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O-GlcNAcylation is an important posttranslational modification governed by a single pair

of enzymes–O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA). These two enzymes

mediate the dynamic cycling of O-GlcNAcylation on a wide variety of cytosolic, nuclear

and mitochondrial proteins in a nutrient- and stress-responsive fashion. While cellular

functions of O-GlcNAcylation have been emerging, little is known regarding the precise

mechanisms how the enzyme pair senses the environmental cues to elicit molecular

and physiological changes. In this review, we discuss how the OGT/OGA pair acts as

a metabolic sensor that integrates signaling pathways, given their capability of receiving

signaling inputs from various partners, targeting multiple substrates with spatiotemporal

specificity and translocating to different parts of the cell. We also discuss how the

pair maintains homeostatic signaling within the cell and its physiological relevance. A

better understanding of the mechanisms of OGT/OGA action would enable us to derive

therapeutic benefits of resetting cellular O-GlcNAc levels within an optimal range.

Keywords: O-GlcNAc transferase, O-GlcNAcase, signaling integrator, homeostasis, O-GlcNAcylation,

spatiotemporal dynamics, metabolic sensor, posttranslational modification

INTRODUCTION

Proteins are extensively post-translationally modified, with over 450 different types of
posttranslational modifications (PTM) that play important roles in cellular signaling, protein-
protein interactions or modulation of gene expression (1). The availability of such a PTM code,
in addition to spatiotemporal dimensions, provides cells with greater dynamic range to respond
to a myriad of stimuli and cellular environment (2). O-GlcNAcylation is a prevalent PTM that is
found on serine and threonine residues of proteins in the nucleus, cytoplasm and mitochondria
(3, 4). Up to 4,000 and potentially more proteins have been found to be O-GlcNAcylated (5).
Remarkably, there is only one enzyme, O-GlcNAc transferase (OGT) (6, 7), that catalyzes the
addition of O-GlcNAc to proteins and one that removes the modification, namely O-GlcNAcase
(OGA) (8).

O-GlcNAcylation uses the substrate UDP-GlcNAc, the final product of nutrient flux through
the hexosamine biosynthetic pathway (HBP) which integrates amino acid, carbohydrate, fatty acid,
nucleotide, and energy metabolism (Figure 1A). The HBP fluctuates with cellular metabolism
and may be dramatically altered under physiological and pathological conditions. The extent of
O-GlcNAcylation can reflect metabolic dynamics in the cell. This sets up the OGT/OGA pair
to be an “all-in-one” metabolic and nutrient sensor and has been understood to alter diverse
cellular processes such as apoptosis, gluconeogenesis, calcium signaling, insulin signaling, and
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FIGURE 1 | OGT/OGA enzyme pair acts as an integrator for cellular signaling. (A) OGT and OGA catalyze the addition and removal of O-GlcNAc on proteins,

respectively. The availability of UDP-GlcNAc, the product of amino acid, carbohydrate, fatty acid, nucleotide and energy metabolism, is crucial for OGT function. (B)

OGT can be phosphorylated by signaling partners (such as AMPK, CamKII, Chk1, GSK, and the insulin receptor), which integrates various inputs and results in

O-GlcNAcylation of protein substrates involved in diverse biological responses. (C) Temporal control is critical for O-GlcNAcylation of protein subtrates, where

OGT/OGA activity is responsive to signaling input changes. (D) A unique feature of O-GlcNAcylation is the ability of OGT to shuffle in and out of the nucleus. OGT and

OGA isoforms are present in the cytosolic, nuclear and mitochondrial space, whereby the spatial control of signaling can be achieved efficiently.

mitochondrial homeostasis. Physiologically, disruption of OGT
and OGA function has been implicated in the pathogenesis of
several major health problems, such as diabetes, cancer and
neurodegenerative diseases (9). Constitutive deletion knockout
of the ogt and oga gene causes early postnatal lethality in
mammals (10, 11).

Remarkable progress in understanding the signaling
properties of O-GlcNAcylation has suggested that O-
GlcNAcylation and the OGT/OGA enzyme pair may play a
key regulatory role in coordinating cellular signaling (3). In this
Review, we explore major concepts regarding the role of OGT
and O-GlcNAcylation and provide a conceptual understanding
of how OGT can potentially act as a metabolic sensor to integrate
signaling inputs transduced by other signaling components in
the cell.

