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Abstract: Research on the applications of new techniques such as machine learning is advancing
rapidly. Machine learning methods are being employed to predict the characteristics of various kinds
of concrete such as conventional concrete, recycled aggregate concrete, geopolymer concrete, fiber-
reinforced concrete, etc. In this study, a scientometric-based review on machine learning applications
for concrete was performed in order to evaluate the crucial characteristics of the literature. Typical
review studies are limited in their capacity to link divergent portions of the literature systematically
and precisely. Knowledge mapping, co-citation, and co-occurrence are among the most challenging
aspects of innovative studies. The Scopus database was chosen for searching for and retrieving the
data required to achieve the study’s aims. During the data analysis, the relevant sources of publica-
tions, relevant keywords, productive writers based on publications and citations, top articles based
on citations received, and regions actively engaged in research into machine learning applications
for concrete were identified. The citation, bibliographic, abstract, keyword, funding, and other data
from 1367 relevant documents were retrieved and analyzed using the VOSviewer software tool.
The application of machine learning in the construction sector will be advantageous in terms of
economy, time-saving, and reduced requirement for effort. This study can aid researchers in building
joint endeavors and exchanging innovative ideas and methods, due to the statistical and graphical
portrayal of participating authors and countries.

Keywords: machine learning; concrete; prediction; modeling; bibliographic data; scientometric analysis

1. Introduction
1.1. Background

The fast global growth of data estimation techniques and analytical methods cur-
rently plays a key role in nearly every field of study [1,2]. These models and methods
are enhanced using data science principles, because data science facilitates intelligent and
intellectual work in several areas such as sensor-based smart farming, learning associa-
tions, prediction, weather forecasting, healthcare, etc. [3]. In addition, data sciences have
permeated every aspect of tool development and have become a pillar of engineering
and scientific disciplines. Furthermore, data science has spawned other subdisciplines,
including artificial intelligence (AI), machine learning (ML), deep learning, etc. [4–10].
These subdisciplines provide a deeper grasp of learning and fundamental relationships,
and allow for dealing with valuable datasets, diverse data sources, computer systems for
data-concentrated functions, data privacy, and other related topics [11–15]. Nevertheless,
ML is one of the most powerful and in-demand technologies globally [16–20]. Furthermore,
it is a well-established tool of AI.
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1.2. Literature Review

Generally, ML focuses on developing a computer’s or a model’s learning abilities
through interpretations, prior practices, and training data samples [21–23]. It provides
many programs and techniques for designing a learning model and for self-improvement
when subjected to new datasets. ML has a vast application scope that includes data
analytics, regression, prediction, classification, learning association, clustering, extraction,
audio and picture recognition, etc. [24,25]. Forecasting and analysis are the best-suited
application fields among these applications, where previous data are used to predict future
probabilities and to provide a more precise evaluation of future probabilities [26,27]. In
addition, ML is becoming an integral aspect of every subject, and researchers worldwide
have focused increasingly on ML functions in each area. Recently, the infrastructure
and building sector has been rapidly expanding on a global scale. ML technologies aid
concrete specialists, engineers, and scientists in developing the dissemination of knowledge
about their material [28]. Concrete consists of four main elements: water, fine and coarse
aggregates, and cement as a binder [29–31]. Some supplementary elements such as fly
ash, silica fume, or chemical combinations have been utilized to enhance the performance
and strength of concrete [32–36]. The literature indicates that researchers are concentrating
increasingly on these supplementary materials, since they are often waste materials created
as a result of industrial, agricultural, and municipal processes [37–41]. The recycling and the
widespread stockpiling of these leftovers for bulk use raise serious social and environmental
problems on a global scale [42]. As an example, fly ash is a waste that is detrimental to
the environment since it results in groundwater contamination, air pollution, and ailments
in the human body [43]. Concrete strength tests are typically conducted between 3 and
28 days on samples of concrete [44–47]. The 28-day timeframe creates construction delays,
although the consequences of ignoring the test would be minimal. For quality management
and pre-designing in the construction industry, it is essential to create systems for the quick
and accurate prediction of material strength properties. ML enables improved prediction
models and methods, including decision trees, support vector machines, linear regression,
random forest, regression trees, neural networks, water cycle algorithms, etc. [48–56].

