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Abstract

Single-stranded DNA-binding protein (SSB) and PriA helicase play important roles in bacte-

rial DNA replication restart process. The mechanism by which PriA helicase is bound and

stimulated by SSB in Escherichia coli (Ec) has been established, but information on this pro-

cess in Gram-positive bacteria are limited. We characterized the properties of SSB from

Staphylococcus aureus (SaSsbA, a counterpart of EcSSB) and analyzed its interaction with

SaPriA. The gel filtration chromatography analysis of purified SaSsbA showed a stable tet-

ramer in solution. The crystal structure of SaSsbA determined at 1.82 Å resolution (PDB

entry 5XGT) reveals that the classic oligonucleotide/oligosaccharide-binding folds are

formed in the N-terminal DNA-binding domain, but the entire C-terminal domain is disor-

dered. Unlike EcSSB, which can stimulate EcPriA via a physical interaction between EcPriA

and the C-terminus of EcSSB (SSB-Ct), SaSsbA does not affect the activity of SaPriA. We

also found that SaPriA can be bound by SaSsbA, but not by SaSsbA-Ct. Although no effect

was found with SaSsbA, SaPriA can be significantly stimulated by the Gram-negative Kleb-

siella pneumoniae SSB (KpSSB). In addition, we found that the conserved SSB-Ct binding

site of KpPriA (Trp82, Tyr86, Lys370, Arg697, and Gln701) is not present in SaPriA. Arg697

in KpPriA is known to play a critical role in altering the SSB35/SSB65 distribution, but this cor-

responding residue in SaPriA is Glu767 instead, which has an opposite charge to Arg.

SaPriA E767R mutant was constructed and analyzed; however, it still cannot be stimulated

by SaSsbA. Finally, we found that the conserved MDFDDDIPF motif in the Gram-negative

bacterial SSB is DISDDDLPF in SaSsbA, i.e., F172 in EcSSB and F168 in KpSSB is S161

in SaSsbA, not F. When acting with SaSsbA S161F mutant, the activity of SaPriA was dra-

matically enhanced elevenfold. Overall, the conserved binding sites, both in EcPriA and

EcSSB, are not present in SaPriA and SaSsbA, thereby no stimulation occurs. Our observa-

tions through structure-sequence comparison and mutational analyses indicate that the

case of EcPriA-EcSSB is not applicable to SaPriA-SaSsbA because of inherent differences

among the species.
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Introduction

Single-stranded DNA (ssDNA)-binding protein (SSB) is essential for DNA metabolic pro-

cesses [1, 2]. The binding of SSB to ssDNA is independent of the sequence of DNA. SSB pro-

tects susceptible ssDNA from nucleolytic digestion and prevents the secondary structure

formation of ssDNA [3]. In addition, SSB also binds to many DNA-binding proteins that con-

stitute the SSB interactome [2, 4, 5]. The functions of SSB are well studied in Escherichia coli
(EcSSB), and relatively little is known about SSB from other bacteria. SSBs are typically homo-

tetramers [3, 6, 7], in which four oligonucleotide/oligosaccharide-binding folds (OB folds)

form a DNA-binding domain [8–12]. However, SSB from the bacterial phylum Deinococcus-
Thermus functions as a homodimer, in which each monomer contains two OB folds linked by

a conserved spacer sequence [13–20]. SSB from Sulfolobus solfataricus is a monomer (one OB

fold) [21–25]. Recently, a distinct SSB ThermoDBP is found to bind ssDNA without the classi-

cal OB folds of bacterial SSB [26, 27].

Bacterial SSBs consist of a conserved N-terminal ssDNA-binding/oligomerization domain

(SSBn) and a flexible, highly disordered C-terminal protein–protein interaction domain

(SSBc) [2, 28]. SSBc can be further subdivided into two sub-domains: a long proline- or gly-

cine-rich hinge, also known as the intrinsically disordered linker (IDL) and, the highly con-

served acidic tail of the last six C-terminal amino acid residues of SSB (DDDIPF) [2, 29]. This

acidic tail of SSB binds to many DNA-binding proteins, and the activities of some of these pro-

teins are stimulated by their interactions with ssDNA-bound SSB [2]. The binding of SSB to

ssDNA makes IDL easily accessible to other proteins, such as proteases and DNA polymerase

III [30, 31]. The C-terminus in SSB can also interact with the OB fold and regulate the ssDNA-

binding activity of SSB itself [32, 33]. EcSSB has two major ssDNA binding modes [34]. In the

(SSB)35-binding mode, two subunits of the tetramer participate in ssDNA binding, whereas in

the (SSB)65-binding mode, all four subunits interact with ssDNA. The binding mode is depen-

dent on the concentrations of protein and salt in the solution. During the different stages of

DNA metabolism, different binding modes of SSB to ssDNA may be required for the in vivo

function [35–37].

PriA is a DEXH-type helicase, utilized during replication restart to reload DnaB back onto

the chromosome [38, 39]. Fuelled by the binding and hydrolysis of ATP, PriA moves along the

nucleic acid filaments with other primosomal proteins and separates double-stranded DNA

into their complementary single strands [40–42]. In E. coli, the replication restart primosome

consists of PriA, PriB, PriC, DnaB helicase, DnaC, DnaT, and DnaG primase [38, 39, 43]. PriA

recognizes stalled DNA replication forks with either duplex or SSB-coated ssDNA lagging

strands and then processes for full primosome assembly [43–45]. However, PriA is a poor

helicase when acting alone and might need other accessory proteins, such as PriB and SSB, to

stimulate the helicase activity [46, 47]. The reaction mechanisms of DNA replication restart

primosome are well studied in Gram-negative E. coli [43, 44, 48–53]. Relatively little is known

about the regulation of the Gram-positive bacterial PriA-directed primosome activity [54, 55].

In the Gram-positive Bacillus subtilis, the initiator protein PriA helicase has a homolog of E.

coli [56]. Nevertheless, PriB, PriC, DnaT, and DnaC proteins are not found in Gram-positive

bacteria. Instead, Gram-positive B. subtilis has different primosomal proteins, namely, DnaD,

DnaB, and DnaI, which are essential for replication restart [57]. Whether SSB functions and

participates in the Gram-positive bacterial PriA-directed primosome assembly in a manner

different from that of E. coli is still unknown.

