note that in the case of chain decaying nuclides, not all members of the decay chain are included. Further
characteristics of the mainly used chain nuclide are provided in bold.

3. General Radiopharmaceutical Issues

Direct and indirect radiolabeling methods are available for single alpha-particle emitters. Since the
nuclear recoil effect does not affect the spread of radioactive burden originating from the recoiling
radioactive daughters, particularly the 211At, a halogen that uses chemistry similar to iodine is very
attractive. Furthermore, the radiometals like 149Tb and several latter decay series members like
213Bi appear to be very promising. Radionuclides decaying by a series of several α decays release
radioactive daughter nuclei from the radiopharmaceutical preparations due to the nuclear recoil effect.
This effect complicates the labelling strategies and successful dose targeting. In its presence, both
the pharmacokinetic properties of the radiopharmaceuticals and the strategies for elimination of the
released radioactive burden need to be optimized.

3.1. Nuclear Recoil Effect and the Release of Daughter Nuclei

Due to the momentum conservation law, part of the decay energy is transferred to a daughter
nucleus. An approximate value of this energy can be calculated by the mathematical relation:

Er =
mα

Mr
Q (1)

where Er is the recoil energy, mα the rest mass of an α particle, Mr mass of the recoil and Q is the
decay energy. The energy distribution ratio between the alpha particle and the recoiling atom is
typically 98% to 2%. The amount of energy that the recoil atom reaches is some 100 keV and that is
not negligible. Such energy is sufficient to break some 10,000 chemical bonds (assuming 10 eV/one
bond). An example of such 109 keV recoil is the 219Rn with the range of some 88 nm in a water-like
environment (e.g., cells or extracellular matrix). The comparison of LET and ion ranges of α particles
and 219Rn recoils originating from 223Ra decay is shown in Figure 1 and the ranges of 219Rn recoils
in various materials are summarized in Table 2. Simulations were performed using SRIM code [36].
These factors have a direct impact on radiopharmaceutical stability and purity, as well as on dosimetry
and daughter recoils’ distribution in tissues, especially when so called in vivo generators are employed.
In some cases the radioactive recoils are removed from the radiopharmaceutical preparations and their
final formulations before use [37,38].
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Figure 1. (a) Log/log plot of linear-energy transfer (LET) of α particles and 219Rn ions vs. their path 
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ions with their xy, xz and yz plane projections. The recoil, in fact, travels in opposite direction to the 
emitted α particle (common decay-event origin at x,y,z = 0,0,0). 

Figure 1. (a) Log/log plot of linear-energy transfer (LET) of α particles and 219Rn ions vs. their path
(distance) in water up to the rest; (b) Semi-log 3D plot of final at rest positions of α particles and 219Rn
ions with their xy, xz and yz plane projections. The recoil, in fact, travels in opposite direction to the
emitted α particle (common decay-event origin at x,y,z = 0,0,0).

Table 2. Ranges of 109 keV 219Rn ions in selected materials.

Material Range (nm)

Au 11
ZrO2 ICRU-712 26
Al2O3 ICRU-106 27
TiO2 ICRU-652 28
SiO2 ICRU-245 46

adult cortical bone 53
human blood 85
prostate tissue 87

water 89
nitrogen gas 76,000

To mitigate the consequences of the nuclear recoil effect in the body, we propose three methods
based on the corresponding theorems:

Theorem 1. Recoils spread mitigation by time—the spread of daughter radioactive ions takes time, so their
spread in the organism would also depend on their half-life.

Proof of Theorem 1. The blood flow measured in terms of red blood cells velocity in capillaries ranges
between about 1–3 mm/s [39]. Taking into account this value as a reference for passive transport of
radiopharmaceuticals in extracellular matrix or in a capillary blood stream, one may compare this
displacement time and the half-life of the corresponding released daughter nuclide. While only one half
of 219Rn atoms (T = 3.96 s) decay roughly in 4 s, the number of atoms of further decay series member
215Po (T = 1.78 ms) decreases to 1/1000 of its initial amount in 17.8 ms, and it thus has practically no
time to escape or to be translocated. Thus, the selection of nuclides with favorable decay properties
determines this approach.