1.3. Categories of Machine Learning

In general, ML is grouped into three classes (Figure 1): reinforcement learning, unsu-
pervised learning, and supervised learning [57,58]. Supervised learning relates to regression
and classification algorithms, which anticipate discrete or continuous results. In super-
vised approaches, the model is trained with known output data instances. The objective
of unsupervised learning, on the other hand, is to detect relationships among datasets
without specified descriptions, with the intention of grouping. Non-parametric models are
sometimes known as unsupervised learning models [57]. Reinforcement learning, a less
prevalent class of ML, is a form of trial-and-error learning that connects the space between
unsupervised and supervised learning by identifying commonalities in the data and giving
the right responses [59]. As a result of their adaptability and robust performance, ML
approaches have attracted considerable interest in various civil engineering applications.
They have been utilized mostly for the objectives of optimization and prediction [60,61].
In structural optimization, which tries to minimize the cost of a structure while providing
a required performance, ML techniques are often used. ML approaches may be used to
optimize the size, topology, and geometry of structural elements, so that the structure
fulfils minimal design criteria [62]. In contrast, predictive models are designed to learn
patterns from a given data sample and simplify them in order to make exact estimates.
ML approaches have been used for a variety of issues in civil engineering, including
structural health monitoring, geotechnics, fracture mechanics, etc. [63–70]. Estimations of
various characteristics of conventional and advanced concretes, such as durability, thermal
characteristics, and mechanical characteristics, have been extensively covered in previous
studies [71–74].
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Figure 1. Categories of machine learning.

1.4. Motivation and Significance of the the Study

As research on the use of ML to forecast concrete properties increases in response to ad-
vancing computational technologies, scientists are confronted with information restrictions
that may stifle innovative research and academic collaboration. Consequently, it is crucial to
develop and implement a system that helps academics to acquire essential knowledge from
the most highly credible sources possible. Using a software program, a scientometric tech-
nique may help overcome this deficiency. In this study, we aim to perform a scientometric
study of bibliographic records published on ML for concrete between 2001 and May of 2022.
A scientometric assessment can achieve a quantifiable assessment of enormous amounts of
bibliographic data by utilizing an appropriate software application. Conventional review
studies lack the capacity to link disparate portions of the literature accurately and compre-
hensively. Scientific visualization, co-citations, and co-occurrence are among the highly
complicated aspects of contemporary research [75–78]. The scientometric analysis revealed
the sources with the most publications, keyword co-occurrence, the authors with the most
papers and citations, the top articles in terms of citations, and the regions actively involved
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in research regarding ML applications for concrete. The Scopus search engine was used
to obtain citation, bibliographic, abstract, keyword, funding, and other information from
1367 pertinent papers, which were then analyzed using the VOSviewer application. As
a result of the graphical and statistical representation of researchers and countries, this
study will assist scholars in developing collaborative endeavors and exchanging innovative
concepts and techniques.

2. Review Strategy

In this study, we conducted a scientometric analysis of bibliographic data [79–81]
in order to quantify the numerous characteristics of the literature. Scientometric studies
utilize scientific mapping, a technique established by academics for bibliometric data
analysis [82,83]. Numerous articles have been published on the subject under study; thus,
it was essential to utilize a credible search engine. Web of Science and Scopus are two
extremely precise databases that are ideally fit for this purpose [84,85]. Scopus, which is
highly recommended by academics [86,87], was used to collect bibliographic information
for this study on ML for concrete. A May 2022 Scopus search for “machine learning
for concrete” yielded 2468 results. Numerous filter settings were utilized to eliminate
unnecessary papers. Figure 2 depicts a complete flowchart of the data retrieval, the analysis,
and the numerous limits/filters applied during the analysis. The reason for selecting these
filters at the data searching stage was to retrieve the relevant data within the domain
of this study and maintain limits so that the data could be analyzed appropriately. For
example, the subject areas of engineering and material and environmental science were
selected, and the required language was English. In addition, the reason for choosing
limits at different analysis steps such as publication sources, keywords, authors, etc., was
to obtain results leading to better mapping and comparison. For example, the lowest
document limit for a source was kept at 15. If the limit is set at lower values (e.g., 5),
it results in more sources, and the map produced is hard to read. Additionally, other
studies have been published using the same method [88–91]. Following the application
of these filters to the Scopus database, 1367 records remained. The Scopus records were
stored in a comma-separated values (CSV) format for further assessment using the relevant
software. VOSviewer (version 1.6.17) was utilized to construct the scientific visualization
and quantitative evaluation of the obtained material. VOSviewer is a freely accessible,
open-source mapping tool that is generally employed in distinct study areas and well
recommended by academics [92–94]. Consequently, the current study’s objectives were
met by using VOSviewer. The resulting CSV file was loaded into VOSviewer, and further
evaluation was conducted while maintaining data consistency and reliability. During the
scientometric analysis, the publishing outlets, the most frequently occurring keywords, the
researchers with the highest number of published articles and citations, the documents that
received the most citations, and the state’s involvement were all evaluated. The multiple
features, together with their interrelationships and co-occurrence are illustrated via maps,
and the quantitative data are presented in tables.
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Figure 2. Flowchart of the study’s strategy, indicating various choices selected and limits applied
during each step.

