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ABSTRACT Penicillin-resistant Streptococcus pneumoniae strains are found at high
rates in Romania and Iran. The mosaic structure of PBP2x was investigated in 9
strains from Iran and in 15 strains from Romania to understand their evolutionary
history. Mutations potentially important for �-lactam resistance were identified by
comparison of the PBP2x sequences with the sequence of the related PBP2x of ref-
erence penicillin-sensitive S. mitis strains. Two main PBP2x mosaic gene families
were recognized. Eight Iranian strains expressed PBP2x variants in group 1, which
had a mosaic block highly related to PBP2x of the Spain23F-1 clone, which is wide-
spread among international penicillin-resistant S. pneumoniae clones. A second unique
PBP2x group was observed in Romanian strains; furthermore, three PBP2x single mo-
saic variants were found. Sequence blocks of penicillin-sensitive strain S. mitis 658
were common among PBP2x variants from strains from both countries. Each PBP2x
group contained specific signature mutations within the transpeptidase domain,
documenting the existence of distinct mutational pathways for the development of
penicillin resistance.
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The increased rates of occurrence of penicillin- and multiple-antibiotic-resistant
Streptococcus pneumoniae strains (referred to here as penicillin-resistant S. pneu-

moniae [PRSP] strains) worldwide, which have been recognized since the early 1980s,
represent a paradigm for the evolution of a pathogen due to the selective pressure of
antibiotic use. In 1997, the Pneumococcal Molecular Epidemiology Network (PMEN) was
established for the classification of 16 global resistant clones based on multilocus
sequence typing (MLST) (1). Currently, 43 such clones have been accepted, and
antibiotic-sensitive clones that are important in disease are now also included (http://
web1.sph.emory.edu/PMEN/). Spain23F-1 is the most successful PRSP clone, and repre-
sentatives of this clone were first identified in Spain in 1984 (2). Members with the same
sequence type (ST) as the Spain23F-1 clone, ST81, and related clonal variants that
belong to clonal complex 81 have been isolated on every continent since then and
reveal substantial genetic variability, including variability in their capsular types, due to
the ongoing selective pressures imposed by the use of antibiotics and vaccination
strategies (3–5). A likely ancestor of Spain23F-1, a penicillin-nonsusceptible pneumo-
coccus from Australia isolated in 1967, was recently discovered, and it was documented
that the clone serves as the donor of genes associated with antibiotic resistance and
virulence to many other S. pneumoniae clones (6).

Alterations in penicillin-binding proteins (PBPs) are the main cause of penicillin
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resistance. PBPs, the target enzymes of �-lactam antibiotics, form a rather stable
covalent complex via their active-site serine, and these acylated PBPs are enzymatically
inactive. Mutations in the PBPs of penicillin-resistant laboratory mutants and clinical
strains decrease the affinity to the antibiotic inhibitor molecule, and thus, the strains
can still function in the presence of increased drug concentrations. The identification of
the amino acid changes involved in resistance has been the focus of multiple investi-
gations, since, in combination with structural information, knowledge of these changes
will help to provide an understanding of the enzymatic function of PBPs and might
facilitate the design of new inhibitors.

Three of the six pneumococcal PBPs, PBP2x, PBP2b, and PBP1a, act as the main
players for the resistance phenotype (for reviews, see references 7 and 8). In PRSP they
are encoded by mosaic genes containing highly altered sequence blocks differing by
up to 25% from the highly conserved sequences in sensitive strains. They display a
highly variable mosaic pattern in genetically distinct resistant PRSP clones (9), aggra-
vating the identification of mutations involved in penicillin resistance. It has long been
recognized that the commensal species S. mitis is one of the main donors of such
mosaic blocks (10, 11). Four distinct PBP2x variants that account for most of the
astounding variation of mosaic PBP sequences among resistant streptococci, including
S. pneumoniae and S. pseudopneumoniae, as well as S. infantis and S. oralis, were
identified in S. mitis (12, 13). Considering that S. mitis is also a naturally highly
penicillin-sensitive species similar to S. pneumoniae, this indicates that mutations
relevant for penicillin resistance are first selected in S. mitis prior to the transfer of such
ready-made gene sequences into the pathogen S. pneumoniae. Secondary mutations
which might be related to an altered resistance spectrum and to PBP function in
different genetic environments likely occur. In addition, non-PBP genes, such as murM
and ciaH, also play a role in penicillin resistance, at least in particular PRSP clones. PRSP
clones with a mosaic MurM gene produce an altered peptidoglycan containing an
increased proportion of indirect cross-links that include branched stem peptides (14).
CiaH mutations which occur frequently in laboratory mutants are rare in clinical isolates
but contribute to penicillin resistance, especially in combination with altered PBPs
(15, 16).

