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Cucurbitacin B (Cuc B), a natural product, induced both protective autophagy and DNA damage mediated by ROS while the
detailed mechanisms remain unclear. This study explored the mechanism of Cuc B-induced DNA damage and autophagy. Cuc B
decreased cell viability in concentration- and time-dependentmanners. CucB caused long comet tails and increased expression of𝛾-
H
2
AX, phosphorylation of ATM/ATR, and Chk1/Chk2. Cuc B induced autophagy as evidenced by monodansylcadaverine (MDC)

staining, increased expression of LC3II, phosphorylated ULK1, and decreased expression of phosphorylated AKT, mTOR. Cuc B
induced apoptosis mediated by Bcl-2 family proteins and caspase activation. Furthermore, Cuc B induced ROS formation, which
was inhibited by N-acetyl-L-cysteine (NAC). NAC pretreatment dramatically reversed Cuc B-induced DNA damage, autophagy,
and apoptosis. Cuc B-induced apoptosis was reversed by NAC but enhanced by 3-methyladenine (3-MA), chloroquine (CQ), and
silencing phosphatase and tensin homolog (PTEN). 3-MA and CQ showed no effect on Cuc B-induced DNA damage. In addition,
CucB increasedPTENphosphorylation and silence PTENrestoredCucB-induced autophagic protein expressionswithout affecting
DNA damage. In summary, Cuc B induced DNA damage, apoptosis, and protective autophagy mediated by ROS. PTEN activation
in response to DNA damage bridged DNA damage and prosurvival autophagy.

1. Introduction

Programmed cell death (PCD), a process carried out in a
regulatedmanner, ubiquitously occurs throughoutmostmul-
ticellular organisms’ lifespan. To date, three major types of
PCD, distinct both morphologically and biochemically, have
been established: apoptosis (type I cell death), autophagic
cell death (type II), and regulated necrosis (type III) [1–3].
The first and widely investigated type of PCD is apoptosis.
Apoptosis is triggered by the activation of cell-surface death
receptors by their ligands (the extrinsic pathway) or by
induction of the permeabilization of the mitochondrial outer
membrane through the Bcl-2 family proapoptotic proteins
(Bax, Bak, etc.) (the intrinsic pathway) [1, 4]. Autophagy, a

stress response to starvation, acts as an important homeo-
static cellular recyclingmechanism responsible for degrading
unnecessary or dysfunctional cellular organelles and pro-
teins in living cells [5]. Autophagy is characterized by the
appearance of large intracellular vesicles and finely controlled
by the Atg (autophagy-related gene) family of proteins. In
general, it represents a failed attempt to overcome lethal stress
and serve as a prosurvival process in response to various
stresses. Thus, its function as an active cell death mechanism
remains controversial [1]. Actually, most reported autophagy
induced by natural products was prosurvival [6, 7]. Regulated
necrosis is morphologically characterized by cytoplasmic
granulation, organelle and/or cellular swelling resulting from
cellular leakage [8].
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Accumulated evidence showed that though apoptosis
and autophagy were executed through distinct signaling
pathways, overlapping signals were engaged in response to
specific stimuli [1]. This crosstalk could be mediated by the
interactions between Beclin-1 and Bcl-2/Bcl-xL and between
FADD and Atg5, caspase- and calpain-mediated cleavage
of autophagy-related proteins, and autophagic degradation
of caspases [9–13]. Reactive oxygen species (ROS) plays
important roles in mediating apoptosis and autophagy in
response to a panel of natural products such as evodiamine
[14], oridonin [15], graveoline [16], total tanshinones [17], and
erianin [18].