Theorem 2. Recoils spread mitigation by nanoconstruct size/material—daughter-recoiling nuclide consumes
some of its energy while getting through the nanoconstruct.
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Proof of Theorem 2. Depending on the nanoconstruct design the stopping power of various materials
affects the recoils range. The material and size of the nanoconstruct thus determine the energy loss
of recoils in nanoconstruct material. Not only the atomic structure but also the molecular structure
and chemical-bond environment affect the stopping ability of the nanoconstruct as a whole [36].
Furthermore, the recoil ion range in nanoconstruct material is limited and its energy is significantly
decreased. In general, the stopping power increases with various parameters like atomic weight,
electronic density, bond structure, etc. The advantage of spherical nanoconstruct geometry in terms
of the stopping efficiency of the nanoconstructs is obvious, and the mother nuclide should be
preferably placed in the nanoconstruct core. On the other hand, in case of surface-bonded radionuclide,
the probability of daughter recoil ion back-implantation into the nanoconstruct is about 50%.

Theorem 3. Recoils spread mitigation by the nanoconstructs number/depot—even though the recoil ion
may escape a nanoconstruct, the probability of its back-implantation or its implantation into surrounding
nanoconstruct units is relatively high.

Proof of Theorem 3. In cases when time, nanoconstruct material and size are not sufficient to
degrade the recoils energy completely, the released ions may be trapped by a depot of surrounding
nanoconstructs or even as mentioned in Theorem 2, by the nanoconstruct itself. This proof is also
supported by the fact that both surface and intrinsic labelling strategies yielded quite similar data on in
vitro stabilities results in terms of total released activity [17]. This method is, however, limited to topical
applications of radiopharmaceuticals based on larger nanoconstruct aggregates or agglomerates.

3.2. Labelling Chemistry

A fundamental concept of small molecule labelling, e.g., the antibody fragments, peptides and also
surface-modified nanocarriers, is based on chelators conjugated throughout a spacer with the vector
or the nanocarriers themselves. Spacers are aliphatic or aromatic moieties (C4–C10 or longer) able to
establish chemical bonds (e.g., amides, esters, etc.) via nucleophilic substitution, amide formation using
carboimides (e.g., dicyclohexylcarbodiimide, diisopropylcarbodiimide) or the Schotten–Baumann
reaction of acylhalogenides with amines. The “click reactions” of azides with moieties containing triple
bonds play the most important role, e.g., the Huisgen’s 1,3-dipolar addition at elevated temperatures
resulting in 1,5- or 1,4-isomers, or Cu(I) catalyzed azide-alkine cycloaddition (preferably resulting
in 1,4-product). Cycloaddition reactions help to establish a bond between the spacers and targeted
moieties very quickly and efficiently.

Excellent chelators of trivalent metals are the azamacrocyclic ligands based on DOTA,
NOTA or TETA analogues (e.g., carboxylic or phosphonic)—see Figure 2. Most of them are
commercially available with various spacer lengths and as protected (e.g., t-butyl or benzyl) or
unprotected derivatives.
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These chelators provide very fast trivalent ions complexation kinetics (e.g., Ga, Lu, Tb, Ac, Bi, etc.)
depending on pH and temperature. Most of them are used with coordinated stable metals (e.g., Gd) as
contrast agents in magnetic resonance imaging (MRI) and they are very often employed as chelators
for diagnostic positron emission tomography (PET) radionuclides (e.g., 68Ga) as well as beta decaying
therapeutical nuclides (e.g., 177Lu) [40–44]. During the past few years macrocyclic ligands were also
used in TAT as chelators suitable for 225Ac or 213Bi [44,45]. Thus, DOTA/NOTA like bifunctional
chelators are fulfilling the theranostic concept according to which one chelator may be employed
for multimodal diagnostic purposes or as α/β− therapeutic agents. Concerning the α emitters, it is
interesting that even though the energy released during α decay exceeds several hundred times the
Me–C, Me–O or Me–N bond energy (Me—radiometal) and the recoils are released from the carrier,
in vivo experiments indicate that the use of such delivery systems is also feasible [4,46].