In this study, we have cloned, expressed, purified, and crystallized the Gram-positive Staph-
ylococcus aureus main SSB (SaSsbA) and determined its structure at 1.82 Å resolution. Basing

on the results from surface plasmon resonance (SPR) experiments, ATPase stimulation effects
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and structure-sequence analysis on SaSsbA–SaPriA interaction, we found that SaSsbA can

bind but cannot stimulate SaPriA. Through domain deletion and structure-based mutational

analyses, we conclude that the conserved binding sites, both in EcPriA and EcSSB, are not

present in SaPriA and SaSsbA, thereby no stimulation occurs.

Materials and methods

Construction of plasmids for SaSsbA, tag-free SaSsbA, KpSSB, tag-free

KpSSB, KpSSBc, SaDnaD, and SaPriA expression

Construction of the SaDnaD [58], SaPriA [59], Klebsiella pneumoniae SSB (KpSSB) [60], and tag-

free KpSSB [61] expression plasmids has been reported. The gene encoding SaSsbA (the acces-

sion number ACY10277) was amplified by PCR using the genomic DNA of S. aureus subsp.

aureus ED98 as template. The forward and reverse primers were designed to introduce unique

restriction sites into SaSsbA, permitting the insertion of the amplified gene into the pET21b vec-

tor (Novagen Inc., Madison, WI, USA) for protein expression in E. coli. To obtain His tag-free

SaSsbA, a fragment containing the coding sequence of SaSsbA and the stop codon was directly

amplified and ligated into the pET21b vector. KpSSBc (aa 116–174) was also subcloned in the

pET21b vector. Primers used for construction of these plasmids are summarized in Table 1.

Protein concentration

The protein concentration of the solutions was determined by the Bio-Rad Protein Assay

using bovine serum albumin as a standard (Bio-Rad, CA, USA). The Bio-Rad Protein Assay is

a dye-binding assay in which a differential color change of a dye occurs in response to various

concentrations of protein [62].

Protein expression and purification

Purification of the recombinant SaDnaD [58], SaPriA [59], KpSSB [60], and tag-free KpSSB

[61] has been reported. The recombinant SaSsbA and KpSSBc were expressed and purified

Table 1. Primers used for construction of plasmids.

Oligonucleotide Primer

SaSsbA-NdeI-N GGGCATATGCTAAATAGAGTTGTATTA

SaSsbA-XhoI-C CCATTCTCGAGGAATGGTAAGTCATCA

Tag-free SaSsbA-NdeI-N GGGCATATGCTAAATAGAGTTGTATTA

Tag-free SaSsbA-XhoI-C CCATTCTCGAGTTAGAATGGTAAGTCATCA

KpSSBc-NdeI-N GGGCATATGCGTCAGGGCGGCGGCGCACCG

KpSSBc-XhoI-C GGGCTCGAGGAACGGGATGTCGTCGTCGAA

SaPriA E767R-N TATAAAAGTGAACGTGGATTATTACAAGCC

SaPriA E767R-C TTGTAATAATCCACGTTCACTTTTATATTT

SaPriA R434A-N GAAAGTTATGCAGCAGCTGAAAAAGACGTT

SaPriA R434A-C GTCTTTTTCAGCTGCTGCATAACTTTCAAG

SaSsbA S161F-N GGACCGATTGATATATTCGATGATGACTTACCA

SaSsbA S161F-C GTCATCATCGAATATATCAATCGGTCCGTTTGC

SaSsbA S161F/delI160-N GGACCGATTGATTTCGATGATGACTTACCA

SaSsbA S161F/delI160-C TAAGTCATCATCGAAATCAATCGGTCCGTT

These plasmids were verified by DNA sequencing. Underlined nucleotides indicate the designated site for the restriction site or the mutation site.

https://doi.org/10.1371/journal.pone.0182060.t001

SsbA can bind but cannot stimulate PriA

PLOS ONE | https://doi.org/10.1371/journal.pone.0182060 July 27, 2017 3 / 22

https://doi.org/10.1371/journal.pone.0182060.t001
https://doi.org/10.1371/journal.pone.0182060


using the protocol described previously for PriB [63]. Briefly, E. coli BL21(DE3) cells were

transformed with the expression vector and overexpression of the expression plasmids was

induced by incubating with 1 mM isopropyl thiogalactopyranoside. The protein was purified

from the soluble supernatant by Ni2+-affinity chromatography (HiTrap HP; GE Healthcare

Bio-Sciences), eluted with Buffer A (20 mM Tris-HCl, 250 mM imidazole, and 0.5 M NaCl,

pH 7.9), and dialyzed against a dialysis buffer (20 mM HEPES and 100 mM NaCl, pH 7.0;

Buffer B). Protein purity remained at>97% as determined by SDS-PAGE (Mini-PROTEAN

Tetra System; Bio-Rad, CA, USA).

The recombinant tag-free SaSsbA was expressed and purified using the protocol described

previously [61] for Pseudomonas aeruginosa SSB (PaSSB) and Salmonella enterica serovar

Typhimurium LT2 SSB (StSSB) with the following modifications. The cells overexpressing the

protein were chilled on ice, harvested by centrifugation, resuspended in Buffer C (20 mM Tris-

HCl and 50 mM NaCl, pH 7.9) and disrupted by sonication with ice cooling. The protein solu-

tion (50 mL) was precipitated from the supernatant of the cell lysate by incubation with 0.27 g/

mL of ammonium sulfate for 30 min and centrifugation at 20000g for 10 min. The pellets were

washed twice with 2.0 mL of Buffer D (20 mM Tris-HCl, 50 mM NaCl, and 1.2 M ammonium

sulfate, pH 7.9). After dialysis against Buffer C, the protein solution applied to the Q column

(GE Healthcare Bio-Sciences, Piscataway, NJ, USA) was eluted with a linear NaCl gradient

from 0.1 to 0.6 M with Buffer C using the AKTA-FPLC system (GE Healthcare Bio-Sciences,

Piscataway, NJ, USA). The peak fractions with the ssDNA binding activity were collected and

dialyzed against Buffer E (20 mM potassium phosphate, 1 mM EDTA, and 100 mM NaCl, pH

7.0). The protein solution was then applied to the Heparin HP column (GE Healthcare Bio-

Sciences, Piscataway, NJ, USA) and eluted with a linear NaCl gradient from 0.1 to 1.0 M with

Buffer E. The peak fractions from this chromatographic step with the ssDNA binding activity

were collected and concentrated, and the purity of tag-free SaSsbA remained at>97% as deter-

mined by SDS-PAGE.