We have focused on alterations in PBP2x for several reasons. PBP2x and PBP2b are
primary resistance determinants in which mutations in the protein confer increased
resistance levels without changes in other PBP or non-PBP genes (17). Mutations in
PBP2x confer resistance to penicillins and cefotaxime, whereas PBP2b does not mediate
cefotaxime resistance (18), and mutations in PBP2x are a prerequisite for high-level
resistance, which also requires alterations at least in PBP1a, in clinical isolates (19).
Moreover, high-resolution crystal structures of PBP2x from penicillin-sensitive and
-resistant strains are available (20–22).

This study investigated PBP2x of PRSP clones from Iran and Romania, two countries
where PRSP strains are found at extremely high rates. In Iran, 78% of S. pneumoniae
isolates were reported to be PRSP in 2001 (23), but the rate declined during the next
decade, when rates of between 9% and 60% were reported, depending on the place
and site of isolation and the underlying disease (24–26). In Romania, the rate of
penicillin resistance among S. pneumoniae isolates was already 93% in the early 1990s
(27), and rates of from 70% to over 90% have been reported since then (28–31). One
study investigated the PBP2x, PBP1a, and PBP2b sequences of nine isolates with
high-level penicillin resistance from Romania, and all isolates were found to contain the
same amino acid changes, which were close to active-site motifs (32), but the se-
quences were not accessible. The mosaic structure and alterations that occur in PBP2x
in 9 Iranian and 15 Romanian strains are described here.

RESULTS
Strain collection. The Iranian isolates, obtained from four hospitals in Tehran, Iran,

were of serotypes 3, 4, 9V, and 19A and serogroup 6 (Table 1), consistent with the broad
range of serotypes and serogroups associated with PRSP strains in that country (24, 25).
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The sequence type (ST) derived from MLST analysis was obtained for seven isolates and
revealed that all had a distinct ST, i.e., that they were not epidemiologically related.
Only the two strains IR148 and IR174 are apparently members of the same clone, as
revealed by their identical restriction patterns on pulsed-field gel electrophoresis (not
shown). IR13 was of ST81 and thus belongs to the clone Spain23F-1; IR52 was of ST558,
to which serotype 35B isolates from different continents also belong; and all others
displayed new STs (Table 1). The serogroup was determined for 11 Romanian isolates:
10 were serogroup 19, which is prevalent in Romania (30, 31), and 1 was serogroup 6.

Mosaic gene families. The pbp2x sequences of the Iranian and Romanian strains
were compared to those of the first 16 PMEN clones (1) to see whether they display
similar mosaic structures. Two main groups of PBP2x clones were recognized (Fig. 1A
and B). Group 1 consisted of the large family of Spain23F-1-related pbp2x clones, here
also referred to as the 23F family (Fig. 1A), which included eight pbp2x clones from
Iranian strains and three pbp2x clones from Romanian strains, and nine PMEN clones.
In the Spain23F-1 clone, the mosaic block of pbp2x covers the central transpeptidase
domain (codons 266 to 616 of pbp2x) and extends through the 3= end. This sequence
block is highly related to pbp2x of the sensitive S. mitis M3 strain first wrongly described
as S. oralis, interspersed with two characteristic diverse sequence regions (11) (Fig. 1A).
One strain, RO116, included the 23F family block only after codon 586, whereas two S.
mitis 658-related sequence blocks were located within the transpeptidase domain after
codon 387 (Fig. 1A).

