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Abstract

As important as the intrinsic properties of an individual nervous cell stands the network of neurons in which it is embedded
and by virtue of which it acquires great part of its responsiveness and functionality. In this study we have explored how the
topological properties and conduction delays of several classes of neural networks affect the capacity of their constituent
cells to establish well-defined temporal relations among firing of their action potentials. This ability of a population of
neurons to produce and maintain a millisecond-precise coordinated firing (either evoked by external stimuli or internally
generated) is central to neural codes exploiting precise spike timing for the representation and communication of
information. Our results, based on extensive simulations of conductance-based type of neurons in an oscillatory regime,
indicate that only certain topologies of networks allow for a coordinated firing at a local and long-range scale
simultaneously. Besides network architecture, axonal conduction delays are also observed to be another important factor in
the generation of coherent spiking. We report that such communication latencies not only set the phase difference
between the oscillatory activity of remote neural populations but determine whether the interconnected cells can set in any
coherent firing at all. In this context, we have also investigated how the balance between the network synchronizing effects
and the dispersive drift caused by inhomogeneities in natural firing frequencies across neurons is resolved. Finally, we show
that the observed roles of conduction delays and frequency dispersion are not particular to canonical networks but
experimentally measured anatomical networks such as the macaque cortical network can display the same type of behavior.
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Introduction

A self-organized coordination between individual agents is often

the hallmark of many natural and man-made complex systems.

One of the most prominent examples of such behavior is the

phenomenon of synchronization [1,2]. Synchronization arises in

systems of different origin such as mechanical oscillators, lasers,

chemical reactions, cell populations, or social interactions [3]. For

instance, there is experimental evidence for rhythmic and

correlated firing of neurons, although the functional role of such

collective dynamics is still at debate [4]. To elucidate this question

it is necessary to describe the parameter space and the mechanisms

underlying the variety of neuronal oscillations and synchrony that

has been reported [5].

The exact conditions under which large populations of neurons

spontaneously synchronize are in general not fully understood,

even in the non-delayed coupling case. In the latter case, Mirollo

and Strogatz analytically demonstrated that synchrony can be a

stable state for a population of globally pulse-coupled oscillators

[6]. However, to do the analytics feasible, most of these works

considered systems composed of few identical neurons (typically

two), or homogeneous topologies such as the all-to-all network.

Numerical studies have incorporated the features of non-

homogeneities and complex network structures into the analysis

of neuronal populations. For instance, the detailed role of the

nodes degree distribution, long range connections, average path

length, and clustering on the level of synchronization and

oscillatory behavior of the network have been addressed [7–9].

Delay in the interaction among dynamical systems has an

ambivanlent effect. In some cases it can stabilize the systems [10],

increase synchronization [11], induce stochastic resonance [12] or

enhance coherence of spiral waves [13]. In other cases, it can

completely destabilize the system yielding chaotic dynamics [14].

In large networks of neurons, for instance, it has been observed a

wide variety of spatio-temporal patterns and the existence of

various regions of multistability [15]. Delays arising from the

propagation of action potential in neuronal systems can amount to

several tens of milliseconds [16,17]. These latencies add an

intrinsic component to the timing of individual spikes which might

have important consequences at the network level and whose

understanding is still to be clarified [18]. Investigations taking into

account delays remain scarce [19]. Globally delay-coupled maps

show that inhibitory coupling enhance in-phase synchronization

while excitatory coupling leads to out-of-phase synchronization

[20–22]. In small world networks, short or moderate conduction

delays favor synchronization for both chemical and electrical
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coupling, while long conduction delays always evoke antiphase

synchronization and clustering [23].

Delay-induced sychronization in complex networks of bursting

nodes modeled with Rulkov maps has been recently studied. While an

increase of the coupling strength always enhance synchronization,

regular or irregular propagating fronts appear intermitently as delays

increase [13,24]. Interestingly, depending on the coupling mechanism,

either attractive or repulsive, minima (maxima) of the synchronization

quantifiers are oberved at the delay time and multiples of it for

attractive (repulsive) coupling [25]. These results are opposite to what

we find for the case of spiking neurons as will be discussed later.