Traditionally, intracellular signaling has been thought of
as linear modules of signaling architecture, from activation
of receptors via ligands to information flow through
phosphorylation cascades and subsequent activation of

transcription and protein synthesis. However, recent advances
in mass spectrometry and proteomics have allowed a more
holistic assessment of protein and lipid modifications that result
from singular events, and the results have indicated that a
single stimulus could result in complex responses with multiple
pathways being activated simultaneously with feedback loops
and cross-talks in place (12, 13). The spatiotemporal dynamics
of signaling also contributes to the complexity of the system.

OGT/OGA PAIR AS A SIGNAL INTEGRATOR

A simple way to re-think about signaling proteins and
their organization would be to identify key signaling hubs,
termed “integrators.” A signaling integrator within the cellular
environment could be defined as a protein complex which could
receive multiple forms of inputs from other signaling molecules,
elicit multiple outputs simultaneously with spatiotemporal
control and the ability to reset itself in a timely fashion. Its role
would be critical in allowing quick coordination of the activity
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of several signaling modalities and modulating their signaling
dynamics to provide a homeostatic balance or amplification of
signaling intensity. While the idea that several signals converge
on a specific substrate to elicit defined biological events is a
common theme in cellular regulation, the existing ideas prevalent
in the field focusses primarily on specific activities of effectors
downstream and is limited on the scale of proteome involved.
Ideally, the most effective and efficient signal integration would
be able to take place almost instantly, allowing the cells to
effect quick responses upon gathering external stimuli via
global modification and activation of proteins and genetic
machinery. The OGT/OGA signaling complex possesses the
above-mentioned characteristics that allow them to be an ideal
integrator of signaling inputs within cells.

An All-Encompassing Metabolic Sensor
While the substrate of OGT, UDP-GlcNAc, integrates
information about nutrient flux within the cell, OGT and
OGA are also uniquely positioned to receive information
from several key nutrient-sensitive signaling pathways and
appropriately transduce this information.

One of the prevailing views in the field is that OGT
makes use of its N-terminal tetratricopeptide repeats (TPR)
domain, which is an extended superhelical structure of up
to 13.5 TPRs, to act as a scaffold for interacting substrates
(14). Besides allowing substantial binding plasticity for
its downstream signaling substrates, the TPR domain
is subject to different posttranslational modifications
that regulate its activity, including phosphorylation from
adenosine-monophosphate-activated protein kinase (AMPK),
calcium/calmodulin-dependent protein kinase II (CaMKII)
and insulin-regulated mitotic protein glycogen synthase kinase
(GSK3) (Figure 1B).

AMPK is an energy sensor that maintains cellular energy
level with regard to cellular stress and nutrient availability.
Upon its activation, AMPK phosphorylates OGT at threonine
444, resulting in the dissociation of OGT from the chromatin
and inhibition of gene expression. Conversely, OGT could
mediate O-GlcNAcylation of AMPK, and positively regulate
AMPK activity through its phosphorylation at threonine 172
(15, 16). Glucagon signaling is also intricately linked with O-
GlcNAcylation activity of OGT, where CaMKII directly activates
OGT by phosphorylation at serine 20 (17). On the other
hand, in hyperglycemia, CaMKII can be O-GlcNAcylated and
activated at serine 279 autonomously, resulting in persistent
activation of CaMKII even after the level of calcium declines
(18). In the case of AMPK/OGT and CaMKII/OGT signaling,
this type of cooperative signaling facilitates feedbackmechanisms
and allow signaling events to propagate. Checkpoint kinase
1 (Chk1) is also found to induce OGT phosphorylation
at serine 20, which stabilizes OGT and is required for
cytokinesis (19).

OGT is well known to be involved in insulin-mediated
signaling pathways. One of the downstream partners, GSK3β, has
been shown to phosphorylate OGT at serine 3 or 4, which leads
to increased OGT activity and potential reciprocal regulation
(20). Other than the N-terminus, the C-terminal domain of OGT

also plays a role in receiving information from protein partners.
Insulin stimulation enhances tyrosine 976 phosphorylation of
OGT by the insulin receptor and promotes OGT activity (21).
Looking further downstream of the insulin receptor, OGT is
identified to bind to phosphatidylinositol-3,4,5-trisphosphate
(PIP3) while not possessing the pleckstrin-homology domain
like PDK1 and AKT, suggesting different binding affinity toward
PIP3 production (22). This allows OGT to moderate insulin-
mediated signaling transduction within 30min of activation (22).
After insulin signaling activation, OGT will be recruited to
the plasma membrane where it O-GlcNAcylates and attenuates
the multiple components of the insulin signaling pathway
(23).