The pbp2x genes of six strains of our collection were almost identical to the pbp2x
genes of four PMEN clones: pbp2x of strain IR13, a member of the Spain23F-1 clone, was
identical to that of the type strain, ATCC 700902, and pbp2x of strain RO94 (pbp2xRO94)
was almost identical, differing by 2 nucleotides (nt) and a cluster of 6 nt, resulting in 3
amino acid (aa) changes. These alterations were also present in pbp2x of strain RO76
(pbp2xRO76), which was almost identical to pbp2x of the Spain14-5 clone (11 nt and 3 aa

TABLE 1 Properties of the S. pneumoniae strains

Strain Sourcea Date Age (yr) Sex Site of isolationb
Serotype or
serogroup STc

MICd (�g/ml) Susceptibilitye

pbp2x GenBank
accession no.PEN OXA CTX AMX ERY TET CAM GEN SXT

IR13 Sina Hospital 2008 68 Male CSF 6A/B 81 S S S R S MF506856
IR52 Roghayyeh Nursery 2011 2 Male Nasopharynx 9V 558 S S R R R MF506857
IR120 Shobeir Nursery 2011 3 Male Nasopharynx 19A 13331 S S S R R MF506858
IR135 Shobeir Nursery 2011 2 Female Nasopharynx 4 NDf R R R R R MF506859
IR148 Ameneh Nursery 2011 2 Male Nasopharynx 3 13387 S S S R R MF506861
IR136 Ameneh Nursery 2011 3 Male Nasopharynx 4 13330 S S S R R MF506860
IR158 Roghayyeh Nursery 2011 2 Female Nasopharynx 6A/B 13329 S S S R R MF506862
IR164 Roghayyeh Nursery 2011 0.5 Male Nasopharynx 6A/B 13328 S S S R R MF506863
IR174 Roghayyeh Nursery 2011 1.5 Female Nasopharynx ND ND S S R R R MF506864
RO6 Victor Babes hospital 2004 55 Male PF 19 4–8 16 0.5 8 R R R MF506865
RO27 Coltea Hospital 2003 79 Female Sinus 19 4–8 32 0.5 8 R R S MF506866
RO31 Victor Babes Hospital 2004 19 Male TA 6 4–6 24 0.5 2 R R S MF506867
RO33 Victor Babes Hospital 2003 10 Male TA 4 24 0.5 8 R R S MF506868
RO34 Victor Babes Hospital 2004 51 Female PF 19 4–8 16 0.5 8 R R S MF506869
RO36 Marie Curie Hospital 2003 4 Male TA 1.5–4 12 0.5 2 R R S MF506870
RO56 Coltea Hospital 2004 61 Male Sputum 19 0.5–4 6 0.5 1 S R S MF506871
RO58 Victor Babes Hospital 2004 12 Female TA 19 3–4 16 0.5 4 R R S MF506872
RO61 Victor Babes Hospital 2004 46 Male TA 19 4 24 0.5 4 R R S MF506873
RO67 Coltea Hospital 2004 69 Male Sputum 19 2–4 8 1 2 S S R MF506874
RO76 Marie Curie Hospital 2004 3 Female Ear 19 8 48 8 �8 R S S MF506875
RO85 Victor Babes Hospital 2004 7 Female TA 3–8 24 0.5 2 R R S MF506876
RO94 Marie Curie Hospital 2004 2 Male TA 4–8 24 4 8 S S S MF506877
RO106 Marie Curie Hospital 2004 5 Male TA 19 4–8 16 0.5 8 R R S MF506878
RO116 Marie Curie Hospital 2003 1 Female CS 19 3–4 1.5–2 2 2 S S S MF506879
aThe hospitals or nurseries are located in Tehran (Iranian [IR] isolates) or Bucharest (Romanian [RO] isolates).
bTA, tracheal aspirate; PF, pleural fluid; CS, conjunctival secretion; CSF, cerebrospinal fluid; Ear, middle ear fluid.
cST, sequence type defined by MLST; the pulsed-field gel electrophoresis (PFGE) pattern of strain IR174 was identical to that of strain IR148 (not shown).
dMIC values for �-lactam antibiotics were determined by the agar dilution method; for all other antibiotics, the Kirby-Bauer disk diffusion test was used. All isolates
from Iran were resistant to oxacillin and susceptible to cefotaxime, according to published guidelines (61). PEN, penicillin; OXA, oxacillin; CTX, cefotaxime; AMX,
amoxicillin.

