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1  | INTRODUC TION

African swine fever (ASF) is a severe contagious viral disease of do‐
mestic pigs and Eurasian wild boars (Sus scrofa). African swine fever 
virus (ASFV) is endemic in sub‐Saharan Africa, having a wildlife res‐
ervoir in resistant African species of wild Suidae that, although in‐
fected, remain asymptomatic, and in soft ticks of the Ornithodoros 
genus (Costard, Mur, Lubroth, Sanchez‐Vizcaino, & Pfeiffer, 2013). 
The most recent epidemic in Europe caused by the ASFV genotype 
2 began in 2007 from Caucasus, spreading to the Russian Federation 
in 2007, where it became endemic (Gogin, Gerasimov, Malogolovkin, 

& Kolbasov, 2013), to Ukraine in 2012 (OIE, 2012) and Belarus in 
2013 (OIE, 2015). It reached the European Union in 2014, when it 
was reported in wild boars in Lithuania, Poland, Latvia and Estonia 
(Guinat et al., 2016; Sánchez‐Vizcaíno, Mur, Gomes‐Villamandos, & 
Carrasco, 2015). To date, ASF has also been reported in Moldova, the 
Czech Republic, Romania, Bulgaria, Belgium (Frant, Woźniakowski, & 
Pejsak, 2017) and China (Zhou et al., 2018).

ASFV transmission can occur through animal contact, con‐
taminated feed and fomites, as well as via arthropods (Costard et 
al., 2013). The role of ticks in ASFV transmission has also been 
examined in Europe (Portugal, Spain and Russia). In the Iberian 
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Abstract
Background: African swine fever (ASF), a severe multi‐systemic disease in pigs, was 
introduced into Estonia in 2014. The majority of outbreaks have occurred during the 
summer months. Given that ASFV is transmitted in a sylvatic cycle that includes the 
transmission by African soft ticks and that mechanical transmission by flying insects 
was shown, transmission by other arthropod vectors need to be considered.
Objectives: Here, we report the results of a pilot study on flying insects caught on an 
outbreak farm during epidemiological investigations.
Methods: In brief, 15 different insect species (flies and mosquitoes) were collected by 
random catch using an aerial net. Nucleic acids derived from these samples or their 
pools were tested for African swine fever virus (ASFV) DNA by real‐time PCR.
Results and Conclusions: Viral DNA was detected in small quantities in two samples 
from flies and mosquitoes. Given the slow spread of virus within the farm, the impact 
of these findings seems rather low, but a role in local transmission cannot be ruled 
out. However, given the very low number of insects sampled, and taken into the ac‐
count that viral isolation was not performed and insects outside the farm were not 
investigated, future investigations are needed to assess the true impact of insects as 
mechanical vectors.
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Peninsula, ASFV is transmitted by ticks belonging to O. erraticus 
complex (Boinas et al., 2014). Certain Ornithodoros species (O. er‐
raticus complex) have been found in the Caucasus and in parts of 
Southern Europe (Manzano‐Román, Díaz‐Martín, de la Fuente, & 
Pérez‐Sánchez, 2012). One experimental study demonstrated the 
presence of ASF virus in O. erraticus for up to 12 weeks, but so 
far, field studies in Germany have failed to demonstrate O. errati‐
cus contact in wild boars (Pietschmann et al., 2016). In the Russian 
Federation, no evidence of Ornithodoros involvement in the epi‐
demic has been found (Gogin et al., 2013). Currently, no studies 
have shown evidence of ASF replication in the hard ticks prev‐
alent in Europe (de Carvalho Ferreira et al., 2014). Field studies 
have shown a lack of virus in hard ticks, and under experimental 
conditions, hard ticks have failed to transmit the virus (Frant et 
al., 2017). In the absence of a tick vector, other arthropods have 
been considered. Flies have vector potential for several pathogens 
(Blunt et al., 2011; Förster et al., 2007), and various other biting 
insects, such as mosquitoes (Baldacchino et al., 2013; Maggi, ) and 
hog lice (Hornok et al., 2010), are known or suspected to transmit 
viral, bacterial and rickettsial infections. One experimental study 
has shown successful mechanical transmission of ASFV to pigs by 
stable flies (Stomoxys calcitrans) up to 24 hr after ingesting viraemic 
blood and subsequently feeding on pigs. ASFV titres were present 
in some flies up to 2 days post‐ingestion, making viral transmis‐
sion via flies within this time period feasible (Mellor, Kitching, & 
Wilkinson, 1987). It was recently experimentally demonstrated 
that ASFV remains infectious in the stomach of some stable flies 
for up to 12 hr, and ASFV DNA was found on the flies’ bodies up to 
72 hr after feeding (Olesen, Hansen, et al., 2018b). A subsequent 
experiment showed that after feeding on viraemic blood, flies then 
ingested by healthy pigs caused ASFV infection (Olesen, Lohse, 
et al., 2018a). There was no evidence of ASFV in flies in infected 
farms in Lithuania in 2014 (EC, 2014).