Cucurbitacin B (Cuc B), a natural tetracyclic triterpenoid,
is abundant in many Cucurbitaceae species [19]. Cuc B
induced apoptosis in many cancer line cells [20–25]. The
underlying mechanisms include inhibition of JAK/STAT3
[20, 24, 25], induction of DNA damage [23], generation of
ROS [26], reduction of G-actin, and activation of cofilin
[22]. We firstly reported that Cuc B induced DNA damage
mediated by ROS in A549, K562, and MCF-7 cells [23, 27,
28]. Cuc B also induced protective autophagy in HeLa [29],
Jurkat [22], MCF-7 [28], and B16F10 cells [30]. Furthermore,
Cuc E-, Cuc D-, and Cuc I-induced autophagy was also
documented in various cancer cell lines and normal cells
[31–35]. Similarly, the underlying mechanisms involve ROS
generation and STAT3 inhibition [28, 29, 34, 36]. Interest-
ingly, cucurbitacins-induced autophagy acts as a prosurvival
effect [32, 34]. In view of the roles of ROS in Cuc B-induced
DNA damage, apoptosis, and protective autophagy, here
we reported that Cuc B-induced ROS formation mediated
DNAdamage, apoptosis, and protective autophagy.TheDNA
damage activated phosphatase and tensin homolog (PTEN)
bridged DNA damage and autophagy.

2. Materials and Methods

2.1. Materials and Reagents. Cuc B (>98%) purchased from
Chengdu Herbpurify Co., Ltd. (Chengdu, China), was dis-
solved in dimethyl sulfoxide (DMSO) to make a 100mM
stock solution and was freshly diluted to the desired con-
centration before use. Primary antibodies for GAPDH,
ATM, phosphorylated ATM (p-ATM (Ser1981)), ATR, phos-
phorylated ATR (p-ATR (Ser428)), Chk1, phosphorylated
Chk1 (p-Chk1 (Ser345)), Chk2, phosphorylated Chk2 (p-
Chk2 (Thr68)), 𝛾-H

2
AX, PTEN, phosphorylated PTEN

(p-PTEN (Ser380/Thr382/Thr383)), AKT, phosphorylated
AKT (p-AKT (Ser473)), ULK1, phosphorylated ULK1 (p-
ULK1 (Ser317)), mTOR, phosphorylated mTOR (p-mTOR
(Ser2448)), p62, LC3, Bcl-2, Bik, Bak, cleaved-PARP, cleaved-
caspase 7, and cleaved-caspase 9 and secondary antibod-
ies were bought from Cell Signal Technology (Danvers,
MA, USA). KU55933 were obtained from Selleck (Hous-
ton, TX, USA). Caffeine, monodansylcadaverine (MDC),
3-methyladenine (3-MA), and 5-(6)-carboxy-2,7-dichlor-
odihydrofluorescein diacetate (DCFH

2
-DA) were purchased

from Sigma (St. Louis, MO, USA). N-Acetyl-L-cysteine
(NAC) and chloroquine (CQ)were purchased fromBeyotime
(Haimen, China). Protein phosphatase inhibitor cocktail
and propidium iodide (PI) were from Gibco/Thermo Fisher
Scientific (Waltham, MA, USA).

2.2. Cell Culture. Hepatocellular carcinoma BEL-7402 cells
gifted by Professor Jian Ding from the Shanghai Institute
of Materia Medica (Shanghai, China) were maintained in
a monolayer culture in 95% air and 5% CO

2
at 37∘C in

RPMI Medium 1640 (Gibco) supplemented with 10% FBS
(Gibco), 100U/mL penicillin, and 100 𝜇g/mL streptomycin
(Invitrogen).

2.3. MTT Assay and LDH Release Assay. Cells seeded in 96-
well plates for overnight and then treated with or without
Cuc B (0–100 nM) for 0–48 h and the cell viabilities were
determined by MTT assay. To elucidate the role of ROS,
autophagy, DNA damage, and PTEN in Cuc B-induced
cell death, cells were pretreated with NAC (2.5mM), 3-MA
(2.5mM), and CQ (10 𝜇M) or transfected with PTEN siRNA
and then cotreated with Cuc B.

LDH release assay was determined by LDH-cytotoxicity
assay kit (Beyotime, China) according to the manufacturer’s
instructions.

2.4. Colony Formation Assay. Cells seeded in 6-well plates
were treated with or without Cuc B (5–20 nM) and the colony
formation assaywas performed as in our previous report [27].