Gel-filtration chromatography

Gel-filtration chromatography was carried out by the AKTA-FPLC system (GE Healthcare

Bio-Sciences, Piscataway, NJ, USA). In brief, purified SaSsbA (2 mg/mL) in Buffer B was

applied to a Superdex 200 prep grade column (GE Healthcare Bio-Sciences, Piscataway, NJ,

USA) equilibrated with the same buffer. The column was operated at a flow rate of 0.5 ml/min,

and 0.5-ml fractions were collected. The proteins were detected by measuring the absorbance

at 280 nm. The column was calibrated with proteins of known molecular weight: thyroglobulin

(670 kDa), γ-globulin (158 kDa), albumin (67 kDa), ovalbumin (43 kDa), chymotrypsinogen

A (25 kDa) and ribonuclease A (13.7 kDa). The Kav values for the standard proteins and

SaSsbA were calculated from the equation: Kav = (Ve−Vo)/(Vc−Vo), where Vo is column void

volume, Ve is elution volume, and Vc is geometric column volume.

Electrophoretic mobility shift assay (EMSA)

EMSA for SaSsbA was conducted using the protocol described previously for SSB [64]. Briefly,

radiolabeling of various lengths of ssDNA oligonucleotides was carried out with [γ32P]ATP

(6000 Ci/mmol; PerkinElmer Life Sciences, Waltham, MA) and T4 polynucleotide kinase (Pro-

mega, Madison, WI, USA). The protein (0, 0.037, 0.075, 0.15, 0.31, 0.62, 1.25, 2.5, 5, and 10 μM;

monomer) was incubated for 30 min at 25˚C with 1.7 nM DNA substrates in a total volume of

10 μL in 20 mM Tris-HCl pH 8.0 and 100 mM NaCl. Aliquots (5 μl) were removed from each

of the reaction solutions, and added to 2 μl of gel-loading solution (0.25% bromophenol blue

and 40% sucrose). The resulting samples were resolved on a native 8% polyacrylamide gel at
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4˚C in TBE buffer (89 mM Tris borate and 1 mM EDTA) for 1 h at 100 V, and were visualized

by phosphorimaging. The phosphor storage plate was scanned, and the data for complex and

free DNA bands were digitized for quantitative analysis. The ssDNA binding ability for the pro-

tein was estimated using linear interpolation from the protein concentration that binds 50% of

the input DNA. Each [Protein]50 was calculated as the average of at least three

measurements ± S.D.

Preparation of dsDNA substrate

The double-stranded DNA substrates (dsDNA) were prepared with a radiolabeled PS4 strand

(3'-GGGCTTAAGCCTATCGAGCCATGGG-5'; 25 mer) and an unlabeled PS3-dT30 strand

(5'-CCCGAATTCGGATAGCTCGGTACCC-dT30-3')at a 1:1 concentration ratio. Each dsDNA

substrate was formed in 20 mM HEPES (pH 7.0) and 100 mM NaCl, by brief heating at 95˚C for

5 min and then followed by slow cooling to room temperature overnight.

Surface plasmon resonance (SPR)

SPR was conducted using the protocol described previously for DnaC helicase [65]. SaPriA

was immobilized on Series S sensor chips CM5 (GE Healthcare Bio-Sciences, Piscataway, NJ,

USA). The SaPriA-binding experiments were carried out at 293K using a Biacore T200 (GE

Healthcare Bio-Sciences, Piscataway, NJ, USA) with running buffer (40 mM Tris, 200 mM

NaCl, and 0.05% Tween-20 at pH 8.0). SaSsbA solutions were diluted in the running buffer to

final concentrations of 1000, 500, 250, 125, and 63 nM. The Diluted samples were injected in

duplicate over the immobilized protein for 120 s at a flow rate of 30 μL/min. The running

buffer was then flushed for 300 s at a flow rate of 30 μl/min. Finally, the chip surface was regen-

erated by injecting 2 M MgCl2 buffer for 60 s at a flow rate of 30 μl/min. Control samples were

used to monitor the sensor chip surface stability, demonstrating reproducibility throughout

the duration of the experiments. The estimated Kd values were derived by fitting the associa-

tion and dissociation signals with a 1:1 (Langmuir) model using the Biacore T200 Evaluation

Software. Chemically synthesized peptides SaSsbA-Ct (NANGPIDISDDDLPF) and KpSSB-Ct

(PSNEPPMDFDDDIPF) were also used (4–7 different concentrations ranging from 0.06 to

2 μM) for SaPriA-binding experiments.

ATPase assay

SaPriA ATPase assay [58] was performed with 0.4 mM [γ-32P] ATP and 0.12 μM of SaPriA in

reaction buffer containing 40 mM Tris (pH 8.0), 10 mM NaCl, 2 mM DTT, 2.5 mM MgCl2,

and 0.1 μM PS4/PS3-dT30 DNA substrate. Aliquots (5 μL) were taken and spotted onto a poly-

ethyleneimine cellulose thin-layer chromatography plate, which was subsequently developed

in 0.5 M formic acid and 0.25 M LiCl for 30 m. Reaction products were visualized by autoradi-

ography and quantified with a phosphorimager.