In Estonia, ASF was reported in 27 domestic pig farms during 
2015–2017 (Nurmoja et al., 2018). Epidemiological investigations of 
these outbreaks suggest that the virus was most likely introduced into 
the herds through indirect transmission, such as by contaminated fo‐
mites, including vehicles, clothing, and contaminated feed or bedding 

material. ASF outbreaks in domestic pig farms in Estonia follow a sea‐
sonal pattern, occurring from July to September (Nurmoja et al., 2018). 
More rapid spread of the virus among wild boar also occurs in summer 
months (Nurmoja et al., 2018). This seasonal pattern of domestic out‐
breaks and spread in wild boar suggests a possible role for flying insects 
in viral spreading. Several vector‐borne diseases follow a similar trend, 
such as West Nile virus (Hayes et al., 2005) and Lyme borreliosis in hu‐
mans (Jaenson & Lindgren, 2006). Based on the correlation between 
vector abundance and disease occurrence, flies have been suspected 
to be mechanical vectors for viral diseases, namely, Musca domestica in 
human shigellosis (Farag et al., 2013), and S. calcitrans in bovine lumpy 
skin disease (Kahana‐Sutin, Klement, Lensky, & Gottlieb, 2017).

To test this hypothesis, flying insects were collected from one 
infected farm and investigated for the presence of ASFV DNA by 
real‐time PCR.

2  | C A SE REPORT

2.1 | Case details

In August 2016, an ASF outbreak was investigated in a fattening farm 
in the western part of Estonia. The outbreak occurred in one of the 
six isolated units of the farm building, each containing approximately 
500 pigs (Figure 1). On 16th of August, decreased appetite was no‐
ticed in several pigs in two pens in Section 2. On 18th of August, one 
of the pigs in these pens was noticed to have cyanotic ears. The pig 
died shortly thereafter. The number of inappetent pigs increased. 
On the next day, two more pigs died in the same pens. Antimicrobial 
treatment was initiated in the diseased pens with the suspicion of 
bacterial infection. Between 19th and 22nd August, an additional 
31 pigs died in the affected pens, bringing the total number to 34.

2.2 | Postmortem findings and laboratory analyses

Fifteen pig cadavers were necropsied on the farm by the attending 
veterinarian. Postmortem findings included cyanotic ears, spleno‐ 
and hepatomegaly, petechiae on kidneys and around cardiac valves, 
and generalized lymph node enlargement. A small amount of serous 

F I G U R E  1   Schematic of the pig farm 
with the first infected pens highlighted in 
Section 2
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fluid was found in the abdominal cavity. African swine fever was 
suspected, and the district veterinary office of the Veterinary and 
Food Board (the state veterinary authority) was notified. Later on 
the same day, the farm veterinarian, together with the local animal 
health surveillance officer, necropsied an additional nine pigs. Blood 
and tissue samples were sent to the national ASF diagnostic labora‐
tory (Veterinary and Food Laboratory) for ASFV testing. On 23rd 
of August, ASFV was confirmed in pigs by real‐time PCR and an‐
tibody ELISA from serum and tissue samples. On 24th of August, 
additional animals of the farm were killed on site. Before culling, ad‐
ditional blood samples (n = 18) were collected from pigs in five other 
farm units targeting animals with any suspicion signs of disease. All 
samples collected from other units tested negative by both PCR and 
ELISA.