2.5. Comet Assay. Comet assay was performed as in previous
report with minor revisions [37]. Briefly, microscopic slides
were coated with 1% normal agarose (GE Healthcare) fol-
lowed by adding 1% low melting point (LMP) agarose onto
each slide and then covering slides with coverslips. The cell
suspensions mixed with 1% LMP agarose (1 : 1) were pipetted
onto agarose-coated slips. After cooling down, the coverslips
were removed and the slides were lowered into freshly made
prechilled lysis buffer (2.5M NaCl, 100mM EDTA, 10mM
Tris, 1% Triton X-100, and pH 10) for 1 h. Then set the power
voltage to 25V and adjust the current to 300mA for 20min
to perform the electrophoresis procedure. Cells were stained
with PI. Individual cells were viewed using Olympus IX73
fluorescence microscope.

2.6. Western Blotting. Treated cells were washed with PBS
twice and then harvested using ice-cold RIPA lysis buffer
containing protease inhibitor PMSF (Gibco) and protein
phosphatase inhibitor cocktail (Gibco). The lysates were
centrifuged at 12,500 g for 20min at 4∘C and the supernatant
fractions were collected. Protein concentrations were mea-
sured with BCA Protein Assay Kit (Gibco). After denatura-
tion at 95∘C for 10min, equivalent aliquots of protein samples
(30 𝜇g) were loaded and electrophoresed on SDS-PAGE gels
and then transferred to PVDF membrane (Thermo Scien-
tific).Themembranes were firstly blockedwith 5%nonfat dry
milk for 2 h at room temperature and then incubated with
primary antibodies (1 : 3000) overnight at 4∘C. Then HRP-
linked secondary antibodies (1 : 5000) were incubated for 4 h
at room temperature. The bands were visualized with the
ChemiDoc�MP Imaging System (Bio-Rad).

2.7. MDC Staining. MDC staining used to detect the forma-
tion of acidic vesicular organelles in Cuc B-treated cells was
performed as in our previous reports [28, 34].
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2.8. Measurement of Intracellular ROS. The effect of Cuc B
on ROS formation was determined as in our previous reports
[27, 38].

2.9. siRNA Transfection. The siRNA transfection was per-
formed as in our previous report [27]. The sequences of
siRNAs were as follows: siRNA sequences for ATM: 5-GGG-
CAAUAUUUCAAA UUAATT-3, 5-UUAAUUUGAAAU-
AUUGCC CTT-3; siRNA sequences for Chk1: 5-GCG-
UGCCGUAGACUGUCCATT-3, 5-UGGACAGUCUAC-
GGCACGCTT-3; siRNA sequences for PTEN: 5-CAG-
CCGUUCGGAGGAUUAUUCGUCUTT-3, 5-AGACGA-
AUAAUCCUCCGAACGGCUGTT-3; negative control
(NC): 5-UUCUCCGAACGUGUCACGUTT-3, 5-ACG-
UGACACGUUCGGAGAATT-3.

2.10. Apoptosis Assay. The apoptosis rates after treatment
with Cuc B for 6 h were determined by Annexin V/PI double
staining by flow cytometry (BD FACSCanto).

2.11. Hoechst 33342 Staining. The condensation of DNA was
detected by Hoechst 33342 staining as in our previous report
[39].

2.12. Statistical Analysis. Data were expressed as the means
± SEM from at least three separate experiments performed
in triplicate. The differences between groups were analyzed
using Prism 5.0 (GraphPad Software Inc., SanDiego, CA) and
𝑝 < 0.05 is considered statistically significant.

3. Results

3.1. Cuc B Inhibited Cells Proliferation. Compared with con-
trol, morphological alterations were observed in Cuc B-
treated cells, especially in 100 nM Cuc B-treated cells (Fig-
ure 1(a)). MTT assay showed that Cuc B inhibited BEL-7402
cell proliferation in dose- (Figure 1(c)) and time-dependent
manner (Figure 1(d)). Furthermore, Cuc B induced increase
of LDH release in the culture medium (Figure 1(e)). In addi-
tion, Cuc B dramatically suppressed the colony formation in
a dose-dependent manner (Figure 1(b)).