Crystallography

Before crystallization, SaSsbA was concentrated to 20 mg/mL in Buffer B. Crystals were grown

at room temperature by hanging drop vapor diffusion in 22% PEG 4000, 100 mM HEPES, 100

mM sodium acetate, pH 7.5. Data were collected using an ADSC Quantum-315r CCD area

detector at SPXF beamline BL13C1 at NSRRC (Taiwan, ROC). All data integration and scaling

were carried out using HKL-2000 [66]. There were two SaSsbA monomers per asymmetric

unit. The crystal structure of SaSsbA was solved at 1.82 Å resolution with the molecular replace-

ment software AMoRe [67] using Mycobacterium smegmatis SSB as model (PDB entry 1X3E).
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After molecular replacement, model building was carried out using XtalView [68]. CNS was

used for molecular dynamic refinement [69]. The final structure was refined to an R-factor of

0.1932 and an Rfree of 0.2233. Atomic coordinates and related structure factors have been depos-

ited in the PDB with accession code 5XGT.

Bioinformatics

The amino acid sequences of 417 sequenced PriA and 484 SSB homologs were aligned using

ConSurf [70]. The model of SaPriA was built from the coordinates of 4NL4 (crystal structure

of KpPriA) by using SWISS-MODEL, http://swissmodel.expasy.org/. The structures were visu-

alized by using the program PyMol.

Results

Analysis of the ssb (SAAV_0334) gene

Based on the similar nucleotide sequence to E. coli SSB, the gene SAAV_0334, which encodes

S. aureus main SSB, was initially found using a database search through the National Center

for Biotechnology Information (NCBI). In this study, this SSB was designated as SsbA. Fig 1

shows the map of S. aureus, in which the ssb gene is flanked by the rpsF and rpsR genes, coding

for the ribosomal proteins S6 and S18, respectively. Unlike E. coli ssb gene organization, S.

aureus and B. subtilis ssb genes are not located adjacent to uvrA gene. These genes (rpsF, ssb,

and rpsR) in B. subtilis belong to one operon and are controlled by the SOS response [71].

Sequence analysis of SaSsbA

The gene SAAV_0334, which encodes S. aureus SsbA (SaSsbA), was initially found using a

database search through NCBI. Based on the known nucleotide sequence, the predicted

SaSsbA monomer protein has a length of 167 amino acid residues and a molecular mass of 19

kDa. Analysis of the sequence of SaSsbA by RPS-BLAST showed the presence of a putative

OB-fold domain that is common in all known SSBs. Fig 2 shows the alignment consensus of

484 sequenced SSB homologs by ConSurf [70], revealing the degree of variability at each posi-

tion along the sequence. In the EcSSB–ssDNA complex [72], four essential aromatic residues,

Trp40, Trp54, Phe60, and Trp88, conserved in most SSB families as Phe/Tyr/Trp, participate

in ssDNA binding via stacking interactions. The corresponding residues in SaSsbA are Phe37,

Phe48, Phe54, and Tyr82; no Trp residue was observed in SaSsbA. The important C-terminal

tail DDDIPF of EcSSB involved in protein–protein interaction is DDDLPF in SaSsbA.

Fig 1. Gene map of S. aureus chromosomal region with ssb. The gene SAAV_0334 coding for SSB

(designated as SsbA in this study) maps from the 374834 to 375337 nt of the S. aureus genome. This ssb

gene is flanked by the rpsF and rpsR genes, coding for the ribosomal proteins S6 and S18, respectively.

https://doi.org/10.1371/journal.pone.0182060.g001
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Sequence analysis of SaPriA

Based on the known nucleotide sequence, the predicted SaPriA monomer protein has a length

of 802 amino acid residues (which is higher than that for EcPriA with 732 amino acid residues)

and a molecular mass of 92.7 kDa, with a pI of 6.12. Analysis of the structure of SaPriA indi-

cated a DEAD-like helicase (aa 288–427) and revealed the presence of the putative Mg2+ ion

binding site (aa 388–391), ATP-binding sites (aa 295–299, 618, 651, 655, and 658), and nucleo-

tide-binding region (580, 581, and 610–612). Fig 3 shows that the alignment consensus of 417

sequenced PriA homologs by ConSurf revealed the degree of variability at each position along

the sequence, in which the binding sites mentioned above are highly conserved among varying

organisms. Amino acid residues in the C-terminal helicase domain of PriA are also conserved.

However, amino acid residues in the N-terminal region of SaPriA, especially aa 114–286, are

variable. Given that distinct mechanisms exist for reloading the replicative DnaB helicase by

the Gram-positive and Gram-negative bacterial PriA, whether or not this highly variable

region (aa 114–286) in SaPriA is responsible for binding by the Gram-positive bacterial spe-

cific helicase loader is still unknown.

Purification of SaSsbA and tag-free SaSsbA

The gene SAAV_0334 encoding for the putative SaSsbA was PCR-amplified using the genomic

DNA of S. aureus subsp. aureus ED98 as template. This amplified gene was then ligated into

the pET21b vector for protein expression. SaSsbA with a Hig tag was heterologously overex-

pressed in E. coli and then purified from the soluble supernatant by Ni2+-affinity chromatogra-

phy. Pure protein was obtained in this single chromatographic step with an elution of Buffer A

and dialyzed against a dialysis buffer (Buffer B). Approximately >10 mg of purified protein

was obtained from 1 L of E. coli cell culture. To exclude the possible effect of a His tag, tag-free

SaSsbA was also produced and purified by precipitation of ammonia sulfate, Q, and Heparin

column chromatographies. Approximately 2 mg of purified tag-free SaSsbA was obtained

from 1 L of E. coli cell culture.