As already mentioned, labelling procedures proceed quite rapidly, taking dozens of minutes at
laboratory or elevated temperatures (up to 95 ◦C) at pH = 1–5 depending on the central atom and also
ligand structure. Several studies indicate that coordination of trivalent gallium by TRAP-Pr at pH = 1–3
and room temperature is more efficient than NOTA, DOTA, TETA analogues under similar conditions.
Optimal labelling protocol was established within 10–30 min for 68Ga at pH = 3–4 (acetate or citrate
buffer) at elevated temperatures (90–95 ◦C). It was also observed that the presence of trace metal
impurities like Zn2+, Cu2+, Fe3+, Al3+, Ti4+ or Sn4+ does not significantly decrease the radiochemical
yield while gallium labelling proceeds [47,48]. This ligand is, thus, promising also for other radiometals
like 213Bi, 225Ac. However, under certain conditions macrocyclic ligands form mostly in-cage structures.
Depending on the reaction conditions and basicity of the ligands, less thermodynamically stable
out-of-cage structures may occur usually when the reaction has been performed at lower temperatures.
Employing microwave irradiation may also significantly help to ensure faster formation of in-cage
complexes. Experimental 225Ac-DOTA-PSMA-617 was synthesized in a microwave reactor at pH = 9
(TRIS buffer) within 5 min with radiochemical purity over 98% and specific activity 0.17 MBq/nmol.
Similar protocols were employed when synthesized 213Bi-DOTATOC and 213Bi-Substance P were
synthesized, hexadentate DOTA-peptide conjugate being used [49,50]. Both 213Bi and 212Bi are
considered for the purpose. A 212Pb-TCMC-trastuzumab conjugate was studied on patients with HER-2
receptor carcinoma and its toxicity, pharmacokinetics and dosimetry were investigated. However,
the use of DOTA analogues as chelators of 225Ac or 213Bi did not solve the toxicity of daughter
recoils. A very interesting alternative to the presented α emitters is the 149Tb, currently studied in a
preclinical immunotherapy. Terbium-149 was separated from isobaric and other impurities including
stable zinc by extraction with α-hydroxyisobutiric acid solution (pH = 4) and was directly added
to DOTANOC (incubation: 15 min at 95 ◦C). Subsequent high-performance liquid chromatography
(HPLC) confirmed an over 98% purity and high specific activity (5 MBq/nmol) of 149Tb-DOTANOC.
A similar approach was used for 149Tb-DOTA-folate (incubation: 10 min at 95 ◦C) [51,52]. Labelling of
monoclonal antibody CD20 rituximab with 149Tb in a mixture of ammonium acetate, ascorbic acid and
phosphate-buffered saline (PBS) buffer (pH = 5.5) and 10 min incubation at room temperature resulted
in 99% yield and specific activity of 1.11 GBq/mg. Conjugate 149Tb-rituximab was prepared using
cyclohexane diethylene triamine pentaacetic acid (CHX-A”-DTPA) [53]. This pentaacetic acid analogue
is a very interesting ring-opening chelator used in several studies with 213Bi-HuM195 on patients with
human myeloid leukemia. The TCMC and CHX-A”-DTPA chelators are shown in Figure 3.

While 225Ac, 213Bi, 149Tb and other radionuclides may be easily coordinated using macrocyclic
or DTPA chelating agents, efficient chelator for 223Ra, which is currently used in palliative treatment
of bone metastasis of prostate cancer, is still not available. Thus, direct sorption of 223Ra onto surface
or intrinsic labelling of nanocariers, e.g., nanohydroxyapatites, LaPO4, SPIONs and others was
investigated [6,8,17]. Due to the problematic chemistry of 211At several studies were focused on
the possibility of trapping astatine into a nanoconstruct (e.g., gold or silver nanoparticles (NPs),
211AtCl@US-tubes, TiO2), attached to targeting vector via a linker [54–57]. Synthesized nanoconstructs
might be stabilised with polyethyleneoxide or polyethylene glycol (PEG). Retention of the α emitter is
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also significant in liposomes, where about 81% 225Ac retention was observed but the recoil retention
was not evaluated [58]. Whereas both the labelling of nanoconstructs or liposomes and stabilization of
recoils are quite efficient in comparison with small molecules, the stability of their dispersions (e.g.,
the hydrodynamic diameter) may significantly vary depending on used material.
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3.3. Targeting and Clearance