3.2. Cuc B-Induced DNA Damage Activated ATM and ATR.
The comet assay showed that significant long tails were
observed in Cuc B-treated cells (Figure 2(a)) indicating
the occurrence of DNA damage. Cuc B induced 𝛾-H

2
AX

expression in dose- (Figure 2(b)) and time-dependent man-
ner (Figure 2(c)). Furthermore, the phosphorylation of
both ATM/ATR and Chk1/Chk2 was increased in a dose-
dependent manner (Figures 2(d) and 2(e)). In addition, Cuc
B-induced p-Chk1 and p-ATM were downregulated by both
KU55933 (Figure 2(f)) and caffeine (Figure 2(g)).

3.3. Cuc B Induced Protective Autophagy. Compared with the
control group, Cuc B-treated cells showed dramatic increase
of intensive green fluorescence in MDC staining suggesting
the accumulation of autophagic vacuoles (Figure 3(a)). Cuc
B treatment led to upregulation of LC3II/LC3I expression

in dose- (Figure 3(b)) and time-dependent manner (Fig-
ure 3(c)). Furthermore, Cuc B treatment decreased the
expressions of p-mTOR, p-AKT, and p62 and increased
expressions of p-ULK1 without affecting total AKT and
ULK1 (Figure 3(d)). In addition, 3-MA (Figure 3(e)) and CQ
(Figure 3(f)) pretreatment further increased Cuc B-induced
cell death.

3.4. Cuc B Induced Caspase-Mediated Apoptosis. Cuc B
induced apoptosis in a dose-dependentmanner (Figure 4(a)).
Furthermore, the expression of proapoptotic Bik and Bak
was increased while the expression of antiapoptotic protein
Bcl-2 was slightly decreased (Figure 4(b)). Increased cleavage
of caspase 9, caspase 7, and PARP was also observed (Fig-
ure 4(c)). In addition, condensed chromatin was observed in
Hoechst 33342 staining after Cuc B treatment (Figure 4(d)).

3.5. Cuc B-Induced ROS Formation Resulted in Cell Death.
Cuc B significantly induced ROS formation in a dose-
dependent manner after 1 h treatment (Figure 5(a)), which
was dramatically decreased at 6 h (Figure 5(b)). NAC pre-
treatment decreased Cuc B-induced ROS formation (Fig-
ure 5(c)) and reversed Cuc B-induced cell death as well
(Figure 5(d)).

3.6. ROS Mediated Cuc B-Induced DNA Damage, Autophagy,
and Apoptosis. The roles of ROS in Cuc B-induced DNA
damage, autophagy, and apoptosis were further examined.
Cuc B-induced expression of DNA damage response related
proteins, 𝛾-H

2
AX, and phosphorylation of ATM and ATR

and Chk1 and Chk2 were significantly decreased by NAC
pretreatment (Figure 6(a)). Furthermore, the deregulated
autophagy-related proteins expression such as decreased
expression of p-mTOR and p-AKT and increased expression
of p-ULK1 and LC3II was also reversed byNAC (Figure 6(b)).
NAC alone also decreased expression of p-AKT. In addition,
the cleaved caspases and PARP were reversed by NAC
pretreatment (Figure 6(c)).

3.7. DNA Damage Mediated Autophagy in Response to Cuc B.
Since bothDNAdamage and autophagywere initiated byCuc
B, their relationship was clarified by applying DNA damage
response inhibitors KU55933 and caffeine and autophagy
inhibitors 3-MA and CQ. KU55933 and caffeine reversed Cuc
B-induced decrease of p-mTOR and p-AKT (Figures 7(a)
and 7(b)). They also reversed Cuc B-induced LC3II, p-ATR,
and p-Chk2 (Figure 7(c)). However, 3-MA and CQ showed
no effect on 𝛾-H

2
AX expression (Figures 7(d) and 7(e)). In

addition, the long tails caused by Cuc B were not affected by
either 3-MA or CQ (Figure 7(f)).