SaSsbA bound to ssDNA

To investigate the length of nucleotides needed for the formation of the SaSsbA–ssDNA com-

plex, as well as the ssDNA-binding ability of SaSsbA, we studied the binding of SaSsbA to

dT15, dT20, dT30, and dT40 with different protein concentrations (Fig 4). The binding ability

of SaSsbA to dT40 in the presence of 0.4 M NaCl was also analyzed (Fig 4). As shown in Fig

4A, no significant band shift was observed when SaSsbA was incubated with dT15, indicating

Fig 2. Sequence analysis of SaSsbA. An alignment consensus of 484 sequenced SSB homologs by

ConSurf reveals the degree of variability at each position along the sequence. Highly variable amino acid

residues are colored teal, whereas highly conserved amino acid residues are burgundy. A consensus

sequence was established by determining the most commonly found amino acid residue at each position

relative to the sequence of SaSsbA.

https://doi.org/10.1371/journal.pone.0182060.g002
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Fig 3. Sequence analysis of SaPriA. An alignment consensus of 417 sequenced PriA homologs by ConSurf

reveals the degree of variability at each position along the sequence. In general, amino acid residues in the C-

terminal region of PriA are conserved.

https://doi.org/10.1371/journal.pone.0182060.g003
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that SaSsbA could not form a stable complex with this homopolymer. By contrast to dT15, lon-

ger dT homopolymers, which include dT20–40, produced a significant band shift (C, com-

plex), i.e., formation of a stable protein–DNA complex in solution. To compare the binding

abilities of SaSsbA with ssDNA of different lengths, the midpoint values for input ssDNA bind-

ing that were calculated from the titration curves of EMSA and the [Protein]50 values were

quantified using linear interpolation from the protein concentration and are summarized in

Table 2. The [SaSsbA]50 for dT40 binding is 90 ± 5 nM, which is twofold lower than that in the

presence of 0.4 M NaCl (180 ± 22 nM).

Oligomeric state of SaSsbA in solution

The oligomeric state of purified SaSsbA was analyzed by gel filtration chromatography (Fig 5),

and the native molecular mass of SaSsbA was estimated to be 77 kDa. The native molecular

mass for SaSsbA is approximately 4 times the molecular mass of a SaSsbA monomer (19 kDa).

Thus, we concluded that SaSsbA in solution is a stable tetramer like EcSSB.

SaSsbA cannot stimulate the ATPase activity of SaPriA

PriA is known as a poor helicase when acting alone in vitro [72]. Gram-negative EcPriA activ-

ity can be significantly stimulated by PriB and SSB [46, 47]. Recently, we also found that

Fig 4. EMSA of SaSsbA. Protein (0, 0.037, 0.075, 0.15, 0.31, 0.62, 1.25, 2.5, 5, and 10 μM; monomer) was

incubated at 25˚C for 30 min with 1.7 nM of (A) dT15, (B) dT20, (C) dT30, or (D) dT40 in a total volume of

10 μL in 20 mM Tris—HCl (pH 8.0) and 100 mM NaCl. (E) The binding of SaSsbA to dT40 in the presence of

0.4 M NaCl. The [Protein]50 values of SaSsbA as a function of the length of the ssDNA were determined using

EMSA. Protein concentrations used to determine the midpoint values are indicated by asterisks.

https://doi.org/10.1371/journal.pone.0182060.g004

Table 2. The [Protein]50 values of SaSsbA as analyzed by EMSA.

DNA [Protein]50 (nM)

dT15 > 2000

dT20 292 ± 28

dT30 186 ± 20

dT40 90 ± 5

dT40 (with 0.4 M NaCl) 180 ± 22

[Protein]50 was calculated from the titration curves of EMSA by determining the concentration of the protein

needed to achieve the midpoint value for input DNA binding. Errors are standard deviations determined by

three independent titration experiments.

https://doi.org/10.1371/journal.pone.0182060.t002
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SaDnaD can significantly enhance the activity of SaPriA [58]. Whether SaSsbA can stimulate

SaPriA activity is unknown. SaPriA could hydrolyze ATP alone; however, no effect was found

on the SaPriA activity when acting with SaSsbA (Fig 6). To exclude the possible effect of a His

tag, tag-free SaSsbA was also used for this experiment, and a similar result was found. When

tag-free SaSsbA was present at higher concentration (20 μM), a similar result was still found

(Fig 6). Thus, in contrast to the case in EcPriA, SaSsbA does not affect the activity of SaPriA.

Crystal structure of SaSsbA

To obtain an in-depth understanding of the structure–function relationship of SaSsbA and of

the explanation why it cannot produce the same effect on SaPriA as EcSSB did on EcPriA, we

crystallized SaSsbA and determined its structure at a resolution of 1.82 Å (Table 3). The sec-

ondary structural element of SaSsbA is shown in Fig 7A. The cell unit contains two monomers

of SaSsbA (Fig 7B), but its oligomerization state in solution is tetrameric (Figs 5 and 7C). The

SaSsbA monomer has an OB-fold domain similar to EcSSB, and the core of the OB-fold pos-

sesses a β-barrel capped by an α-helix. In both subunits, the majority of the electron density,

only for the N-terminal region of SaSsbA, exhibited good quality (aa 1–104); the aa 105–167

was unobserved. In the EcSSB–ssDNA complex, four essential aromatic residues, Trp40,

Trp54, Phe60, and Trp88, participate in ssDNA binding via stacking interactions. The corre-

sponding residues in SaSsbA are Phe37, Phe48, Phe54, and Tyr82, may play a similar role in

ssDNA binding as EcSSB (Fig 7D). Although the N-terminal domains of SaSsbA and EcSSB

are similar, their loops L12 and L23 are structurally different, one is short, and the other is

extended (Fig 7C). Structurally, SaSsbA also resembled PriB (Fig 7E), in which the only signifi-

cant difference is in the lengths of the β4 and β5 sheets.