Comparatively, the functions and implications of
OGA posttranslational modifications have been less well-
studied (as previously reviewed (24, 25). OGA can be
O-GlcNAcylated at serine 405 and act as a substrate of OGT
(26); however, the implications of O-GlcNAcylation of OGA are
unexplored.

Modulation of Major Signaling Pathways in
the Cell
O-GlcNAcylation has been well described in previous reviews

to regulate and modulate diverse signaling pathways, thus

positioning it as an excellent integrator of signals to many

effectors within the cell and regulate a wide variety of cellular

processes (3, 27–29). O-GlcNAcylation can trigger changes

in protein activity, stability and subcellular localization,

thereby facilitating signal transduction and propagation.

In addition, the dynamic interplay between O-GlcNAc

and other posttranslational modifications gives rise to the

enormous diversity in signaling modules, which can be mainly

classified as reciprocal same-site occupancy and different-

site occupancy (29). For the former, phosphorylation and

O-GlcNAcylation occur on the same serine and threonine

residues and compete with each other. For the latter, the

occupancy of one protein region by O-GlcNAc can influence

PTMs in another region, and thus affect protein function.

The focus in this section is to review and consolidate several

exciting new areas in which O-GlcNAcylation plays a key role

(Figure 1B).

O-GlcNAcylation of Stress Sensors

Global O-GlcNAc levels often show drastic changes in

response to cellular stress including heat shock, hypoxia and

nutrient deprivation. The targets and functional consequences

of stress-mediated O-GlcNAcylation are beginning to be

unveiled (3).

Sirtuin 1 (SIRT1) has been established to be a stress sensor

(30). Upon genotoxic, oxidative or metabolic stress, SIRT1 is

able to deacetylate proteins that regulate stress responses, such

as p53 (31) and NF-kB (32). O-GlcNAcylation of SIRT1 at Ser

549 directly increases its deacetylase activity in vitro and in vivo

and protects the cells from apoptosis (33). A recent study showed

that an overall increase in O-GlcNAc levels in breast cancer

cells reduces SIRT1 levels and activity in an AMPK-dependent
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manner. This leads to a decrease in SIRT1-mediated proteosomal

degradation of oncogenic transcription factor FOXM1, which

promotes cancer cell metastasis (34).

Upon glucose deprivation, chromatin-associated fumarase

(FH) is phosphorylated by AMPK at Ser 75, which triggers its

association with ATF2 and facilitates gene expression for cell

growth arrest (35). In cancer cells, upregulated OGT activity

results in O-GlcNAcylation of FH at Ser 75. This impedes FH

binding to ATF2 under glucose deficiency and confers survival

advantage to these cancer cells (35).

O-GlcNAcylation of Hippo/YAP Pathway in Growth

Control

The Hippo/YAP pathway controls organ size in animals and

its dysregulation results in cancer (36). Under glucose-rich

conditions, O-GlcNAcylation of YAP at Ser 109 by OGT prevents

YAP phosphorylation at adjacent Ser 127 and allows YAP

translocation into the nucleus. This facilitates expression of

genes for proliferation while inhibiting those genes for apoptosis.

As a result, glucose-induced YAP O-GlcNAcylation promotes

tumorigenesis (37). This study reveals the functional importance

of OGT in the Hippo pathway and growth control, further

supporting a prevalent role for O-GlcNAcylation in major

signaling pathways.

O-GlcNAcylation for Development and Differentiation

O-GlcNAcylation has been known to regulate the activity of

proteins involved in embryonic stem cell (ESC) pluripotency and

differentiation, such as SOX2 and OCT4 (38). It has also been

shown that O-GlcNAcylation is especially important for brain

development, where many proteins for neuronal signaling and

synaptic plasticity are O-GlcNAcylated (39, 40). OGT inhibition

is recently shown to promote human neural cell differentiation

(41). In Oga knockout models, anatomical defects include

delayed brain differentiation and neurogenesis with pronounced

changes in expression of pluripotency markers (42). These

studies reinforce the importance of OGT and OGA in neural

development and function.

Temporal Dynamics of O-GlcNAcylation
For comprehensive integration of signals coming from different

signaling partners, timing is an important aspect that is gradually

recognized to be extremely important for signal transduction.

One important feature of PTMs is that they should enable

cells to respond quickly to cues in a reversible fashion, and

that these signals could be defined for their intensity and

duration (Figure 1C). Protein O-GlcNAcylation can be transient,

persistent or periodic. These temporal modules can affect

different signaling outputs such as protein location, activity, and

genetic/epigenetic regulation.