3.8. Cuc B Increased PTEN Expression. Phosphorylation of
PTEN was obviously upregulated by Cuc B in a dose-
dependent manner (Figure 8(a)). Increased p-PTEN in
response to Cuc B could be inhibited by NAC (Figure 8(b)),
KU55933, and caffeine (Figure 8(c)). Interestingly, NAC alone
decreased p-PTEN while KU55933 or caffeine alone slightly
increased p-PTEN (Figure 8(c)). Furthermore, when PTEN
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Figure 1: The cytotoxicity of Cuc B to BEL-7402 cells. Cells were treated with Cuc B for 6 h and the cell morphology was observed with
microscopy (20x) (a), the cell viability was determined by MTT (c), and the LDH release was determined (e). Cells (6 × 102) were treated
with Cuc B for 6 h and then cultured for 2 weeks.The culture mediumwas replaced every 3 days.The colony was determined by staining with
crystal violet and images were captured with a microscope (4x) (b). Cells were treated with Cuc B (100 nM) for 6 h, 24 h, and 48 h and the cell
viability was determined by MTT (d). Cuc B, Cucurbitacin B. ∗∗∗𝑝 < 0.001.

was silenced (Figure 8(e)), Cuc B-induced cell death was
further enhanced (Figure 8(d)).

3.9. PTEN Bridged DNA Damage and Autophagy in Response
to Cuc B. To dissect the role of PTEN in Cuc B-inducedDNA
damage, comet assay was performed. PTEN silence showed
no effect on the lengths of comet tails (Figure 9(a)) and p-
ATM expression but significantly decreased p-Chk1 expres-
sion in response to Cuc B (Figure 9(b)), while silence ATM
dramatically inhibited Cuc B-induced phosphorylation of
both PTEN and Chk1 (Figure 9(c)). Silence Chk1 showed no

effect on Cuc B-induced p-PTEN and p-ATM (Figure 9(d)).
In addition, silence PTEN reversed Cuc B-induced decrease
of p-mTOR and p-AKT and increase of LC3II (Figure 9(e)).

4. Discussion

We previously reported that Cuc B induced ROS-mediated
DNA damage in A549 cells [27]. The main findings of this
study include the following: (1) Cuc B induced DNA damage,
apoptosis, and protective autophagy in BEL-7402 cells. (2)
ROS was the upstream signals initiating these effects. (3)
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Figure 2: Cuc B induced DNA damage response. Cells were treated with Cuc B for 6 h and the DNA damage was detected by comet assay (a)
and the levels of 𝛾-H

2
AX (b), ATM, p-ATM, ATR, p-ATR (d), and Chk1, p-Chk1, Chk2, and p-Chk2 (e) were detected by Western blot. Cells

were treated with Cuc B (100 nM) and the expression of 𝛾-H
2
AXwas detected (c). Cells were pretreated with KU55933 (10𝜇M) (f) or caffeine

(10𝜇M) (g) for 2 h followed by cotreatment with Cuc B (100 nM) for 6 h, and the protein expression was determined by Western blot. Cuc B,
Cucurbitacin B.
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Figure 3: Cuc B induced protective autophagy. Cells were treated with Cuc B for 6 h and stained with MDC (20x) (a) and the protein
expression was detected by Western blot (b and d). Cells were treated with Cuc B (100 nM) and the expression of LC3 was detected by
Western blot (c). Cells were pretreated with 3-MA (2.5mM) (e) or CQ (10 𝜇M) (f) for 2 h and then cotreated with Cuc B for 6 h, and the cell
viability was determined by MTT. Cuc B, Cucurbitacin B; MDC, monodansylcadaverine. ∗∗𝑝 < 0.01; ∗∗∗𝑝 < 0.001.

PTEN activated by DNA damage bridged DNA damage and
autophagy in response to Cuc B.

Cuc B-induced cell death was well established in many
cell lines. The MTT and colony formation results showed
that Cuc B decreased cell viability and inhibited proliferation

at nano-mol levels. Increased LDH release suggested that
Cuc B might affect cell membrane. We previously reported
that Cuc B induced DNA damage in A549 [27], K562 [23],
and MCF-7 cells [28]. Cuc B induced long tails in comet
assay and increased 𝛾-H

2
AX expression suggesting that it
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Figure 4: Cuc B induced caspase-mediated apoptosis. Cells were treated with Cuc B for 6 h and apoptosis, protein expressions, and DNA
condensationwere determined byAnnexinV/PI double staining (a),Western blot (b and c), andHoechst 33342 staining (20x) (d), respectively.
Cuc B, Cucurbitacin B. ∗∗∗𝑝 < 0.001.
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Figure 5: Continued.
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Figure 5: Cuc B induced ROS formation. Cells were treated with Cuc B for 1 h and the ROS generation was detected with DCFH
2
-DA (a).