Investigation of how to deliver short-range, high LET radiation to target sites is of key importance.
Short α particle range in soft tissues favors their use in the therapy of small lesions, metastases or
system-spread diseases like some kinds of leukemia. Depending on the biochemical properties of the
radiopharmaceuticals, three targeting strategies could be defined:

1. “self-targeting” based on physiological affinity of the radioisotope to a given tissue; thus radium
tends to accumulate in bones or pertechnetate, astatine or iodide in the thyroid;

2. “passive targeting” or “blood circulation and extravasation” is based on accumulation of
nanoparticles in the areas around the tumors with leaky vasculature; commonly referred to
as the enhanced permeation and retention (EPR) effect [59];

3. “active induced targeting” based on specific ligand-receptor interactions between labelled small
molecules, peptides, mAbs and their fragments and target cells; externally activated exposure is
also possible (temperature, magnetic field or other activators) [60].

Taking into account the half-lives of the therapeutic nuclides and the recoiling daughters, their
circulation time, biodistribution and clearance play a critical role. Matching radionuclide half-lives and
pharmacokinetic profiles of the vehicle systems remains a significant criterion [61]. Radionuclides with
half-lives long enough to allow differential tumor accumulation and possibly cellular internalization
of radiolabeled molecules have some advantages in therapeutic application, but their toxicity for
non-targeted sites should be minimized. The features of recoils’ distribution in the body was discussed
by de Kruijff et al. [62]. Pharmacokinetics of the injected radiopharmaceutical could be a function of
both time and tumor size. As an example, the data of a preclinical study with 213Bi-DOTATATE in
animals bearing small and large tumors (50 and 200 mm3) using two tumor models: H69 (human small
cell lung carcinoma) and CA20948 (rat pancreatic tumor) are demonstrated in Figure 4 [63].

Different approaches have been explored to inhibit the accumulation of both parent and
daughter radionuclides in critical organs or acceleration of their clearance: co-injection of lysine
with 213Bi-labelled conjugate can reduce kidney uptake of 213Bi [64], bismuth citrate pre-treatment
blocks renal retention of 213Bi [65], and oral administration of BaSO4 known as a coprecipitating
agent of radium reduces the 223Ra accumulation in the large intestine [66]. In some cases only
locoregional therapy (not intravenous injection) is suited because of the large size or high hydrophilicity
of the delivery agent, e.g., encapsulated liposomes or multi-layered nanoconstructs [67]. Imaging
methods with the potential for in vivo evaluation of the pharmacokinetics of the radionuclides, such as
single-photon emission computed tomography (SPECT)/PET/CT imaging are of great importance for
assessing the outcome of the therapy.
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3.4. Dosimetry

The absorbed dose is defined as an energy delivered to a unit of mass (see Equation (2)).

D =
Ex [J]

mirr. [kg]
[Gy] (2)