eERY, erythromycin; TET, tetracycline; CAM, chloramphenicol; GEN, gentamicin; SXT, trimethoprim-sulfamethoxazole; S, susceptible; R, resistant.
fND, not determined.
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FIG 1 Mosaic structures of the PBP2x variants. Mosaic PBP2x structures were deduced by comparison with the
reference PBP2x sequences of S. pneumoniae R6 (white sequence blocks) and S. mitis strains M3 (red sequence
blocks) and 658 (green sequence blocks). Highly similar sequences (�5% difference) are shown in the same color;
reference sequences are indicated by the color code at the bottom. The active-site motifs of PBP2x within the
transpeptidase domain (aa 266 to 616) are shown on top; the gray-shaded areas indicate the central transpeptidase
domain. Mutations at sites 338, 394, and 550, close to active-site motifs, are marked by black arrowheads. The
strains are indicated on the right. Green dots, strains from Iran; red dots, strains from Romania. Highly similar

(Continued on next page)
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changes). pbp2x of strain IR164 (pbp2xIR164) was similar to that of the Taiwan19F-14
clone (4 nt and 2 aa changes). Finally, the pbp2x genes of strains IR148 and IR174
(pbp2xIR148 and pbp2xIR174), which were identical to each other, differed from the pbp2x
gene of the Spain6B-2 clone by 18 nt and 4 aa, but only 2 nt and 2 aa changes were
located within the common mosaic block.

Noteworthy was the presence of sequences related to the sequence of S. mitis 658
(Fig. 1A, green), one of the penicillin-sensitive reference strains used for the definition
of mosaic sequence blocks, mainly in the 5= region, in seven pbp2x variants (those from
the South Africa19A-13 clone and strains IR164/Taiwan19F-14, IR120, IR135, IR136, RO56,
and RO116).

The second group consisted of seven variants derived from 10 Romanian strains (Fig.
1B). They all contained sequences related to the pbp2x of low-level-resistant S. mitis
strain 578 which belongs to the family of mosaic genes related to the pbp2x gene of
sensitive reference strain S. mitis 658 (12). Moreover, they contained large blocks of
identical sequences of unknown origin. This sequence block was also present in the
single pbp2x variant from strain RO67 (pbp2xRO67), which was almost identical to pbp2x
of the high-level-resistant S. mitis B6 strain after codon 329 (4 nt and 3 aa differences).
The single pbp2x variant from an Iranian strain (strain IR158) contained sequence blocks
related only to the sequences of reference S. mitis strains M3 and 658 (Fig. 1B); it was
identical to a pbp2x gene from Hungarian strain Hu7 of a different ST (not shown).

Mutations in PBP2x. The 750-aa PBP2x is a multidomain protein consisting of a
short N-terminal membrane anchor, an N-terminal domain, and a central transpepti-
dase domain (residues 266 to 616), followed by a linker region and a C-terminal
extension (residues 635 to 750) which is folded into two PASTA domains (22). Mutations
associated with resistance have been described only within the central transpeptidase
domain of the protein, which contains three boxes highly conserved in penicillin-
sensitive streptococci: S337TMK with the active-site serine, S394SN, and K547TG. Within
the transpeptidase domain, a total of 73 sites in all PBP2x variants, including PBP2x of
the PMEN clones and S. mitis B6, were distinct from PBP2x of the sensitive S.
pneumoniae R6 strain (Fig. 2). However, 41 of them were present in the four
penicillin-sensitive reference S. mitis strains M3, 658, SV01, and NCTC10712 (12),
leaving 32 sites to be considered. The changes E282Q, N501V, D506E, L510Q, and
N514H occurred in PBP2x of S. mitis NCTC10712 or S. mitis SV01, whose sequences
are not included in Fig. 2.

All group 1 PBP2x variants except those of the Poland23F-16 and Tennessee23F-4
clones, where S389 was not altered, contained the signature mutations of this family:
T338A, L364F, I371T, S389L, N417K, N444S, L510T, T513N, and N605T (Fig. 2). Other
mutations were observed only in some PBP2x variants. L293S and T550A were re-
stricted to the Tennessee23F-4 clone, as described previously (33). PBP2x of IR136
contained the additional changes M339F, E378A, M400T, and Y595F, which were also
found in PBP2x of the Poland23F-16 clone. A545E was present only in the PBP2x variants
of Romanian strains RO56 and RO76, and L328F was present in RO56.