Cells were treated with Cuc B (100 nM) and the ROS formation was detected (b). Cells were pretreated with NAC (2.5mM) for 1 h followed
by cotreatment with Cuc B for 6 h and the ROS (c) and cell viability were determined (d). H

2
O
2
(1mM), positive control. Cuc B, Cucurbitacin

B; ROS, reactive oxygen species. ∗𝑝 < 0.05; ∗∗𝑝 < 0.01; ∗∗∗𝑝 < 0.001.

induced DNA damage in BEL-7402 cells. The key regulators
in response to DNA damage are ATM and ATR kinases,
which activated Chk1 and Chk2 [40]. The phosphorylation
of ATM/ATR and Chk1/Chk2 was increased by Cuc B, which
were dramatically inhibited by ATM inhibitor, KU55933
[41], and ATM/ATR inhibitor caffeine [42]. Thus, Cuc B-
induced DNA damage response was mediated by ATM/ATR
pathways.

Cuc B-induced autophagy was observed in Jurkat [22]
andMCF-7 cells [28].MDC staining for detecting autophagic
vacuoles [43] and increased LC3II expression were simple
methods for autophagy assay. The AKT/mTOR pathway,
especially the mTOR, has been implicated as the central
regulator of autophagy in response to natural products [6].
ULK1, a mammalian serine/threonine protein kinase, plays
a key role in the initial stages of autophagy by forming a
complex with Atg13 and FIP200 to mediate mTOR signaling
[44]. Here, Cuc B increased MDC fluorescence, inactivated
AKT/mTOR pathway, and upregulated p-ULK1 and LC3II
expression, which suggested that Cuc B induced autophagy
mediated by AKT/mTOR pathway. Similar results were
observed in MCF-7 cells [28]. Autophagy generally acted
as a prosurvival role in response to lethal stress. Protective
autophagy was reported in Cuc B-treatedMCF-7 [28], Cuc E-
treated 95D [34], and Cuc I-treated glioblastoma multiforme
cells [32]. Cuc B-induced cell death was further enhanced by
autophagy inhibitors 3-MA and CQ suggesting that Cuc B
induced protective autophagy in BEL-7402 cells.

Induction of apoptosis by Cuc B was documented. Cuc B
induced apoptosis in BEL-7402 cells as evidenced byAnnexin
V/PI double staining and the Hoechst 33342 staining. Fur-
thermore, Cuc B increased the proapoptotic proteins Bak and
Bik expression. However, the antiapoptotic protein Bcl-2 was
slightly decreased by Cuc B. Thus, Cuc B-induced apoptosis
might be mainly through the upregulation of proapoptotic

Bcl-2 family proteins. In addition, the increased cleavage of
caspase-7, caspase-9, and PARP revealed that apoptosis was
caspase-dependent.

Cuc B-induced ROS played important roles in DNA
damage, apoptosis, and autophagy [23, 26, 27, 29]. Here, Cuc
B-induced ROS formation was also observed in BEL-7402
cells. Furthermore, Cuc B-induced ROS was increased as
early as after 1 h treatment suggesting that ROS formation
was an early event. NAC dramatically inhibited Cuc B-
induced protein expression related to DNA damage, apop-
tosis, and autophagy. Thus, ROS mediated Cuc B-induced
DNA damage, apoptosis, and autophagy in BEL-7402 cells.
DNA damage-induced apoptosis has been well recognized
while its role in autophagy remains unclear [45]. Here,
we found that Cuc B-induced autophagy was inhibited by
KU55933 and caffeine while 3-MA and CQ showed no effect
on DNA damage. Collectively, the present data suggested
that DNA response triggered autophagy in response to Cuc
B. It is interesting to note that p-AKT was decreased by
NAC treatment. Similar result was reported in oral cancer
cells [46]. We considered that Cuc B-induced massive DNA
damage stress led toAKTdepressionwhileNAC reversed this
depression by inhibiting DNA damage through scavenging
ROS.