where the dose, D is defined as a ratio of the energy Ex deposited by the radiation passage to the matter
in a unit of mass mirr. This definition is however quite general and does not reflect the specific situation
when α emitters and chain decays are used in TAT. This requires precise and accurate dose estimation
on all levels, starting from whole body biodistribution down to subcellular level. The example of 223Ra
decay that produces one α particle and recoiling 219Rn ion gives a clear picture of such situation. Let us
assume that the cell density equals 1 g/cm3, the mass mirr. taken into dose calculation is expressed as
the mass of a sphere with the diameter of the 219Rn recoil path, and the energy Ex equals the recoil total
energy deposition (109.5 keV). In the case of α particle, a sphere with the diameter of 20 µm (single
cell dimension) and only partial energy deposition calculated on the basis of LET is considered. Thus
the absorbed dose D delivered by the 219Rn recoil corresponds to 40 kGy in such small volume (total
deposited energy of 109.5 keV) while for the α particle it amounts only to 70 mGy over its single-cell
path (though the total energy deposited by an alpha particle is 1.83 MeV). To compare the dose in the
same mass (or volume), e.g., of one cell, the ratio of the doses delivered by a single α particle and 219Rn
recoil turns then to 70 mGy to 4 mGy, respectively. Thus the implications for radionuclide targeting on
the subcellular level (e.g., internalization into the nucleus or destruction of cell organelles) play an
important role and the contribution of recoil ions should not be neglected. In general, the dosimetry
should be evaluated separately in the following levels.

3.4.1. Body Level

In vivo whole body scans with α emitters may provide very helpful and quite detailed information
on the pharmacokinetic and pharmacodynamic properties of radiopharmaceuticals [68,69]. Organ
intake values, renal clearance or fecal excretion may be evaluated in this way and the recoil release
could be possibly visualized by employing the multiple energetic windows data analysis.

3.4.2. Organ and Sub-Organ Levels

The ex vivo sample measurements in animal models and also the in vivo imaging can provide
overall information on the biodistribution and organ uptake of radiopharmaceuticals [12,70].
Sub-organ distribution may also be visualized and more detailed information on target organ uptake
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compartments may be gained. Such information is again very important for the estimation of tumor
therapy prognosis since some tumors do not express their specific antigens or do not accumulate the
targeting vectors in their whole volume.

3.4.3. Cellular and Subcellular Level

Dosimetry on a cellular level should clarify the cell-death mechanisms induced by radiation and
damage of cellular compartments including DNA damage. Direct (e.g., DNA double strand breaks)
and indirect damage mechanisms (e.g., reactive oxygen species generation) should be considered and
further analysis is needed, taking into account also the recoil effects. The standard condition of the
radionuclide internalization in the cell need not be necessary. The dose distribution on a subcellular
level differs significantly for α particles and for the recoil ion—see Section 3.1. The studies published
so far did not evaluate the complete decay and the energy distribution in decay products even though
microautoradiographic techniques, in a combination with immuno-staining methods, are available [71].
Single α particle-induced damage visualized in real time was also reported [72] and the stochastic
simulation of 223Ra α particle irradiation effects on subcellular level was recently performed [73];
however, recoils were not taken into account. The cell-to-cell fluctuations in dose deposition ranged
up to about 40%. Interesting results were reported in [74]. In a simplified cellular model, the average
number of hits by α particles resulting in a 90% probability of killing exactly one cell was estimated to
range from 3.5 to 17.6. However, a better understanding of α particles and the damage induced by the
hot recoil atoms is needed to achieve precise proper dose estimation.

Contrary to the efforts of trapping the recoils, an innovative approach that is actually based on
the controlled release of recoiling atoms with radioactive nuclei was developed. A novel concept of
diffusing α emitter radiation therapy (DaRT) was proposed as a new form of brachytherapy. To treat
solid tumors, the method uses α particles employing implantable 224Ra-loaded wire sources that
continually release short-lived α particle emitting recoils that spread over a few millimeters inside the
tumor [75]. Immunogenic cell death seems to significantly influence the overall effect of the therapy.

4. Vectors for Targeted Alpha Particle Therapy

Efficient and specifically targeted carriers need to be developed in order to realize the potential
and favorable properties of α emitters. A variety of conventional and novel drug-delivery systems have
been investigated for these purposes: biological macromolecules (antibodies, antibody fragments),
small molecule compounds (peptides, affibodies) and nanocarriers/nanoconstructs.