Some studies have indicated the dynamic changes of O-

GlcNAcylation during insulin signaling (22, 23), lymphocyte

activation (43), calcium stimulus (44) and neuronal

depolarization (45). In these scenarios, the fluctuation of

O-GlcNAcylation occurs in the order of a few minutes, which

indicates that the OGT/OGA signaling integrator is sensitive to

intricate regulation of each other. Such dynamic ability of the

OGT/OGA complex to influence the O-GlcNAcylation levels in

the cell makes it an ideal integrator.

Other than short-term regulation, O-GlcNAcylation can result

in long-term changes within the cell, which has been elaborated

in many previous reviews (3, 28, 29, 46). O-GlcNAcylation

or de-O-GlcNAcylation of proteins may result in their activity

and stability to be shifted. O-GlcNAcylation may also regulate

transcription and epigenetic programs, engaging in diverse

protein complexes in a context-dependent manner to produce

longer-term changes within the cell.

Subcellular Distribution and Translocation
of OGT/OGA
Signal transduction is profoundly non-uniform in space, and

the space in which signaling activities are carried out creates a

code for signaling specificity. Alternative splicing results in three

variants of OGT, namely nucleocytoplasmic OGT (ncOGT),

mitochondrial OGT(mOGT) and short form OGT(sOGT). The

longest OGT isoform, ncOGT, is mostly localized in the nucleus

but is able to shuttle toward the cytoplasm and plasmamembrane

in response to signaling cues (7, 47) (Figure 1D). One prime

example is the recruitment of OGT from the nucleus toward

the plasma membrane upon prolonged insulin activation and

PIP3 production (22). OGT is also found to alter its nuclear

localization upon acute AMPK activation (15). The mechanism

underlying how OGT can be localized in both nucleus and

cytosol has recently been elucidated where three amino acids

(DFP; residues 451-453) in OGT is able to act as a nuclear

localization signal. In addition to the DFP sequence, O-

GlcNAcylation of the TPR domain of OGT is required for

its direct nuclear translocation (48). The ability to translocate

between different cellular locations places OGT at a unique

position in coordinating signaling activities within different

cellular compartments.

Two isoforms of OGA have been identified and characterized.

The long isoform of OGA resides mainly within the cytosol

(49), whereas the short isoform (sOGA) localizes at the nucleus

and lipid droplets (50). In vitro experiments indicate that sOGA

exhibits lower enzymatic activity compared to OGA (51, 52).

A recent structural study has suggested that these two isoforms

may be distinguished by the ability of OGA, but not sOGA,

to form dimers (53). The varying location and activity of these

OGA isoforms add another layer of complexity in regulation of

O-GlcNAc signaling (Figure 1D).

LEVELS OF O-GLCNACYLATION SIGNAL
PHYSIOLOGICAL NEEDS

As in our proposed integrator model, the OGT/OGA complex

integrates many signals to effect modifications on proteins,

allowing it to achieve metabolic homeostatic control. Some

of these modifications may be transient. Yet in many cases,

persistent O-GlcNAcylation is required in several proteins, and

chronic disruption in O-GlcNAcylation of these proteins may
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have serious consequences for the cell and the organism. One

prime example is the hyperphosphorylation of tau, which is

involved in the pathogenesis of Alzheimer’s Disease (54).

To reconcile the diverse functions and roles of O-

GlcNAcylation, it is important to consider the concept of

O-GlcNAc homeostasis occurring only at certain cellular O-

GlcNAcylation levels within the safe limits (Figure 2A). In the

“optimal zone” of signaling, O-GlcNAcylation levels are well

buffered within a certain range of activity (3, 9). Aminimum level

of O-GlcNAc levels would be present to ensure O-GlcNAcylation

of proteins for their proper functions, while there will be a

variable component of O-GlcNAc levels tuned by the OGT/OGA

pair for signaling. To further enhance the effectiveness of this

pool of O-GlcNAc, the cells could control OGT/OGA activity

in the spatiotemporal dimensions to amplify or dampen cellular

responses.