PBP2x of strain RO116 (where the mosaic block of the Spain23F-1 clone was
restricted to the C-terminal end of the transpeptidase domain) contained completely
distinct mutations. First, T338 was changed to P, as in PBP2x of all group 2 Romanian
strains, and it possessed the three alterations M289T, A369V, and V456A.

Group 2 PBP2x variants shared seven mutations: T338P, A369V, I371T, Q405K,
A446G, S531K, and Y595F. Two variants contained V456A (the strain RO31 PBP2x
variants and the PBP2x variant of strains RO58, RO61, RO106, and RO85, in which the
PBP2x proteins of the last four strains had identical PBP2x sequences).

FIG 1 Legend (Continued)
variants are indicated by brackets on the right; black arrows on the left indicate single PBP2x variants. (A) PBP2x
containing sequences similar to those of pbp2x of the Spain23F-1 clone (group 1) and the single PBP2x variant
RO116; (B) group 2 pbp2x and the single PBP2x variants RO67 and IR158, including related sequences of S. mitis
strains B6 and 578.
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PBP2x of strain RO67 shared all mutations with PBP2x of S. mitis B6: T338A, I366M,
A369V, I371T, E378G, A507T, S531Q, and a cluster of 5 aa changes at sites 595 and 597
to 600. There were three differences between these two PBP2x variants: L328F was
present in RO67 and RO56 but not in S. mitis B6, site 595 was changed to L in S. mitis
B6 but was Y in RO67, and only PBP2x of S. mitis B6 carried S494Y. PBP2x of IR158 was
the only one without a change at site 338, but it contained the mutation H394L, which
is close to the second conserved active-site motif S395SN, plus the mutations A369V
and S389L.

DISCUSSION

The present study extends the analysis of mosaic PBP2x structures and mutations
from previous analyses performed mainly with commensal streptococci (12) to S.
pneumoniae strains isolated from two geographic areas, Romania and Iran. Both
countries reported extremely high rates of occurrence of PRSP between 1990 and early
in this century, but only limited data on the underlying changes in PBPs are available
(32, 34). A detailed analysis of PBP2x, one of the primary targets for �-lactam antibiotics,

FIG 2 Alignment of PBP2x sequences. Only sites of the transpeptidase domain that differ from PBP2x of S. pneumoniae R6 are shown. The vertical numbers
in the first three rows indicate the amino acid positions. The asterisks above the amino acid position mark relevant mutations (see the text for details). The PBP2x
variants of group 1 and group 2 are boxed. The color code for the mutations is as follows: light blue, mutations close to active-site motifs (aa 338, 394, and
550); yellow and green, signature mutations of group 1 and group 2 PBP2x, respectively; gray, mutations that occur only in particular variants. The reference
sequences of S. mitis (Sm) strains M3 and 658 are shaded in pink and green, respectively. Black arrows on the right mark distinct PBP2x variants; brackets on
the left indicate highly similar sequences. Green dots, strains from Iran; red dots, strains from Romania. 1, PBP2x of the Spain23F-1 clone is identical to PBP2x
of the Spain9V-3 clone and S. pneumoniae CGSP14 (6); 2, a PBP2x variant identical to that in RO31 is present in RO58, RO61, and RO106. SA19A-13, South
Africa19A-13 clone.
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may act as a start to unravel the evolutionary pathway of penicillin resistance, including
the contribution of commensal streptococci to its genetic variation.

Mosaic structure of PBP2x. Two large groups of mosaic PBP2x genes are described

here. The first group, the 23F family, represented by pbp2x of the PRSP clone Spain23F-1,
included pbp2x from Iranian and Romanian strains and 9 of the first 16 PRSP PMEN
clones isolated in the 1980s and 1997 (1), confirming its dissemination throughout the
pneumococcal population worldwide, as shown previously (6). A total of 17 pbp2x
variants of group 1 were observed among the 21 strains shown in Fig. 1A. It is of
interest that the mosaic block of S. mitis M3-related sequences in pbp2x of strain IR52
(pbp2xIR52) extended into the region encoding the N-terminal domain of the protein
farther than in any other variants, a phenomenon observed so far only in PBP2x of
penicillin-resistant S. mitis and S. oralis strains (12, 35–37). This suggests that pbp2x of
IR52 is the result of interspecies gene transfer rather than transfer from another S.
pneumoniae clone. Moreover, one strain, strain RO116, contained the Spain23F-1-
specific mosaic block only after codon 586, but the main parts of the transpeptidase
domain were of different origins, with the sequence of this region in RO116 being
related to that in S. mitis 658. Short diverse regions whose sequences do not match the
Spain23F-1 clone or S. mitis 658 sequence frequently flank the 5= region of the mosaic
block, an indication that recombination events contribute to sequence variation (Fig. 1,
gray).