2.3 | Insect sampling and DNA analysis

On 24th of August, the outbreak was investigated by epidemiolo‐
gists from Estonian University of Life Sciences. Flying insects have 
been considered one possible means of spreading the infection 
within and between farms. Therefore, it was decided to investigate 
whether ASFV‐DNA could be detected in flying insects caught in a 
naturally infected farm. If successful, the intention was to use this 
method in future outbreak investigations. Random flying insects in 
close contact with pigs in the affected unit were caught using an 
aerial net. Insects were killed using chloroform and stored at −20°C 
until species identification and DNA extraction.

Insects (n = 15) were identified morphologically using identifica‐
tion keys, and those identified included haematophagous Culicidae 
spp (n = 2), M. domestica (n = 9) and Drosophila spp. (n = 4).

For DNA extraction, whole individual insects were homoge‐
nized and DNA was extracted using an RTP DNA/RNA Virus Mini 
Kit, (Stratec, Germany) according to the manufacturer's instruc‐
tions. The two mosquito specimens were pooled and processed 
together.

DNA samples were analyzed by real‐time PCR methods using 
ASFV p72 gene‐targeting forward and reverse primers and TaqMan 
probes, as described by Tignon et al. (2011). For an endogenous 
control in the assay, swine beta‐actin (ACTB) gene detection was in‐
cluded in the analysis with forward) and reverse primers and probes 
targeting the 114 bp‐region of the gene (Duvigneau, Hartl, Groiss, & 
Gemeiner, 2005). Real‐time PCR was performed using the commer‐
cially available 5xHOT FIREPol Probe qPCR Mix kit (Solis BioDyne) 
in a total volume of 20 µl. Briefly, 7 µl DNAse RNase free water, 
4 µl 5x HOT FIREPol Probe qPCR Mix, 0.8 µl each of forward and 
reverse primers targeting the ASF p72 and swine beta‐actin gene 
at a final concentration of 0.4 µM and 0.4 µl each of probe at a final 
concentration of 0.2 µM were pooled as a master mix. Finally, a 5 µl 
of aliquot of DNA extracted from sample was added to 15 µl of PCR 
master mix. The cycling protocol was as follows: 1 cycle of 95ºC for 
15 min followed by 45 cycles consisting of denaturation for 20 s at 
95°C and annealing for 1 min at 60°C. Threshold cycle (Ct) values 
less than 40 were considered positive.

2.4 | Viral sequencing

Sequencing of the B602L gene to determine the CVR (central vari‐
able region) variant was performed in all ASF positive samples using 
the standard operating procedure provided by the European Union 
Reference Laboratory of ASF (CISA‐INIA) with minor modification re‐
garding the PCR amplification protocol. The B602L gene was ampli‐
fied with forward and reverse primers as described by Gallardo et al. 
(2011). PCR was performed using a commercially available AmpliTaq 
Gold™ DNA Polymerase with Gold Buffer and MgCl2 PCR kit (Applied 
Biosystems) in a total volume of 25 µl. Briefly, 15.875 µl DNA‐RNA 
free water, 2.5 µl 10x PCR buffer, 2.5 µl MgCl2, and 0.5 µl dNTP 
(Applied Biosystems) in a final concentration of 0.2 mM, 0.75 µl both 
of forward and reverse primers at a final concentration of 0.3 mM and 
0.125 µl AmpliTaq Gold Polymerase at a final concentration of 0.625 
U was pooled as a master mix. Finally, 2 µl ASF positive DNA was 
added to 23 µl PCR master mix. Cycling conditions were as follows: 1 
cycle of 95°C for 10 min followed by 40 cycles consisting of denatura‐
tion for 30 s at 95°C, annealing for 30 s at 55°C and elongation for 
1 min at 72°C, and finally 1 cycle of 72°C for 10 min. Amplified PCR 
products were visualized using 2% agarose gels.

Sample sequencing was performed at the University of Tartu, 
Institute of Genomics. PCR products were cleaned and sequenced 
with Applied Biosystems ® 3130xl Genetic Analyzer by a two‐direc‐
tional procedure. Forward and reverse sequences were aligned using 
MEGA7 software (Kumar, Stecher, & Tamura, 2016) and BioEdit 
v7.2.5 software (Hall, 1999) to generate single consensus sequences 
and to correct mismatches. Acquired sequences were compared 
against nucleotide sequences available in GenBank using BLASTn 
(nucleotide Basic Local Alignment Search Tool).