Fig 5. Oligomeric state of purified SaSsbA in solution. Purified protein in Buffer B was applied to a

Superdex 200 prep grade column equilibrated with the same buffer. The column was calibrated with proteins

of known molecular masses: thyroglobulin (670 kDa), γ-globulin (158 kDa), albumin (67 kDa), ovalbumin (43

kDa), chymotrypsinogen A (25 kDa) and ribonuclease A (13.7 kDa). The corresponding peak shows the

eluted SaSsbA.

https://doi.org/10.1371/journal.pone.0182060.g005
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Conserved SSB-Ct binding site of PriA is not present in SaPriA

PriA interacts with the SSB-Ct at replication forks [47, 73, 74]. In addition, this interaction is a

driving force to stimulate the PriA activity [47]. The crystal structure of KpPriA in complex

with an SSB-Ct peptide, which was determined at 4.1 Å resolution, reveals a specific and con-

served binding pocket in PriA [44]. The KpPriA SSB-Ct binding site includes Trp82, Tyr86,

Lys370, Arg697, and Gln701, in which Arg697 is located near the α-carboxyl group of the C-

terminal-most residue of the SSB-Ct (Fig 8A) and plays a critical role in altering the SSB35/

SSB65 distribution [44]. Interestingly, however, we found that such an important residue in

EcPriA, namely, Arg697, is not conserved (Fig 2). The corresponding residue in SaPriA is

Glu767 instead (Fig 8B and S1 Fig), which could possibly be the reason for the inability of

SaSsbA to stimulate SaPriA. To have an Arg residue in the SSB-Ct binding site of SaPriA as

KpPriA, we then constructed and analyzed the mutant SaPriA E767R, but still produced a sim-

ilar result as the wild-type SaPriA did (Fig 8C). Furthermore, we found another Arg (Arg434)

near the SSB-Ct pocket in SaPriA, which may play a similar role as the Arg697 in EcPriA; how-

ever, no difference was observed in the ATPase activity for the mutant SaPriA R434A (Fig 8C).

Thus, whether the SSB-Ct binding site in SaPriA contains Arg or not is not crucial for SaPriA

activation by SaSsbA.

SaPriA binds to SaSsbA, but not to the SSB-Ct peptide

EcPriA is known to bind SSB-Ct [47], and complexed crystal structure of KpPriA further

showed this binding pocket [44]. In this study, we found that the binding site of KpPriA to

Fig 6. The ATPase activity of SaPriA did not change when acting with SaSsbA. SaPriA ATPase assay was

performed with 0.4 mM [γ-32P] ATP, 0.12 μM of SaPriA, and 0.1 μM PS4/PS3-dT30 (or dT30) DNA substrate for

1 h. To study the effect, SaSsbA (10 μM), tag-free SaSsbA (10 μM), or SaDnaD (4 μM) was added into the

assay solution. Higher concentration of tag-free SaSsbA (20 μM; denotes ++) was also used in this study.

Aliquots (5 μL) were taken and spotted onto a polyethyleneimine cellulose thin-layer chromatography plate,

which was subsequently developed in 0.5 M formic acid and 0.25 M LiCl for 30 m. Reaction products were

visualized by autoradiography and quantified with a Phosphorimager.

https://doi.org/10.1371/journal.pone.0182060.g006
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SSB-Ct is not found in SaPriA (Fig 8), and SaSsbA failed to stimulate SaPriA (Fig 6). To con-

firm whether SaPriA interacts with SaSsbA, we used SPR to provide experimental evidence for

estimating the binding affinity between these proteins and thus quantitatively characterize this

interaction further (Fig 9). SaPriA was immobilized on a sensor chip (as a ligand), and the

SaSsbA solution (as an analyte) was passed over the sensor chip in a microfluidic chamber. Fig

9A shows the SPR results at various SaSsbA concentrations. The Kd value of SaPriA bound by

SaSsbA, calculated from the equilibrium binding isotherms using a simple binding model (a

1:1 Langmuir binding model), was 4.6 ± 0.5 × 10−8 M. Thus, even no identical binding site as

in KpPriA, SaPriA can bind to SaSsbA.

To determine whether SaPriA can bind to SaSsbA-Ct (NANGPIDISDDDLPF) and

KpSSB-Ct (PSNEPPMDFDDDIPF), chemically synthesized SaSsbA-Ct and KpSSB-Ct were

used for SaPriA-binding experiments. SaSsbA-Ct was injected at increasing concentrations,

but the binding response for SaPriA did not change, indicating no interaction (Fig 9B). No

interaction of KpSSB-Ct with SaPriA was also found (Fig 9C). Therefore, unlike EcPriA, which

binds to EcSSB-Ct directly, SaPriA cannot bind to SaSsbA-Ct and KpSSB-Ct.

Table 3. Data collection and processing statistics.

Data collection

Crystal SaSsbA

Wavelength (Å) 0.975

Resolution (Å) 30–1.76

Space group P41212

Cell dimension (Å) a = 88.792 α = 90

b = 88.792 β = 90

c = 57.686 γ = 90

Completeness (%) 99.8 (99.9)*

<I/σI> 34.6 (3.2)

Rsym or Rmerge (%) 0.052 (0.559)

Redundancy 8.6 (8.4)

Refinement

Resolution (Å) 28.078–1.82

No. reflections 23454

Rwork/Rfree 0.1932/0.2233

No. atoms

Protein 209

Water 110

R.m.s deviation

Bond lengths (Å) 0.0179

Bond angles (˚) 1.8595

Ramachandran Plot

In preferred regions 192 (93.66%)

In allowed regions 8 (3.9%)

Outliers 5 (2.44%)

PDB entry 5XGT

*Values in parentheses are for the highest resolution shell.

Rsym = Σ|I − ‘I’ |/ΣI, where I is the observed intensity, ‘I’ is the statistically weighted average intensity of

multiple observations of symmetry-related reflections.

https://doi.org/10.1371/journal.pone.0182060.t003
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Fig 7. Crystal structure of SaSsbA. (A) The secondary structural element of SaSsbA. The secondary

structural element of SaSsbA is shown above its sequence. (B) Crystal structure of SaSsbA. The cell unit

contains two monomers of SaSsbA, and the core of the OB-fold possesses a β-barrel capped by an α-helix. In

both subunits, the majority of the electron density exhibited good quality only for the N-terminal region of

SaSsbA (aa 1–104); the aa 105–167 was unobserved. (C) Superposition of SaSsbA and EcSSB. The N-

terminal domains of SaSsbA and EcSSB (PDB entry 1EYG; dark blue) are similar, but the structural

differences are still found, the loops L12 and L23. Because the oligomerization state of SaSsbA in solution is

tetrameric, SaSsbA may function as a tetramer like EcSSB. (D) ssDNA-binding mode of SaSsbA. In the