The presence of sequence blocks of variable length highly related to the sequence
of the sensitive reference strain S. mitis 658, which was common among the pbp2x
genes of the Iranian strains, documents the presence of donors other than the
Spain23F-1 clone in this region. Sequences related to those of other pbp2x genes from
penicillin-sensitive reference strains (S. mitis strains SV01 and NCTC10712, S. infantis JR,
and S. oralis ATCC 35037) occur in particular pbp2x variants of the 23F family (12). These
sequence blocks are frequently located in the regions flanking the transpeptidase
domain, suggesting that the signature mutations within the transpeptidase domain are
evolutionarily advantageous for PBP function independently of the sequences of the
other domains. This and the variability of apparent recombination sites within the 23F
family are signs of multiple inter- and intraspecies gene transfer events.

The second group consisted only of PBP2x variants from 10 Romanian isolates that
expressed unusually high levels of penicillin resistance and for which penicillin MICs
were 4 to 8 �g/ml, a phenotype prevalent in Romania (32). Related pbp2x variants were
not found in other PRSP strains when the NCBI databases (containing nucleotide and
draft genome sequences) were searched by BLAST analysis. Since the isolates were
mainly of serogroup 19, it is tempting to assume that they are genetically related.

Mutations in PBP2x. In each of the two groups of PBP2x variants, distinct sets of

mutations which were absent in sensitive S. mitis reference strains were reflected by
their different positions within the protein structure (Fig. 3). The signature mutations of
the 23F family (F364, T371, L389, K417, S444, T510, N513, and T605) have been
described in many publications (9, 11–13, 38–43), consistent with the widespread
occurrence of such variants among PRSP strains (6). S389L was absent in two PBP2x
variants (from the Poland23F-16 and Tennessee23F-4 clones), suggesting that it is not
important for the resistance phenotype. On the other hand, structural data revealed
that the L389 mutation produces a destabilizing effect that generates an open active
site (22), similar to the effect of H514, which occurs in the penicillin-sensitive S. mitis
strain NCTC10712, and thus might affect the protein function other than the interaction
with �-lactams. The only mutation also present in the group 2 PBP2x variants and in S.
mitis 578 as well was the change I371T. This mutation results in a slight displacement
of the SXN motif, leading to a more accessible active site (22). In vitro mutagenesis of
the pbp2x gene of strain 5204 (pbp2x5204) in combination with the results of biochem-
ical and microbiological tests confirmed that T371, A338, and T605 are critical for
resistance (38).
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Some mutations occur only in individual strains. The T550A mutation results in
hypersensitivity to penicillins but increased resistance to cefotaxime (44) due to a
decreased acylation efficiency for cefotaxime (20, 45), whereas the L393S mutation,
which was also present in the Tennessee23F-4 clone, has no impact on resistance (33).
In vitro determination of deacylation and acylation kinetics confirmed that M339F and
M400T contribute to resistance (38, 46–48). Y595F occurs in two PBP2x variants of the
23F family (those from the Poland23F-16 clone and IR136) and in all group 2 PBP2x
variants and is associated with high-level cefotaxime resistance in S. pneumoniae (39).
The reversal of F595 to Y595 resulted in a decrease in the level of �-lactam susceptibility
(39), but the in vitro acylation efficiency was only slightly affected in a mutant contain-
ing F595 compared with the acylation efficiency of the wild-type protein (38). This
mutation, which lies at the beginning of helix �11 (Fig. 3), has been suggested to be
important for �-lactam recognition, similar to other mutations at sites 597 to 600 (20).
E378A has been noted in high-level-resistant S. mitis strains (13), and G378 is present
in the distinct variants PBP2xRO67 and PBP2x of S. mitis B6. The change A545E, present
in two Romanian strains, has not been described. The roles of these mutations in
resistance will require further analyses.