It is also reported that diffusive delayed coupling enhance

synchrony [26] and leads to phase clusterization [27]. Some

studies have specifically focused on the long-distance synchroni-

zation and proposed some canonical circuits that naturally

promote zero-lag synchrony [11,28].

Figure 1. Sketch of the system under study. Schematic
representation of the neuronal network with delay interactions.
doi:10.1371/journal.pone.0019900.g001

Figure 2. Local and global synchronization regions and rater plots for different networks. (a-d) Contour plots of Sloc [Sglob] for the HH
neuron model in the coupling strength-delay time phase space corresponding to (a) [(c)] a SWN (p~0:001) and (b) [(d)] a RN. In panels (e-h) we show
raster plots of a fraction of the neurons for different networks and delays: t=T0~0:82 [t=T0~1:2] in (e) [(g)] for a SWN (p~0:001) and (f) [(h)] for a RN.
The coupling strength is gs~0:5 mS cm{2 .
doi:10.1371/journal.pone.0019900.g002
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Materials and Methods

Our aim is to study the interplay between conduction delays

and network topology in an ensemble of delay interconnected

neurons. First, we address the ideal situation where all conduc-

tance delays are identical and later the situation where the natural

frequencies of the neurons are distributed. In order to understand

the role played by the pathways in which the neurons interact with

other neurons, we consider different interconnection topologies,

ranging from regular one-dimensional lattices to scale-free

networks. Figure 1 shows a schematic representation of the system.

Description of neuron dynamics
We study two types of neural excitability by mean of two

different conductance-based models. In these models, the

membrane potential vi of the neuron i is described as

Cm _vvi~Ii{Im
i {I

syn
i , ð1Þ

where Cm is the membrane capacitance per unit area; Ii is the

external current; Im
i is the membrane current and I

syn
i is the

synaptic current.

In the Hodgkin and Huxley (HH) model [29], the membrane

current is described by

Im
i ~gNam3h(vi{VNa)zgK n4(vi{VK )zgL(vi{VL), ð2Þ

where ga (a~Na,K ,L) represents the maximum conductance for the

ionic contributions and passive channel respectively and Va are the

corresponding equilibrium potentials. The gating variables m, h, and n

represent the activation and inactivation of the sodium channels and

the activation of the potassium channels, respectively. These voltage-

gated ion channels are described by the following differential equation

tz Vð Þ dz

dt
~z? Vð Þ{z, ð3Þ

where z denotes a generic gating variable. The functions tz(V ) and

z?(V) are determined from experimental data, and take the form

tz Vð Þ~ 1

az Vð Þzbz Vð Þ and z? Vð Þ~ az Vð Þ
az Vð Þzbz Vð Þ : ð4Þ

In the Connor-Stevens (CS) model [30], the equation describing

the membrane current reads:

Im
i ~gNam3h(vi{VNa)zgK n4(vi{VK )z

gL(vi{VL)zgAa3b(vi{VA),
ð5Þ

This model includes an additional conductance current, called the

A-current, which is responsible of the different excitatory behaviors

between both models [31]. The experimentally fitted voltage-depen-

dent transition rates az(V) and bz(V ) and the rest of parameters values

for these models can be found in Text S1, Table S1 and Table S2.