EcSSB–ssDNA complex (PDB entry 1EYG), four essential aromatic residues, including Trp40, Trp54, Phe60,

and Trp88, participate in ssDNA binding via stacking interactions. The structurally corresponding residues in

SaSsbA are Phe37, Phe48, Phe54, and Tyr82. The ssDNA-binding mode of SaSsbA may be similar to that of

EcSSB. (E) Superposition of SaSsbA and KpPriB. The N-terminal domain of SaSsbA and KpPriB (PDB entry

4APV; green) are similar, in which the only significant difference is in the lengths of the β4 and β5 sheets.

https://doi.org/10.1371/journal.pone.0182060.g007
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KpSSB, but not KpSSB-Ct, can significantly stimulate the ATPase

activity of SaPriA

The typical SSB-Ct binding site of PriA in SaPriA is not conserved (Fig 8). To investigate

whether all SSB cannot stimulate SaPriA like SaSsbA, the ATPase activity of SaPriA was

assayed in the presence of KpSSB [60]. Tag-free KpSSB [61] was also used for this cross-species

analysis. As shown in Fig 10, SaPriA ATPase activity was significantly stimulated (twelvefold)

when acting with either KpSSB or tag-free KpSSB. Chemically synthesized KpSSB-Ct (the last

15 amino acids of the KpSSB C terminus) was also used for this analysis and was found to fail

to stimulate SaPriA. To determine the possible role of the flexible region, KpSSBc, the C-termi-

nal domain of KpSSB that comprises the flexible region and SSB-Ct (aa 116–174), was also

analyzed. When acting with KpSSBc, a slight stimulation of SaPriA ATPase (less than twofold)

was observed. Thus, we conclude that KpSSB and KpSSBc, except KpSSB-Ct, exhibited a

cross-species stimulation effect for SaPriA.

S161 in SaSsbA determines the stimulation property of SaPriA

The N-terminal domain of SSB proteins is basically conserved in sequence and structure [1, 2],

such as those in SaSsbA and EcSSB (Fig 7). As the stimulation of SaPriA was found by acting

Fig 8. Conserved SSB-Ct binding site of PriA is not present in SaPriA. (A) SSB-Ct (DDIPF) binding site in KpPriA revealed by

the complexed crystal structure (PDB ID: 4NL8). The KpPriA SSB-Ct binding site includes Trp82, Tyr86, Lys370, Arg697, and

Gln701. (B) The putative SSB-Ct binding sites in SaPriA structurally corresponding with those in KpPriA are Trp89, Thr92, V439,

Glu767, and Leu771. Only Trp89 in SaPriA (Trp82 in KpPriA) is conserved. Arg697, the most important residue in KpPriA in altering

the SSB35/SSB65 distribution, is Glu767 in SaPriA. (C) Mutational analysis of SaPriA. The ATPase assay for the mutant SaPriA

E767R and SaPriA R434A proteins was performed with 0.4 mM [γ-32P] ATP, 0.12 μM of the protein, SaSsbA (10 μM), and 0.1 μM

PS4/PS3-dT30 DNA substrate for 1 h. Aliquots (5 μL) were taken and spotted onto a polyethyleneimine cellulose thin-layer

chromatography plate, which was subsequently developed in 0.5 M formic acid and 0.25 M LiCl for 30 m. Reaction products were

visualized by autoradiography and quantified with a Phosphorimager.

https://doi.org/10.1371/journal.pone.0182060.g008

Fig 9. SPR analysis. (A) The SaPriA–SaSsbA interaction. SaPriA was immobilized on Series S sensor chips CM5, and the binding experiments

were carried out using a Biacore T200. SaSsbA (1000, 500, 250, 125, and 63 nM) was injected in duplicate over the immobilized protein for 120 s at

a flow rate of 30 μL/min. The estimated Kd value was derived by fitting the association and dissociation signals with a 1:1 (Langmuir) model using

the Biacore T200 Evaluation Software. (B) The SaPriA–SaSsbA-Ct interaction analyzed by SPR. (C) The SaPriA–KpSSB-Ct interaction analyzed

by SPR.

https://doi.org/10.1371/journal.pone.0182060.g009
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with KpSSB (Fig 10), but not SaSsbA (Fig 6), we further investigated whether the different

SSB-Ct is related to the stimulation switch. We compared the sequence of the C-terminal

acidic tails of SSBs and found that the conserved MDFDDDIPFmotif in the Gram-negative

bacterial SSB, such as Ec, Kp, and St, in which whose motif is DISDDDLPF in SaSsbA, i.e., the

amino acid residue F172 in EcSSB and F168 in KpSSB, whose corresponding residue in SaSsbA

is S161, not F. To investigate the role of the conserved F residue in SSB proteins (but the resi-

due is S in SaSsbA) in stimulation of PriA activity, SaSsbA S161F mutant was accordingly cre-

ated with F substitution, and ATPase activity of SaPriA was then assessed (Fig 11). Unlike the

wild-type protein, SaPriA ATPase activity was dramatically stimulated when acting with

SaSsbA S161F mutant (elevenfold), suggesting that the residue F is important in PriA stimula-

tion. According to sequences, we also constructed the double mutant SaSsbA (S161F/delI160)

for analysis with SaPriA; this double mutant, in addition to S161F, whose I160 residue was also

deleted. When acting with SaSsbA S161F/delI160 mutant, SaPriA ATPase activity was still

stimulated as that with SaSsbA S161F mutant, suggesting a no/minor role of the I160 in PriA

stimulation. Overall, based on results from the sequence comparison for the C terminal region

in SSB proteins (Fig 11B and S2 Fig) and the ATPase assay, we conclude that S161 in SaSsbA is

a switch for SaPriA stimulation. However, it is unclear why the residue F, which is conserved

in SSB proteins from the Gram-negative bacteria, is changed to S in SaSsbA.

Fig 10. KpSSB, but not KpSSB-Ct, can significantly stimulate the ATPase activity of SaPriA. SaPriA

ATPase assay was performed with 0.4 mM [γ-32P] ATP, 0.12 μM of SaPriA, and 0.1 μM PS4/PS3-dT30 DNA

substrate for 1 h. To study the effect, the protein (10 μM) was individually added into the assay solution.