3  | RESULTS AND DISCUSSION

Two of 13 flies (one housefly and one drosophila), as well as the 
mosquito pool of two individuals, tested positive for ASFV‐DNA. 
Results of the beta‐actin qPCR were inconsistent, being positive in 
2 fly samples (one ASFV qPCR positive, one negative) but negative 
in the mosquito pool (see Table 1 for reference). Overall, the Ct val‐
ues were high, indicating only small amounts of target DNA in the 
samples. It was possible to obtain DNA sequences from three of the 
positive samples, which were subsequently determined as genotype 
2 CVR variant 1, which is the most common variant spreading in 
Estonia and the EU. Virus isolation from positive samples was not 
performed due to laboratory limitations.

It was previously shown that blood‐sucking flies, such as stable 
flies, can transmit ASFV. It has also been experimentally demonstrated 
that stable flies can transmit ASFV either by biting (Mellor et al., 
1987) or through ingestion by pigs (Olesen, Lohse, et al., 2018a). The 
authors further proposed that although larger blood‐sucking insects, 
such as horse flies (Tabanidae), do not preferentially feed on pigs, they 
may transmit the virus through being eaten by pigs, and therefore, 
blood‐sucking flies may play a role in virus transmission within farms 
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or, in the case of Tabanidae, over longer distances (Olesen, Lohse, et 
al., 2018a). All of the flies caught in our study belonged to non‐blood 
sucking species. M. domestica and Drosophila spp. feed on decaying 
matter but could potentially carry the virus on their bodies (Merritt, 
Courtney, & Keiper, 2009). To the authors’ knowledge, no information 
exists about transmission of ASFV by these insect species. Drosophila 
can either accidentally be ingested by pigs or they may contaminate 
pig feeding sources. Although live virus isolation was not attempted, 
the small amount of DNA material present, as indicated by high Ct 
values, is an indication of low viral load.

The Ct value of 42.10 in one tested M. domestica may indicate 
probe degradation. Then again, all samples were tested in duplicate, 
and parallel sample of the aforementioned Ct value of 42.10 resulted 
in no Ct value. However, this particular M.domestica was ACTB gene 
positive, indicating contact with pigs.

Contamination cannot be completely ruled out, especially con‐
sidering that after catching, the insects were kept together during 
storage. The risk of contamination during DNA extraction and qPCR 
analysis was reduced by using negative controls and by closing all the 
test tubes prior to adding the positive control.

It is also worth noting that not all pigs in the unit were infected, 
and the virus did not spread to other units, despite the abundance of 
insects and the lack of restrictions to their flight to other parts of the 
building. The authors propose that the DNA finding on the insects 
most likely represents a general environmental contamination with 
the ASF virus. Alternatively, ASFV positive insects in this study did 
not carry live virus long enough to transmit it.

The study has several limitations. The sample size is too 
small to draw any conclusions regarding the sampled arthro‐
pods as possible ASFV vectors. The use of an aerial net com‐
bined with a relatively inexperienced catcher resulted in a 
small yield of insects. Another trapping method, such as a com‐
bination of sticky traps and aerial interception traps (Epsky, 

Morrill, & Mankin, 2008) would have caught a larger number 
of flying arthropods, but this was not deemed practical during 
an outbreak where the catching had to be performed in a lim‐
ited time, and decontaminating the catching tools at the exit of 
the infected premises was required. Sampling was performed 
to determine if it was at all possible to identify ASFV DNA in 
flying arthropods under field conditions; therefore, other units 
of the building were not sampled. More thorough studies were 
planned, pending the preliminary results; however, in two sub‐
sequent outbreaks, sampling was not plausible as there were 
very few flying insects within the buildings due to effective 
control measures at these farms. No further studies were con‐
ducted as these were the last outbreaks in domestic pigs that 
Estonia has experienced since then.

The small sample size and lack of blood sucking flies leaves the 
study results open to discussion. The results of this study suggest 
that several insect species may be contaminated with (or possi‐
bly carrying) the virus but we were unable to establish that they 
had any significant role in transmission of ASFV within the farm. 
Further studies (particularly field studies) are needed to explore that 
possibility.
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