In both models, the pulsed synaptic transmission between

neurons is modeled, following [32], by a postsynaptic conductance

change with the form of an alpha-function. The synaptic current is

defined as

I
syn
i ~{

gs

N

X
spikes[n(i)

a t{tspike{tij

� �
V (t){Esyn

� �
, ð6Þ

where gs describes the maximal synaptic conductance and the sum

is extended over the train of presynaptic spikes occurring at tspike

produced by neighbors of the neuron n(i). The reversal potential

Esyn~0 mV defines the synaptic connection as excitatory. The

alpha-function takes the form

a(t)~
1

td{tr

exp {t=tdð Þ{exp {t=trð Þð Þ , ð7Þ

Figure 3. Section of the local and global synchronization regions for different coupling schemes. Sloc (open symbols) and Sglob (solid
symbols) as a function of the delay t in a RN when the neurons interact via (a) electrical coupling and (b) chemical coupling. Gray areas represent the
regions where anti-phase synchronization is observed. Coupling strength is fixed to gs~0:5 mS cm{2 .
doi:10.1371/journal.pone.0019900.g003
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where the parameters td and tr stand for the decay and rise time

of the function and determine the duration of the response.

Synaptic rise and decay times were set to tr~0:1 and td~3 ms,

respectively. The delay arising from the finite conduction velocity

of axons is taken into account through the latency time tij . In this

work we consider the situation in which all the conduction delays

were set to the same value tij~t.

Neurons can also interact with each other through electrical

synapses, also known as gap junctions. In the electrical synaptic

case, the synaptic current takes the form:

I
syn
i ~{

gs

Dn ið ÞD
X

spikes[n(i)

vj(t{tij){vi(t)
� �

, ð8Þ

We study how both synaptic transmission schemes affect the

network synchronization.

Interconnection topology
The synchronization of neurons may depend on the

synaptic network in which they are embedded. To study the

role played by the different synaptic pathways in the

synchronization of our ensemble of neurons, we consider five

different topologies such as: regular, small-world, random,

scale-free and globally coupled networks. In the regular lattice,

neurons are connected with the k nearest-neighbors using

periodic boundary conditions. To construct a small-world

network we use the algorithm proposed by Watts and Strogatz

[33]. The algorithm starts from a regular lattice and with a

certain probability p each link is rewired to another node

randomly chosen from all possible nodes that avoid self-loops

and link duplications. In the limit in which the rewiring

probability is one, we obtain the random network. The scale-

free network was introduced by Barabási and Albert [34] and

is based on a preferential attachment mechanism. The main

feature of this network is that the degree distribution follows a

power-law distribution. Most of the nodes are connected with

few elements and only a few nodes are connected with many

elements. For all these topologies the average degree is

SkT~4. We will also consider the all-to-all network where

neurons are connected with all others neurons.

Phase Synchronization
To characterize the synchronization in our network, we define

the phase [35] of neuron i as:

wi(t)~2p
t{tk

tkz1{tk

, ð9Þ

where tk is the time of the kth firing of the neuron i. The idea

behind this definition is that the phase of a neuron experiments a

change of 2p between two consecutive spikes. To measure the

phase synchronization between neuron i and the set of its

neighbors n(i), we define the quantity:

si(t)~
1

ni

X
j[n ið Þ

sin2 wi tð Þ{wj tð Þ
2

� �
, ð10Þ

with ni the degree of neuron i, i.e., the number of connected

neighbors of the neuron i. Averaging over elements and

Figure 5. Evolution of the local and global synchronization indexes with different network properties. Dependence of Sloc (open
squares) and Sglob (solid squares) on (a) the rewiring and (b) the number of neighbors in the network. Other parameter values are: coupling strength
gs~0:5 mS cm{2 and delay time t=T0~0:82.
doi:10.1371/journal.pone.0019900.g005

Figure 4. Local and global synchronization regions for the CS dynamics. Sloc (left) and Sglob (right) for the chemically (pulsed) delay-coupled
CS neuronal model in a random network.
doi:10.1371/journal.pone.0019900.g004
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integrating in time, we obtain

Sloc~
1

W

ðW

0

1

N

XN

i~1

si tð Þ
 !

dt , ð11Þ

where W~1 s is the length of the time window used for averaging

and n(i) is the set of neighbors of the neuron i. Sloc gives a measure of

the average of the local phase synchronization in the coupled system.