4.1. Small Molecules

4.1.1. MABG

[211At]-meta-astatobenzylguanidine (211At-MABG) was synthesized to improve the therapeutic
effect for the treatment of malignant pheochromocytoma (PCC) and other diseases [76]. Compared
with 131I-MIBG, sufficient cellular uptake and suppression of tumor size after single administration of
211At-MABG (555 kBq/head) have been reported [77]. A kit method for the high-level synthesis of
211At-MABG was also developed [78].

4.1.2. Prostate-Specific Membrane Antigen (PSMA)

Clinical salvage therapy with 225Ac-PSMA-617 was introduced for patients with advanced mCRPC
in whom approved therapies had been ineffective. PSMA (prostate-specific membrane antigen) is
a 750 amino acid type II transmembrane glycoprotein; after binding at the tumor cell surface the
PSMA ligands are internalized allowing radioisotopes to be concentrated within the cell. A standard
treatment activity of 100 kBq/kg administered every 8 weeks presents remarkable anti-tumor activity
along with tolerable bystander effects and moderate hematological toxicity [4,5]. Figure 5 shows a
patient case with impressive results of TAT in comparison with non-effective 177Lu therapy. It was also
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shown, that 213Bi labelled PSMA targeting agents induce DNA double-strand breaks in prostate cancer
xenografts [79].
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Figure 5. 68Ga-PSMA-11 positron emission tomography (PET)/computed tomography (CT) scans
of a patient comparing the initial tumor spread (A); restaging after 2 cycles of β− emitting
177Lu-PSMA-617 reveals progression (B). In contrast, restaging after second (C) and third (D) cycles
of α emitting 225Ac-PSMA-617 shows impressive response. This research was originally published
in JNM. Kratochwil et al. 225Ac-PSMA-617 for PSMA-Targeted α-Radiation Therapy of Metastatic
Castration-Resistant Prostate Cancer. J. Nucl. Med. 2016, 57(12), 1941–1944. © by the Society of Nuclear
Medicine and Molecular Imaging, Inc. [4].

4.1.3. Substance P

Clinical experience with the use of peptide carrier Substance P in TAT has recently been
reported [80,81]. Patients with recurrent glioblastoma multiforme were treated with 1–7 doses of
approx. 2 GBq 213Bi-DOTA-Substance P or 1–4 doses of 10 MBq 225Ac-DOTAGA-Substance P at
two-month intervals. Favorable toxicity profile and prolonged median survival compared to standard
therapy were observed.

4.2. Biomolecules—Antibodies

A detailed description of mAbs radiolabeling with α emitters has been recently given
elsewhere [82,83]. Here we mention only some of the clinical and preclinical studies.

Actimab-A, which represents 225Ac conjugated to lintuzumab (anti-CD33 mAb), demonstrated
safety and efficacy against acute myeloid leukemia (AML) in two phase 1 trials. Total administered
activities ranged from 37–148 kBq/kg and it was found that baseline peripheral blast count is a
highly significant predictor of objective response [84]. The phase 2 trial is currently active at 16
clinical trial sites with patients with AML, age 60 and older, who are ineligible for standard induction
chemotherapy [85].

213Bi-anti-EGFR-mAb radioimmunoconjugate was prepared by coupling 213Bi and cetuximab
via the chelating agent CHX-A”-DTPA. Intravesical instillation of 366–821 MBq of the
213Bi-anti-EGFR-mAb in 40 mL of PBS was applied in recurrent bladder cancer patients revealing
well-tolerated therapeutic efficacy [86].
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The first-in-human clinical studies of 212Pb-AR-RMX (AlphaMedixTM, Houston, TX, USA) for
therapy of neuroendocrine tumors were announced to have begun. The biodistribution and safety of
this peptide derivative vehicle targeting SSTR2-(+) neuroendocrine cancer cells were clinically evaluated
using 203Pb-AR-RMX. No acute or delayed hematological or renal toxicity was observed [87,88].