3. Results Analysis
3.1. Subject Areas and Annual Articles Published

This assessment was performed using the Scopus analyzer to identify the most per-
tinent study fields. As seen in Figure 3, engineering, computer science, and materials
science were found to be the top three document-generating disciplines, with about 40%,
16%, and 14% of documents, contributing a total of 70% of documents. In addition, the
Scopus database was analyzed for the types of publications containing the sought phrase
(Figure 4). Based on this assessment, journal papers, conference articles, conference reviews,
and journal reviews comprised around 69%, 25%, 4%, and 2% of all materials, respectively.
Figure 5 depicts the annual development of articles published in the various study fields
from 2001 to May 2022. The year limit on the subject research field was set to start from
2001. Up to 2015, there was modest growth in the number of publications in the field of ML
for concrete research, with an average of around 10 papers each year. Subsequently, there
was a significant increase in the number of articles, with an average of around 159 articles
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each year between 2016 and 2021 and 385 articles in 2021. The number of publications is
increasing each year, and in the current year, the number of publications in the research area
is 272 so far (May 2022). It is fascinating to see that researchers are focusing their attention
on the use of contemporary tools such as ML for estimating the properties of construction
materials. This will provide the building sector with more rapid and cost-efficient methods
by reducing the need for experimental procedures.
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3.2. Publication Sources

An evaluation of publication outlets (journals) was performed on the data using
VOSviewer. A minimum of 15 papers per source was stipulated, and 13 of the 541 publica-
tion sources satisfied this requirement. Table 1 displays the publishing outlets that released
at least 10 publications on ML for concrete up to May 2022, along with the number of
citations received within that time frame. “Construction and Building Materials (CONBUILD-
MAT)”, “Materials”, and “Engineering Structures” were found to be the top publication
journals with 94, 52, and 48 papers, respectively. Furthermore, the same three sources
obtained the greatest number of citations between 2001 and May 2022, with “CONBUILD-
MAT” obtaining 1677, “Engineering Structures” receiving 602, and “Materials” receiving
441 citations. This examination could provide the groundwork for forthcoming scien-
tometric evaluations in ML research for concrete. Additionally, previous conventional
review studies were unable to produce systematic graphs. Figure 6 shows a visualization
of the sources publishing at least 15 articles. The frame dimension is related to the outlet’s
influence on the present study field, based on document count; a bigger frame size indicates
a greater impact. As an illustration, “CONBUILDMAT” has a larger frame than the others,
indicating that it is a journal of great significance in the present research field. Four clusters
were formed, characterized by a distinct color on the map (blue, red, yellow, and green).
Clusters were developed based on the extent of the research outlet or the frequency with
which they were co-cited in comparable articles [95]. The VOSviewer grouped journals
according to their co-citation tendencies with regard to published articles. For example,
the red cluster comprises five journals that were co-cited many times in the same work. In
addition, the links between closely located frames (sources) in a group/cluster are greater
than those between widely spread frames. For example, “CONBUIDMAT” correlates more
strongly with “Materials” than with “Computer-Aided Engineering”.
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Table 1. List of journals publishing a minimum of 15 documents in the subject domain from 2001 to
May 2022.