To measure global synchronization we extend the sum in Eq.

(10) to all neurons. Then, we quantify the global phase

synchronization of neuron i with the rest of the network as

s’i(t)~
1

N

XN

j~1

sin2 wi tð Þ{wj tð Þ
2

� �
: ð12Þ

Averaging over elements and time we obtain a global order

parameter.

Sglob~
1

W

ðW

0

1

N

XN

i~1

s’i tð Þ
 !

dt : ð13Þ

These order parameters are zero if the phases of the neurons are

equal and one if they differ by p. When the phases of the neurons

are randomly distributed, the order parameters take a value of 0:5.

Results

First we analyze the case of identical neurons. We study the

effect that the rewiring probability and the number of connected

neighbors have on the synchronization of the system. Then, we

consider the situation in which the natural frequencies of the

neurons are distributed according to a Gaussian distribution.

Finally, we particularize our study to a real network, the

macaque cortico-cortical network.

Homogeneous frequencies
Let us consider the situation in which the delays in the

connection between neurons are all identical and the neurons

operate in a regular spiking regime (Ii~I~10 mA cm{2). In this

situation, all neurons fire with the same natural frequency

f {1~T0~14:65 ms when isolated.

Figure 7. Synchronization regions, number of active neurons and raster plot for a RN with distribution of the frequencies. Contour
plot of (a) Sloc and (b) Sglob in the coupling strength-delay time phase space for a heterogeneous ensemble of neurons in a RN. (c) Density plot of the
number of non-spiking neurons. (d) Raster plot of the activity in the network for a delay time t=T0~0:82 and coupling strength gs~0:5 mS cm{2.
doi:10.1371/journal.pone.0019900.g007

Figure 6. Evolution of the giant component and the number of
clusters with the interaction strength. Dependence on the
coupling strength of (a) giant component GC (circles) and Sglob

(dashed line) and, (b) number of clusters Nc (squares) and Sloc (dashed
line) in a RN. The delay time is t=T0~0:82.
doi:10.1371/journal.pone.0019900.g006
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In Fig. 2(a–d) we show, for the HH neuronal model, the contour

plots of Sloc and Sglob in the coupling strength vs. normalized

delay for a small-world network (SWN) and a random network

(RN). At a local level, three different regimes are observed: (i) In-

phase solutions (white regions in Fig. 2(a–b)) appear for delays

close to multiples of the natural period T0 of the neurons. In this

regime, neighboring neurons fire with almost the same phase. (ii)

Anti-phase solutions (blue regions in Fig. 2(a–b)) emerge for delays

close to odd multiples of the half of the natural period. In this case,

neighboring neurons fire with a phase difference of p between

them. (iii) Out-of-phase solutions (green regions in Fig. 2(a–b)) arise

between the two previous regimes. In this regime, the neurons fire

with a random phase difference between them.

At a global scale however, in-phase synchronization is observed

in the RN while it is absent in the SWN (see Fig. 2(c–d)). The

time traces of the neurons give us more insight of those dynamical

regimes. Figure 2(e–h) shows raster plots of a fraction of neurons

in a SWN and a RN, for a fixed coupling strength and two

different values of t. Although at a local scale the synchronized

regimes, either in- or anti-phase, are observed in different

networks, the nature of the synchronized state is, however,

different depending on the underlying topology. In the SWN (and

in the one-dimensional regular lattice) local synchronization is

attained in fronts that propagate through the network. This

synchronization, observed at a local scale for the SWN,

disappears at a global scale when averaging over the entire

network as shown in Fig. 2(c). In the RN, however, perfect in-

phase synchronization is observed for some values of the delay

yielding an in-phase state at a global scale, as shown in Fig. 2(d).

For the anti-phase state, the raster plot reveals pulsations with a

phase difference of p between neighboring neurons but with a

significant jitter. This local anti-phase firing leads to a Sglob~0:5

Figure 8. Representation of the macaque cortico-cortical network. Macaque cortical connectivity in an organic layout view.
doi:10.1371/journal.pone.0019900.g008
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and consequently an apparent absence of global anti-phase

synchronization in Fig. 2(d). Similar scenario is observed in the

scale-free network.