PTEN, a tumor suppressor gene, has been demonstrated
to play a critical role inDNAdamage repair andDNAdamage
response [47]. It also opposes PI3K function, negatively
regulates PI3K/AKT pathway, and thus leads to inactivation
of AKT and mTOR signaling [48]. A recent study showed
that Cuc B inhibited SH-SY5Y cells proliferation through
upregulation of PTEN [49]. Here, we found that Cuc B
increased p-PTEN expression in BEL-7402 cells, which was
inhibited by DNA damage inhibitors and NAC suggesting
that activation of PTEN was mediated by DNA damage
following ROS generation. Silence PTEN showed no effect
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Figure 6: ROS mediated Cuc B-induced DNA damage, autophagy, and apoptosis. Cells were pretreated with NAC (2.5mM) for 1 h followed
by cotreatment with Cuc B for 6 h, and the expressions of DNA damage related proteins (a), autophagy-related proteins (b), and apoptosis
related proteins (c) were detected by Western blot. Cuc B, Cucurbitacin B; NAC, N-acetyl-L-cysteine.

in comet assay suggesting that PTEN was not involved in
Cuc B-induced DNA damage although decreased Chk1 was
also observed. Silence ATM decreased Cuc B-induced PTEN
expression while silence PTEN did not affect ATM expres-
sion, suggesting thatATMactivation resulted in PTENupreg-
ulation. Furthermore, silence PTEN reversed Cuc B-induced
autophagy-related protein expression suggesting that PTEN
was involved in Cuc B-induced protective autophagy. This
was further supported by the enhanced cytotoxicity of Cuc
B in PTEN silenced cells. These results were consistent with
a recent report showing that ATMmediated PTEN phospho-
rylation and autophagy in response toDNA-damaging agents
in A549 cells [36]. Collectively, these results showed that
PTEN activation by DNA damage might act as an upstream
molecule of autophagy.

In summary, as depicted in Figure 10, this study showed
that a natural product, Cuc B, induced ROS-mediated DNA

damage, apoptosis, and protective autophagy. The DNA
damage activated PTEN linked the crosstalk between DNA
damage and autophagy. This study provides potential roles
of PETN in the interplay of prodeath DNA damage and the
prosurvival autophagy.

Abbreviations

ATM: Ataxia-telangiectasia mutated
ATR: ATM and RAD3-related
Chk1: Checkpoint kinase 1
Chk2: Checkpoint kinase 2
Cuc B: Cucurbitacin B
CQ: Chloroquine
DCFH

2
-DA: 5-(6)-Carboxy-2,7-dichlor-

odihydrofluorescein
diacetate



Oxidative Medicine and Cellular Longevity 11

KU55933
Cuc B

p-mTOR
(Ser2448)

p-AKT
(Ser473)

GAPDH

− −

− −+ +

++

(a)

Caffeine
Cuc B − −

− −+ +

++

p-mTOR
(Ser2448)

p-AKT
(Ser473)

GAPDH

(b)

KU55933
Caffeine

Cuc B − −

−

−

−

− − −

− −

−

+

+ + +

+

+ +

p-ATR
(Ser428)
p-Chk2
(Thr68)

I
LC3 II

GAPDH

(c)

3-MA
Cuc B − −

− −+ +

++

I

LC3 II

𝛾-H2AX
(Ser139)

GAPDH

(d)

CQ
Cuc B − −

− −+ +

++

I
LC3 II

𝛾-H2AX
(Ser139)

GAPDH

(e)

Inhibitor
Cuc B

100𝜇M 100𝜇M 100𝜇M 100𝜇M

100𝜇M100𝜇M100𝜇M100𝜇M

− −

− −+ +

++

CQ
 (1

0
𝜇

M
)

3
-M

A
 (2

.5
m

M
)

(f)
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Figure 10: Cuc B induced ROS-mediated DNA damage, apoptosis,
and protective autophagy in BEL-7402 cells.
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