Preclinical trials of 225Ac-DOTA-anti-PD-L1-BC conjugate have demonstrated promising results
in the radioimmunotherapeutic treatment of breast cancer. PD-L1, programmed cell Death Ligand 1, is
part of an immune checkpoint system preventing autoimmunity. Anti-PD-L1 antibody (anti-PD-L1-BC)
was coupled with p-SCN-Bn-DOTA, and the resulting DOTA-anti-PD-L1-BC conjugate was then
labelled with 225Ac in sodium acetate. According to the pilot therapeutic studies a single dose of
15 kBq of the 225Ac-DOTA-anti-PD-L1-BC (3 mg/kg) increased median survival in a metastatic breast
cancer mouse model [12].

8C3 mAb, a 2nd-generation murine antibody to melanin of the IgG isotype, was labelled with
188Re or 213Bi directly or via CHXA”-DTPA chelator, respectively to prepare a new agent for therapy
of metastatic melanoma. There was statistically significant reduction of lesions in the lungs of mice
treated with either 400 mCi 188Re8C3 or 400 mCi 213Bi-8C3 mAb without any undesirable side effects.
The unlabeled mAb did not have any effect on the number of the lesions. A statistically significant
difference between the 188Re and the 213Bi treatment was not observed [89].

The efficacy of IgC1k 35A7 mAb (anti-carcinoembryonic antigen, CEA) and trastuzumab
(anti-HER2) labelled with 212Pb was estimated in vitro and in vivo in the treatment of small-volume
peritoneal carcinomatosis. A strong dose gradient was measured for 212Pb-35A7 mAb; it was much
more homogeneous for 212Pb-trastuzumab. The heterogeneity in mAb distribution was found to be
counterbalanced by the presence of bystander effects [90]. Trastuzumab was also labelled with 225Ac
and studied in a breast cancer spheroids model in vitro [91] and with 211At in athymic rat model with
implanted MCF-7/HER2-18 breast carcinoma cells, in which the median survival almost doubled [92].

The small molecule of antibody fragment anti-HER2 2Rs15d Nb was studied as a vehicle
of 225Ac [93] and 211At [94]. The labelling was performed via the bifunctional chelating agent
p-SCN-Bn-DOTA for 225Ac and three different prosthetic groups m-eATE, SGMAB, MSB for 211At
using random and site-specific labelling approaches. All prepared conjugates showed efficient degree
of internalization in HER2 + SKOV-3 cells justifying their further in vivo evaluation.

Poly(ADP-ribose)polymerase-1 (PARP-1), the nuclear protein which exhibits the ability to
target directly chromatin, was functionalized with 211At for the therapy of high-risk neuroblastoma.
The prepared 211At-MM4 conjugate demonstrated cytotoxicity to several cell lines [95].

4.3. Macromolecules and Nanoconstructs

Conceptual differences in clinical translation of the above vehicles were pointed out. For instance,
antibody conjugates target the cell surface and tend to have limited access to solid tumors [96],
whereas radiolabeled peptides are more desirable due to straightforward chemical synthesis, versatility,
easier radiolabeling, optimum clearance from the circulation, faster penetration and more uniform
distribution into tissues, and also lower immunogenicity [97,98]. Nanoparticle-based systems
have been designed to improve biodistribution, stability, specificity, pharmacological and targeting
properties, daughter retention, as well as to exploit the theranostic approach [99–101].

Nanoparticles with two layers of cold LaPO4 deposited on the core surface (LaPO4 core and core
+2 shells) were synthesized and labelled with either 223Ra or 225Ra/225Ac. The NPs were additionally
coated with GdPO4 and gold shells demonstrating retention of both parents and daughters (over
27–35 days) without diminishing the tumoricidal properties of emitted α particles. Consequent
conjugation of LaPO4 NPs to 201b mAb, targeting trombomodulin in lung endothelium was carried out
using a lipoamide polyethylene glycol (dPEG)-COOH linker. Efficacy of the NPs-antibody conjugate
system was demonstrated on reduced EMT-6 lung colonies [102,103].