Hypo-O-GlcNAcylation usually arises from low UDP-GlcNAc

levels or a dramatic imbalance between OGT/OGA expression

and activity. Given the observation that some of OGT’s protein

substrates are constitutively modified at physiological UDP-

GlcNAc levels while some vary widely (55), it can be envisioned

that the cells would preferentially feed O-GlcNAc moieties

toward protein residues that are required for essential structural

and functional integrity of the protein (56). At this point,

dynamic O-GlcNAc signaling may dampen its amplitude and

achieve limited effectiveness. In the event of persistent hypo-

O-GlcNAcylation, proteins would then be prone to structural

changes without the protective effects from O-GlcNAcylation,

thus manifesting states that may have deleterious effects for the

cell.

On the other hand, in the hyper-O-GlcNAcylation regime,

serine or threonine residues of proteins may shift the equilibrium

of phosphorylation toward O-GlcNAcylation. In many types of

cancer, tumor cells have altered glucose metabolism, resulting

in higher hexosamine flux toward UDP-GlcNAc (57, 58).

Oncogenes such as Myc (59, 60) and NF-kB (61) are stabilized

with persistent O-GlcNAcylation, thus promoting cancer growth.

As such, in an extended duration of hyper-O-GlcNAcylation, O-

GlcNAc cycling is not well-buffered and homeostatic signaling by

OGT/OGA can be compromised.

It is important to note that O-GlcNAcylation and nutrient

availability is not always in a linear relationship. Numerous

studies have reported a global increase in cellular O-

GlcNAcylation in response to nutrient starvation, a condition

in which low UDP-GlcNAc levels are expected (35, 62–64).

Furthermore, OGT has preferential selectivity for certain

substrates under different UDP-GlcNAc concentrations. For

instance, O-GlcNAcylation of PGC-1α peaks at 5mM glucose

and is lower under hypo- and hyperglycemic conditions,

indicating that other factors are involved in the nutrient

sensitivity of this modification (65). Overall, O-GlcNAc

homeostasis is determined by nutrient availability, OGT/OGA

expression and activity, protein substrate selectivity, as well as

other co-factors (Figure 2B).

O-GlcNAcylation of specific proteins can be described as

an equilibrium between the forward reaction driven by OGT

(denoted as k1) and the reverse reaction driven by OGA

(denoted as k−1) (Figure 2B). This equilibrium is dictated by

the local microenvironment, including local concentrations of

UDP-GlcNAc, protein substrates, and OGT/OGA complexes.

Local UDP-GlcNAc levels are affected by the availability of

extracellular nutrients, the local activities of metabolic enzymes

and the HBP flux rate. In addition to their local concentrations,

the conformation and activity of protein substrates, OGT and

OGA, and binding partners can have a profound influence on

k1 and k−1. In particular, OGT and OGA can receive various

signaling inputs in the form of posttranslational modifications

that modulate k1 and k−1 of specific proteins (Figures 1B, 2B).

MACHINERY MAINTAINING O-GLCNAC
HOMEOSTASIS

Given that O-GlcNAcylation levels of specific proteins may not

be linearly correlated with nutrient availability, the expression

and activity of OGT and OGA have to be tightly regulated.

The observation that the levels of OGT and OGA transcripts

and proteins fluctuate in many processes, such as cell cycle

progression, stress response and tissue development, hint at the

intricacies of this regulatory machinery at work (24, 66).

Studies have demonstrated that the levels of OGT and OGA

would compensate for one another. Upon OGT knockout,

inhibition or knockdown, OGA protein levels are reduced (67).

This might be a consequence of reducing O-GlcNAc levels within

cells, and OGA protein levels are sensitive to such changes at

the posttranscriptional level. It has also been suggested that the

Oga gene is situated within the highly conserved NK homeobox

gene cluster. Since this region is targeted by the PcG repressor

complex which comprises OGT, it is likely that OGT modulates

OGA expression at the transcriptional level (68). Conversely,

upon OGA inhibition, OGT levels are downregulated while

OGA levels are upregulated (69). Our recent work provides

mechanistic insight into mutual regulation of OGT and OGA at

the transcriptional level. Specifically, we found that OGA acts as

a co-activator that directly promotes OGT transcription through

cooperation with C/EBPβ and p300 histone acetyltransferase

(70). Another recent work has suggested that there is a conserved

OGT intronic splicing silencer that is necessary for OGT intron

retention (71). The OGT intron retention is dynamically sensitive

to cellular O-GlcNAc levels. At high O-GlcNAc levels, the intron

is retained and results in the degradation of OGT transcripts.

However, upon low O-GlcNAc levels, the intron is spliced out

and OGT proteins are produced, thereby increasing its protein

level. These studies highlight the multiple layers of regulation of

OGT and OGA expression to ensure O-GlcNAc homeostasis.