Of the seven changes highlighted in the group 2 PBP2x variants, only I371T and
S531K are present in S. mitis 578, suggesting that the other changes (T338P, A369V,
Q405K, A446G, and Y595F) contribute to the high resistance level of the Romanian
strains. The mutation A338, which was frequent in the 23F family, reduces the acylation
efficiency for cefotaxime (k2/K, where k2 is the rate constant and K is the dissociation
constant) by a factor of 2, whereas a 5-fold reduction was observed for strains with the
P338 mutation (49), consistent with the high penicillin resistance level of strains
containing group 2 PBP2x variants. Site 531 is rarely changed to I/K/N/Q/R in resistant
commensal streptococci (12, 13), and A446G has been described in a high-level
penicillin-resistant S. mitis strain (13). A369V has been identified in S. mitis strains with
a benzylpenicillin MIC value of 0.016 �g/ml and thus might not contribute to penicillin
resistance (13). Q405K is positioned at the surface of the protein, and thus, its impact
on resistance is also questionable. V456A occurred in only two group 2 PBP2x variants
and might result in structural changes due to the smaller side chain of the alanine
residue.

There were three distinct PBP2x variants outside the two groups described above.
PBP2x of strain RO116 contains the mutations T338P, A369V, and V456A present in

FIG 3 Positions of the signature mutations in group 1 and group 2 PBP2x variants. The structure of the transpeptidase domain of the acylated form of PBP2x
of S. pneumoniae R6 with cefuroxime is shown (PDB accession number 1QMF) (20). The positions of the mutations are indicated. Light pink, site 338 close to
active-site serine 337; white, active-site residues (S337, S395, and K547); red, position 371, which is common to both protein groups; yellow, the cefuroxime
molecule in the active-site cavity.
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group 2 PBP2x variants, and M289T has been identified in a cefotaxime-resistant
laboratory mutant (44), in agreement with the potential impact of all four mutations on
�-lactam resistance. PBP2x of strain RO67 was almost identical to that of the high-level
penicillin-resistant strain S. mitis B6, with an accumulation of mutations between sites
595 and 600 which were described in another set of Romanian strains of serotype 23F
(32). Strain IR158 contained the only PBP2x variant without a mutation at site 338, but
it had A369V, S389L, and H394L. H394L is located next to the conserved motif S395SN
and has been described only in low-level-resistant isolates and always without muta-
tions close to the other two conserved motifs at site 338 or 552 (12, 13, 40, 50). The
change from histidine, an aromatic, weak basic amino acid, to the aliphatic leucine at
a critical position close to the active site of the protein is likely to affect the interaction
with �-lactams.

In summary, despite the high variability of mosaic PBP2x genes in PRSP strains, even
within groups of closely related variants, mutations potentially relevant for resistance
can be highlighted on the basis of a comparison with penicillin-sensitive reference
strain S. mitis sequences, as shown here for two families of PBP2x variants. By ignoring
changes that occur in these reference S. mitis PBP2x alleles, different mutational pattern
become more obvious in groups of related PBP2x alleles. Evidence of multiple muta-
tional pathways in PBP2x for the development of penicillin resistance has been ob-
tained on the basis of a comparison of a large data set consisting of the sequences of
PBP2x variants from commensal streptococci, in which five distinct families of mosaic
PBP2x genes were described, and all of the families contained PBP2x variants of PRSP
strains (12), supporting the conclusion of alternative penicillin resistance mechanisms
reached by comparing the crystal structures of group 1 PBP2x variants (22, 38) with the
crystal structure of a PBP2x variants with a distinct mosaic makeup (21). Considering the
overall mosaic makeup of pbp2x, features specific to isolates from one geographic area
are apparent, such as the presence of S. mitis 658-related sequence blocks in the 5=
region in pbp2x of the Iranian isolates and sequence blocks specific to pbp2x of the
Romanian isolates. The variability of their mosaic pbp2x genes resembles that observed
in members of another clone that is also restricted to one geographic area,
Hungary19A-6 (51, 52). Unusual compositions of mosaic pbp2x were also observed in
isolates from Japan (12). In most studies in which large numbers of strains have been
analyzed, the mosaic structure of PBPs was not investigated in detail (42, 43, 53), and
the global presence of the 23F family of PBP2x genes in S. pneumoniae and viridans
group streptococci as well has frequently masked the occurrence of other variants and
mutations specific to minor pbp2x mosaic gene families.