Novel nuclear-recoil-resistant carriers of 223Ra based on hydroxyapatite were developed [17,
104]. Two strategies were used to prepare the nanoconstructs: the surface and the intrinsic (volume)
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labelling. High labelling yields as well acceptable in vitro and in vivo stabilities over the period of 223Ra
half-life make the developed nanoconstructs promising for targeted cancer therapy, e.g., bone matrix
targeting [17]. Similarly, the 223Ra labelled CaCO3 microparticles were successfully tested in a mice
model with ES-2 and SKOV3-luc intraperitoneal ovarian cancer xenografts resulting in considerably
reduced tumor volume or a survival benefit [105].

The Au-S-PEG-Substance P (5-11) bioconjugates were proposed to utilize the formation of a
strong bond between metallic gold and astatine for binding 211At to the biomolecule. Gold NPs were
conjugated with Substance P (5-11), neuropeptide fragment with high affinity to neurokinin type 1
receptors on the glioma cells, through HS-PEG-NHS linker. They were then labelled with 211At by
chemisorption on the gold surface. The radiobioconjugates were stable for 24 h in human serum
and cerebrospinal fluid, exhibiting high toxicity to glioma cancer cells. However, only local drug
application, not intravenous injection, was recommended because of their relatively large size and
high hydrophilicity [57,106].

Substance P (5-11) (SP) was also used for functionalization of nanozeolite-A loaded with 223Ra
for targeting glioma cancer cells. The small (<5%) release of the daughter radionuclides from the
prepared bioconjugate 223Ra-A-silane-PEG-SP (5-11) and the ability of zeolite NPs to re-adsorption
of recoiled 223Ra decay products (as a molecular sieve and as a cation-exchanger) along with high
receptor affinity toward NK-1 receptor expressing glioma cells in vitro make 223Ra-A-silane-PEG-SP
(5-11) promising tool for TAT [107]. Nevertheless, like the preceding vehicle it was not recommended
for intravenous injection.

Nanocarriers composed of amphiphilic block copolymers, i.e., loaded polymersomes, make it
possible to keep the recoiling 225Ac daughters and causing complete destruction of spheroidal tumors.
Nevertheless, more studies are necessary to evaluate the in vivo recoil-retention effectivity [108].

Nanocarriers in the form of lipid vesicles targeted to PSMA were labelled with 225Ac and compared
with to a PSMA-targeted radiolabeled antibody. It was found that targeted vesicles localize closer
to the nucleus while antibodies localize near the plasma membrane. Targeted vesicles cause larger
numbers of dsDNA breaks per nucleus of treated cells compared with radiolabeled mAb [109].

Interstitial vehicles in the form of pH-tunable liposomes encapsulating chelated 225Ac were
designed to enhance the penetration in solid tumors, which is usually limited for radionuclide carriers.
The liposomes were composed of 21PC:DSPA:cholesterol(chol):DSPE-PEG:Rhd-lipid. In the slightly
acidic tumor interstitium (7.4 > pH > 6.0) a pH-responsive mechanism on the liposome membrane
results in the release of the encapsulated radioactivity [110]. This study together with refs. [4,5] actually
supports the concept of DaRT therapy [75] in large solid tumors and metastases.

5. Summary

Targeted alpha-particle therapy is a very promising and effective therapeutical tool against cancer.
This brief overview of recent developments shows great potential in solving partial pitfalls of this
method mainly related to the nuclear-recoil effect. We speculate that two major strategies in TAT
field are very likely to develop further—firstly, the use of single α particle emitters and/or carriers
able to stop the spread of recoils labelled with chain α emitters; and, secondly, the use of carriers
providing controlled release of chain α particle emitters (DaRT concept). While the former field would
just apply already-known facts, the latter brings a relatively new concept in the TAT, with an overlap
to immunologic signaling and cell death. Despite the many uncertainties and problems in TAT, e.g.,
concerning the proper dose targeting, it should be pointed out that successful treatment cases in animal
models have already been reported for both strategies. Also, recent clinical trials showed that patient
benefits prevailed over potential risks. Further research is, however, needed to clarify the dosimetry on
all levels and to eliminate the unwanted spread of radioactive burden over the body and the induction
of secondary malignancies. TAT should, therefore, become additional and equivalent tools in truly
personalized medicine.
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