S/N Source Name Total Publications Total Citations

1 Construction and Building Materials 94 1677
2 Materials 52 441
3 Engineering Structures 48 602
4 Applied Sciences (Switzerland) 35 258
5 Lecture Notes in Civil Engineering 30 4

6 Proceedings of SPIE—the International Society
for Optical Engineering 23 32

7 Advances in Intelligent Systems and Computing 22 13
8 Structures 21 95
9 Advances in Civil Engineering 20 220
10 Journal of Building Engineering 18 185
11 IEEE Access 18 108
12 Automation in Construction 17 422
13 Engineering with Computers 15 344
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3.3. Keywords

Keywords are significant in research since they distinguish and emphasize the basic
subjects of the study domain [96]. The minimum repetition requirement for a keyword
was set at 20, and 129 of the 9872 keywords were preserved. Table 2 records the leading
30 keywords most frequently used in published studies on the subject. The 5 most often
occurring terms in the topic study field were machine learning, learning systems, fore-
casting, concretes, and compressive strength. According to the keyword analysis, ML has
mostly been used to predict concrete properties, particularly compressive strength. Figure 7
shows a systematic graph of keywords based on co-occurrences and connections, with
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densities proportional to their occurrence frequency. In Figure 7a, a keyword’s node size
signifies its frequency, while its position suggests its co-occurrence in articles. In addition,
the graph shows that the top keywords have wider nodes than the rest, signifying that
these are essential ML keywords in a real investigation. The graph highlights clusters in
a manner that shows their co-occurrence in a variety of published documents. The color-
encoded grouping is determined by the co-occurrence of several keywords in publications.
Five clusters are represented by different colors (green, red, blue, purple, and yellow) in
Figure 7a. As observed in Figure 7b, distinct colors represent differing keyword density con-
centrations. The colors red, yellow, green, and blue are arranged according to their density
strengths, with red representing the highest density concentration and blue representing
the lowest. Machine learning, learning systems, forecasting, and other prominent keywords
are shown in the red group, indicating a greater density of occurrences. This finding will
help ambitious researchers select keywords that ease the discovery of published papers on
a specific topic.

Table 2. List of the 30 most commonly used keywords in the studies of ML applications for concrete.

S/N Keyword Occurrences

1 Machine learning 761
2 Learning systems 378
3 Forecasting 334
4 Concretes 301
5 Compressive strength 252
6 Neural networks 225
7 Reinforced concrete 196
8 Learning algorithms 185
9 Support vector machines 169
10 Decision trees 162
11 Artificial intelligence 137
12 Concrete 134
13 Deep learning 120
14 Machine learning techniques 109
15 Artificial neural network 108
16 Machine learning models 107
17 Concrete construction 100
18 Regression analysis 97
19 Prediction 88
20 Mean square error 85
21 Concrete mixtures 79
22 Machine learning methods 72
23 Support vector machine 71
24 Predictive analytics 69
25 Fly ash 68
26 Damage detection 67
27 Machine-learning 66
28 Concrete buildings 61
29 Machine learning approaches 61
30 Concrete aggregates 60
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Figure 7. Systematic map of keywords: (a) scientific mapping; (b) density.

3.4. Authors

Citations indicate a scientist’s impact in a particular field of research [97]. The threshold
for the least number of papers for a researcher was set at 7, and 53 out of 3536 researchers
satisfied this requirement. The authors with the most articles and citations in the field of
ML for concrete, as assessed from the bibliographic data using VOSviewer, are included in
Table 3. Each author’s average number of citations was determined by dividing the total
citations by the total number of articles. It is complicated to assess the effectiveness of a
scientist when all parameters (such as the quantity of documents, overall citations, and
average citations) are taken into account. Alternatively, the researcher’s ranking can be
evaluated separately for each component, i.e., the number of documents, the number of
overall citations, and the average number of citations. The analysis revealed that Aslam F.
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was the most prolific researcher, with 25 publications, followed by Wang Y. with 22 and
Nehdi M.L. with 19 publications. In terms of total citations, Mangalathu S. led the field
with 385, Wang Y. was second with 351, and Nehdi M.L. was third with 327 overall citations
in the present research domain. In addition, when the average numbers of citations were
compared, the authors were ranked with Mangalathu S. at the top with nearly 48 citations,
Alyousef R. in second place with about 24, and Liu J., Li S., and Feng D.-C. in third place,
each having approximately 48 average citations. Figure 8 depicts the association between
writers with at least 7 publications and the most notable authors. Figure 8a depicts the
scientific mapping of scholars who have contributed at least 7 papers to the current field
of study. Figure 8b depicts the largest group of related writers based on citations, which
consists of 40 of the 53 authors. This investigation indicated that the majority of researchers
working on ML applications for concrete are linked via citations.
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Table 3. List of researchers having at least 7 articles in the subject research domain from 2001 to May
2022.