Aliquots (5 μL) were taken and spotted onto a polyethyleneimine cellulose thin-layer chromatography plate,

which was subsequently developed in 0.5 M formic acid and 0.25 M LiCl for 30 m. Reaction products were

visualized by autoradiography and quantified with a Phosphorimager.

https://doi.org/10.1371/journal.pone.0182060.g010
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Discussion

It is believed that all cells present now evolved from a common ancestor, implying that the

basic principles learned from experiments performed with one type of cell should be generally

applicable to other cells. Given the comparative simplicity, E. coli has long been the favored

organism for studying many fundamental aspects of biochemistry and molecular biology.

However, because of many obvious differences in the mechanisms of action of DNA replica-

tion restart primosome found between E. coli and Gram-positive bacteria [55], the process by

which PriA can cooperate with different loading factors to reactivate same stalled forks still

need to be elucidated [43, 75]. Gene map analysis shows that unlike E. coli ssb gene located

adjacent to uvrA gene, S. aureus ssb gene (SaSsbA) is flanked by the rpsF and rpsR genes, cod-

ing for the ribosomal proteins S6 and S18, respectively (Fig 1). In this study, we characterized

S. aureus main SSB and found that it cannot stimulate PriA (Fig 6), unlike E. coli [47]. In addi-

tion, we also found that the 15 C-terminal amino acids of E. coli SSB, known to bind EcPriA,

did not bind to SaPriA demonstrated using SPR (Fig 9); that is, in the results of this present

study are not in agreement with those for E. coli. Whether these significant disparities are due

to inherent differences among the species, the use of different assay methods, or the effect of

different investigators, remains unknown. However, we also noted that these seemingly con-

tradictory data may reconcile. Our structure-sequence comparison (Figs 7 and 8) and muta-

tional analysis (Fig 11) further indicates that the PriA SSB-Ct binding site (Trp82, Tyr86,

Lys370, Arg697, and Gln701), revealed by a 4.1 Å resolution crystal structure [44], is not appli-

cable to SaPriA (Fig 8). Based on these results, we conclude that SaSsbA may bind SaPriA in a

different manner compared with that of EcSSB-EcPriA. Whether SaSsbA cannot stimulate

SaPriA activity because of this different binding mechanism still remains to be exploited.

The SSB-Ct involved in protein-binding during DNA metabolism is known as the SSB

interactome [2]. Studies both in vivo and in vitro using the C-terminal deletion mutants of

SSB have found that the last eight residues are important for binding to the target protein,

such as RecG and PriA [4, 47, 76–78]. Recently, however, detailed analyses indicate that PXXP

motifs in the intrinsically disordered linker (IDL) of SSB are directly responsible for mediating

the protein–protein interactions; removal of the last eight residues of SSB with negative effect

Fig 11. S161 in SaSsbA is a switch for SaPriA stimulation. (A) Multiple amino acid sequence alignment of

SSB-Ct from Ec, Kp, St, Pa, and Sa. FDDDIPF in the C-terminal domain of SSB is usually conserved, but is

not for SaSsbA. (B) SaPriA ATPase assay was performed with 0.4 mM [γ-32P] ATP, 0.12 μM of SaPriA, and

0.1 μM PS4/PS3-dT30 DNA substrate for 1 h. To study the effect, the mutant protein was individually added

into the assay solution. Aliquots (5 μL) were taken and spotted onto a polyethyleneimine cellulose thin-layer

chromatography plate, which was subsequently developed in 0.5 M formic acid and 0.25 M LiCl for 30 m.

Reaction products were visualized by autoradiography and quantified with a Phosphorimager. Reaction was

carried out without SaPriA (lane 1) or with SaPriA alone (lane 2) as controls. SaPriA acted with 5 μM SaSsbA

plus 5 μM SaSsbA S161F mutant (lane 3), 10 μM SaSsbA S161F (lane 4), and 10 μM SaSsbA S161F/delI160

double mutant (lane 5) as shown, respectively.

https://doi.org/10.1371/journal.pone.0182060.g011
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on partner protein binding may not be a correct indication of protein–protein interaction site

[4, 79, 80]. In this study, both SaSsbA-Ct and KpSSB-Ct peptides did not bind to SaSsbA (Fig

9); thus, we also try to find whether the PXXP motifs are present in SaSsbA. However, unlike

EcSSB [4], KpSSB [60], StSSB [81] and PaSSB [82] contain many Pro residues in their C-termi-

nal domains [61], SaSsbA contains very few Pro residues (Fig 3). In addition, their positions in

SaSsbA are not able to match the PXXP motif [4]. Whether the Gram-positive and Gram-neg-

ative SSB use a general mechanism to bind their partner proteins during DNA metabolism is

still unclear.

Almost non-hexameric helicases have poor dsDNA unwinding activities when acting alone

in vitro [72]. Recently, the first case for the Gram-positive bacterial PriA activity stimulation

has been reported: SaDnaD can obviously enhance the ATPase activity of SaPriA [58]. Like

EcSSB, SaSsbA, and EcPriB, SaDnaD can bind ssDNA and PriA [58, 83]. Given that SaSsbA

and SaDnaD are both ssDNA- and SaPriA-binding proteins, and both function in early steps

of the Gram-positive primosome assembly [75, 84], more studies are still needed to determine

whether or not SaSsbA is a competitor or an enhancer for SaDnaD binding to PriA, and PriA

bound forked DNA.

Supporting information

S1 Fig. Multiple amino acid sequence alignment of PriA proteins. Sequence alignment of

SaPriA, KpPriA, and EcPriA was generated by CLUSTALW2. The KpPriA SSB-Ct binding

sites (Trp82, Tyr86, Lys370, Arg697, and Gln701) are colored in red.

(TIF)

S2 Fig. Multiple amino acid sequence alignment of SSB-Ct from some Gram-positive bac-

teria. Including Bacillus subtilis, IDISDDDLPF in the C-terminal domain of SSB from the

Gram-positive bacteria is usually conserved.

(TIF)
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