To explore the generality of the previous synchronization

regions, we also analyzed the case of electrical coupling. In Fig. 3

we compare Sloc and Sglob in a RN for a fixed value of the

coupling strength in both electrical and chemical couplings. The

synchronization regions remain very similar in both cases,

although the electrical coupling favors the in-phase synchroni-

zation increasing the areas where it appears. However, the

alternation between in-phase and anti-phase regions remains

qualitatively similar in both cases (see grey areas in Fig. 3). This

tendency to in-phase synchronization is more dramatic in the

all-to-all network, where the resonant role of the delay is even

lost.

We have also checked that different neuron dynamics like

that described by the Connor-Stevens (CS) model exhibits

qualitatively the same synchronization regions. In Fig. 4 we

show the contour plots of Sloc and Sglob in the coupling strength

vs. normalized delay for a random network for the CS neuronal

model. Pulsed coupling yields the same qualitatively result

except for the firing frequency dependence on the coupling

strength.

Effect of the rewiring and coupling
In order to understand the role played by large-range

interconnections, we randomize the regular one-dimensional

lattice. Figure 5(a) shows, for the HH model, the global and local

order parameter as a function of the rewiring probability in the

network. Initially, for a delay t=T0~0:82 and a coupling gs~0:5
mS cm{2, the activity of the network is only locally synchronized.

Increasing the rewiring probability, the activity of the network

becomes globally synchronized. We also investigate in the regular

lattice, the effect of increase the number of neighbors (Fig. 5(b)).

We observe a gradual transition from a global desynchronized

state to a synchronized one for a fraction of neighbors around

10%.

With the aim of investigating the mechanism towards the

synchronization in our system, we show in Fig. 6 the number of

clusters (Nc) of synchronized neurons and the size of the giant

component (GC) together with Sloc and Sglob, as a function of the

coupling strength [36]. Although the system is not initially

synchronized neither locally nor globally, small clusters of

synchronized neurons emerge. As the coupling increases and the

system moves towards a synchronized state, these small clusters

gradually merge developing the largest cluster, that, eventually,

reaches the network size, which suggests a similar behavior as the

one observed in the absence of delay [36].

Heterogeneous frequencies
The assumption that all neurons in the network are identical

and operate in a regular spiking regimen is an ideal situation. For

this reason, in what follows we explore the case where the natural

frequencies of the neurons differ from each other. In the HH

model, the frequency of the spikes of the neurons depends on the

injection current Ii. Thus, we model the dispersion in frequencies

by assuming that each neuron receives an external current whose

value is chosen from a Gaussian distribution with mean SIT~9 m
A/cm2 and dispersion sI~2:5 m A/cm2. With these distribution

values *10% of the neurons are in the excitable, sub-threshold,

state when uncoupled. This distribution of natural frequencies

requires an increase of the coupling strength to achieve the

synchronous state (see Fig. 7(a-b)). The regions of global

synchronization are reduced for most of the networks except in

the fully connected one, where the synchronization regions quasi

merge at high coupling values, losing the resonant character of the

delay. As in the case of identical frequencies, we observe the three

different local firing states: in-phase, out-of phase and anti-phase.

Figure 9. Syncronization regions for the macaque cortical network and its randomized network. Contour plots of Sloc (top panel) and
Sglob (bottom panel) in the coupling-delay phase space for the macaque anatomical network. Left column: original macaque 71 cortico-cortical
network. Right column: randomized version of macaque 71 cortico-cortical network preserving in and out node degree.
doi:10.1371/journal.pone.0019900.g009
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At a global level, in-phase synchronization is more difficult to

achieve and only the random and scale-free networks exhibit this

state at high coupling strength for some particular values of the

delay time. In all the cases, the predominant state is the one in

which the neurons spike out-of-phase, indicated by green areas in

Fig. 7(a–b). Another peculiarity that occurs due to the distribution

of frequencies is that some neurons become silent, i.e., change from

a spiking oscillatory regime to a stable subthreshold state as the

interaction strength increases. As we mentioned before, without

interaction 10% of the neurons are in a resting state (see Fig. 7(c)).