While the OGT and OGA levels are well controlled by

intricate transcriptional and posttranscriptional mechanisms, it

is likely that such regulation can only exist within a well-

tolerated “optimal zone” for a limited period of time. Chronic

hypo- or hyper-O-GlcNAcylation would potentially undermine

the effectiveness of O-GlcNAc signaling, thus contributing to the

pathogenesis of human disease.
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FIGURE 2 | Global and local levels of O-GlcNAcylation gauge signaling responses. (A) Global O-GlcNAcylation levels have to be maintained within an optimal range

as depicted by an “O-GlcNAc meter” in analogy to a speedometer. Hyper-O-GlcNAcylation, as a result of hyper-OGT activity or high UDP-GlcNAc levels, would result

in persistent O-GlcNAcylation of growth signaling proteins, leading to human diseases such as cancer. Hypo-O-GlcNAcylation would impair the structural integrity of

protein substrates and their relevant functions. (B) The rates of O-GlcNAcylation and de-O-GlcNAcylation of specific proteins, denoted by k1 and k
−1, are tuned by

the local microenvironment. The reactions are determined by local concentrations of UDP-GlcNAc, protein substrates, binding partners, and OGT/OGA activity.

Signaling inputs converging on posttranslational modifications of OGT and OGA dictate k1 and k
−1 of specific proteins.

PERSPECTIVES AND FUTURE
DIRECTIONS

While the promiscuity of OGT substrate recognition has made it

technically challenging to define the specificity of OGT action,

it represents a huge ground of opportunities to be exploited.

More tools and technologies have to be developed to understand

O-GlcNAc signaling. Due to the diversity of substrates that

OGT and OGA can act on to regulate cellular function, and

the complex compensatory pathways that could take place,

delineating the cause and effect remains amajor challenge. Future

studies are required to investigate the “O-GlcNAc proteomics”

with temporal precision and identify potentially the subsets of

proteins that are sensitive to different UDP-GlcNAc levels and

in different temporal contexts.

One understudied component of O-GlcNAc signaling is

the spatial contexts of O-GlcNAcylation. In various cellular

compartments of the cell, such as the nucleus, mitochondria,

cytosol and plasma membrane, OGT and OGA have different

physiological roles. Within each cellular region, there are

different potential binding partners for both OGT and OGA.

Local concentrations of UDP-GlcNAc may also contribute to O-

GlcNAcylation of specific substrates (Figure 2B). Profiling the

variability of local UDP-GlcNAc levels and O-GlcNAcylation of

proteins in real-time and within individual cells would provide a

powerful tool to understand the dynamics of this modification.

Developing the tools to visualize the kinetics of OGT/OGA

interactions with their signaling partners would also help our

understanding of O-GlcNAc regulation in spatial dimensions.

A better understanding of the roles of O-GlcNAylation

in diverse signaling pathways would be another major

direction to be pursued. Development of site-specific O-GlcNAc

antibodies would be essential in accelerating our understanding

of the function of specific protein O-GlcNAcylation. As
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O-GlcNAcylation is tightly linked with different PTMs in the

cellular metabolic network, it would be useful to identify the

intricate relationships among various types of PTMs on proteins.

Crosstalk between phosphorylation and O-GlcNAcylation

has been relatively well studied, where O-GlcNAcylation can

occur reciprocally or sequentially with phosphorylation on

the same or different residues. Such studies could be extended

to explore the link between O-GlcNAcylation and other

PTMs, such as acetylation, methylation, and succinylation and

ubiquitination.

CONCLUSIONS

The cellular signaling machinery is a complex network of

components which is only partially understood. The complexity

is not only due to the sheer quantity of participants and its

high degree of connectivity, but also to the spatiotemporal

dimensions of signaling which confers different functions on

the same proteins under various contexts. In this review, we

have proposed the OGT/OGA pair as a metabolic sensor and

an integrator of cellular signaling processes. This relies on the

ability of the OGT/OGA complex to receive metabolic and stress

signals from multiple upstream partners, and to drive O-GlcNAc

modification on diverse sets of downstream targets with precise

spatiotemporal control. The OGT/OGA pair is tightly regulated

by multiple layers of transcriptional, posttranscriptional and

posttranslational control to maintain cellular O-GlcNAc levels

within an optimal zone. This “O-GlcNAc meter” ensures O-

GlcNAcylation as an effective toolbox to tune and integrate

signaling pathways.
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