It is clear that the high MICs for �-lactams expressed by many of the strains in the
present study cannot be explained solely by PBP2x mutations. A single mutation in
PBP2x confers an increase in the level of resistance to cefotaxime, the MIC of which for
the sensitive R6 strain is 0.02 �g/ml, of between only 1.5- and 30-fold but is the basis
for the higher resistance levels in the context of other mutations in PBP2x and other
PBPs as well. Moreover, MurM (54–57) and the histidine protein kinase CiaH (16)
contribute to resistance, at least in particular PRSP clones. Other components of the
peptidoglycan synthesis machinery are likely to interact with PBPs directly or indirectly
and might be modified in response to PBP alterations in penicillin-resistant strains as
well. All these facts contribute to the difficulties with the experimental verification of
the impact of individual mutations within PBP2x (and other PBPs) on penicillin resis-
tance. The availability of larger amounts of genomic data for PRSP and commensal
streptococci will facilitate the gathering of more insight into the complex genetic
networking between species and unravel the mutations in components involved in the
expression of penicillin resistance.

MATERIALS AND METHODS
Characterization of bacterial strains and antibiotic susceptibility testing. Nine strains isolated in

2011 (8 strains) and 2008 (1 strain) in Tehran hospitals and 15 strains from Romania were included in the
present study (Table 1). Serotyping was performed by Neufeld’s Quellung reaction using in-house-
produced serum and antigens from the Statens Serum Institute, Copenhagen, Denmark, for the Roma-
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nian strains and by PCR as described previously (58). Identification by MLST was performed as described
previously (59). Allele numbers and sequence types were obtained from the MLST database for S.
pneumoniae (https://pubmlst.org/spneumoniae/). Susceptibilities to antibiotics were determined by the
agar dilution method recommended by CLSI (60) in the case of �-lactam antibiotics for Romanian
isolates, according to the method of Long et al. for Iranian isolates (61), and by the Kirby-Bauer disk
diffusion method in all other cases.

DNA isolation and PCR amplification. Chromosomal DNAs from streptococci were isolated as
described previously (11). PCR products were purified using a JetQuick DNA purification kit (GenoMed).
PCRs were performed using either GoldStar Taq polymerase (Eurogentec) or DreamTaq polymerase
(Fischer) according to the manufacturers’ instructions. The PBP2x gene fragments of strains from Iran
were amplified with the primers pn2xup and pn2xdown (11) and, in the case of the Romanian strains,
the primers PM65 (5=-TACAGATGCAACTTAAACGGTTTTCGCGTG) plus PM80 down (5=-GCAAACCACC
AATCATGGCAAGAATCACTAG), and direct sequencing of PCR products was performed with consec-
utive primers. Other PBP2x genes used in the analysis included those related to mosaic blocks of
PBP2x from the Iranian and Romanian isolates present in 10 of the 16 global PRSP clones defined by
the PMEN network (1) and in S. mitis, as shown in Fig. 1A and B. These sequences were retrieved from
the following (GenBank accession numbers are given in parentheses): from strains S. pneumoniae
Tennessee23F-4 ATCC 51916 (AM779356) (62), S. mitis 578 (KY292539), and S. mitis 658 (KY292535), from
the genomes of clones Spain23F-1 (FM211187), Spain6B-2 (NC_014498), Spain14-5 (FWTC01000077),
Finland 6B-12 (FWWA01000144), South Africa19A-13 (FWSX01000072), Taiwan19F-14 (NZ_FWSZ00000000),
Taiwan23F-15 (FWSS01000062), and Poland23F-16 (FWSU01000014), and from S. mitis B6 (NC_013853) and
S. mitis M3 (LROV01000013).

Bioinformatic tools and analysis. PBP2x sequences were aligned by use of the ClustalX2 program
(63) and further processed by the GeneDoc program. The PBP2x gene sequences were aligned with each
of the reference sequences. Codon sites were included manually and trimmed by the program Clustal
Formatter2 to reveal only sites that differ from the reference sequence, as shown in Fig. 2. Sequence
blocks that differed by �5% were defined as distinct sequences, as shown by the different colors in Fig. 1.

Accession number(s). The GenBank accession numbers for the pbp2x genes from the strains
analyzed in this study are MF506856 to MF506879 (Table 1).
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