When the coupling strength is increased, the number of silent

neurons increases reaching a maximum value for a synaptic

strength of gs^0:15 mS cm{2. By increasing further the coupling,

all neurons reach the regular firing regime again although the

raster plot in Fig. 7(d) reveals a high dispersion in their firing

phases. Experimental and theoretical investigations have reported

the suppression of repetitive firing by short pulses in single neurons

[37,38]: a stable fixed point coexists with two periodic solutions

(one stable and one unstable) for a particular range of the injected

current in the HH model [38]. Our results suggest that this effect

can also be present in other recurrent neuronal networks.

Anatomical network case
As an example of real anatomical network we investigate the

synchronization in the macaque cortico-cortical network [39]. The

network is composed by 71 nodes representing different cortical

areas with 746 links between them. Figure 8 shows an organic

layout of the cortical connectivity data set.

We consider each node of the network following the HH neuronal

dynamic as described in previous sections. We estimate the degree of

synchronization in the network using Eqs. (9) and Eq. (11). Figure 9

shows Sloc and Sglob when the coupling between the neurons and the

delay time of the connections are varied. We compare the results with a

randomized version of the network preserving the degree distribution.

It is interesting to notice that Sloc and Sglob are practically

identical. A reason for this is that the macaque cortical network is

densely connected, about 15% of the possible links. This result is in

agreement with that obtained in previous section, where the global

synchronization converges to the local one for a percentage of

connected neurons larger than 10% (see Fig. 5). The second

remarkable feature is the coincidence of the synchronization regions

between the macaque network and the randomized version of the

network. The macaque cortical network is very dense and has

already an average path length very similar to that of the

randomized network (see Table 1) what makes not surprising this

result. Another interesting feature is the absence of anti-phase states.

This is in accordance with previous observations for densely

connected networks, having the extreme limit in the all-to-all

network, for which the absence of anti-phase is observed. Densely

connected networks present predominantly in-phase synchroniza-

tion and the resonant role of the delay tends to be less pronounced.

Based only on the macaque network we cannot conclude if these

facts are general features of live brains, but it raises the interesting

question whether this happens in other anatomical networks.

Discussion

We have performed numerical simulations of delay-coupled

neurons described by the HH and CS models. We have initially

assumed that the neurons were chemically coupled and embedded in

different complex networks. Our results show that, at a local level, all

the considered topologies exhibit three different dynamical regimes:

in-phase, anti-phase and out-of-phase. At a global level, however, only

networks with certain degree of randomness in the connectivity (in

particular random and scale-free networks) allow for a coherent

response. These results were also observed when considering electrical

coupling, highlighting the generality of the network synchronizing

mechanisms. Besides the network architecture, axonal conduction

delays also play an important role in the generation of coherent

dynamics. We found that such communication latencies do not simply

add to the phase difference obtained in the non-delayed case but can

determine whether the interconnected cells can set in a coherent firing

at all. We expect that our results provide insights in more complex

situations, for instance in the presence of distributed delays.

When neurons are not identical, but their natural frequencies

are distributed, the region of phase synchronization decreases.

Moreover, we found that the number of active neurons decreases

for low coupling strengths due to the different frequencies. This

emphasizes the importance of having small diversity in the system

to obtain a coherent response. Besides the mechanisms studied

here, other aspects could be considered as well. Inhibitory neurons

and heterogeneous delays might play a significant role and will be

considered in detail in future studies.
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Text S1 The parameter for both models are shown in
Table S1 (HH) and Table S2 (CS).
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