S/N Researcher Name Total Publications Overall Citations Average Citations

1 Aslam F. 25 297 12
2 Wang Y. 22 351 16
3 Nehdi M.L. 19 327 17
4 Li J. 18 295 16
5 Zhang J. 18 282 16
6 Javed M.F. 17 147 9
7 Naser M.Z. 16 129 8
8 Ahmad A. 15 159 11
9 Li Y. 15 66 4
10 Farooq F. 13 258 20
11 Hoang N.-D. 13 249 19
12 Wang J. 13 90 7
13 Samui P. 12 182 15
14 Ostrowski K.A. 12 115 10
15 Wang X. 12 66 6
16 Wang S. 12 52 4
17 Le T.-T. 11 222 20
18 Ly H.-B. 11 151 14
19 Kumar A. 10 141 14
20 Alyousef R. 9 215 24
21 Feng D.-C. 9 195 22
22 Zhang Y. 9 187 21
23 Yang J. 9 40 4
24 Mangalathu S. 8 385 48
25 Chen Y. 8 136 17
26 Alavi A.H. 8 118 15
27 Tran V.Q. 8 106 13
28 Zhang Z. 8 64 8
29 Chen X. 8 51 6
30 Ahmad W. 8 46 6
31 Wang Z. 8 32 4
32 Liu J. 7 157 22
33 Li S. 7 152 22
34 Chen Z. 7 146 21
35 Huang J. 7 133 19
36 Sant G. 7 127 18
37 Amin M.N. 7 117 17
38 Huang Y. 7 108 15
39 Xu J. 7 103 15
40 Thai H.-T. 7 97 14
41 Alabduljabbar H. 7 86 12
42 Chen J. 7 85 12
43 Sun Y. 7 79 11
44 Nguyen T.-A. 7 71 10
45 Sun J. 7 61 9
46 Olalusi O.B. 7 43 6
47 Zhang H. 7 43 6
48 Marani A. 7 37 5
49 Li X. 7 34 5
50 Wang B. 7 29 4
51 Alam M.S. 7 14 2
52 Liu Y. 7 14 2
53 Li H. 7 10 1

3.5. Documents

The number of citations a document obtains signifies its influence in a certain research
domain. In their respective study domains, the papers with the most citations are regarded
as pioneering. The least number of citations for a document was set at 30, and 125 out
of 1367 papers met this threshold. In Table 4, the top 5 articles in the field of ML for
concrete based on citations are included, along with their authors and citation counts. The
study “Automated Crack Detection on Concrete Bridges” by Prasanna P. [98] obtained
224 citations. Rafiei M.H. [99] and Chou J.-S. [100] received 184 and 174 citations, respec-
tively, for their articles and were positioned in the leading three. However, up to May
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2022, only 14 papers had acquired more than 100 citations. Figure 9 shows the scientific
visualization of articles on the basis of citations and the density concentration of these
articles in the domain of the present study. The map of papers with at least 30 citations is
shown in Figure 9a. Figure 9b shows that 111 of 125 publications were related by citations,
as determined by the VOSviewer analysis. In addition, the density mapping (Figure 9c)
demonstrates the increased density concentration of the top articles, based on citations.

Table 4. List of top 5 documents in terms of citations received up to May 2022.

S/N Article Title Total Number of Citations Received

1 Prasanna P. [98] Automated Crack Detection on Concrete Bridges 224

2 Rafiei M.H. [99] A novel machine learning-based algorithm to detect damage
in high-rise building structures 184

3 Chou J.-S. [100] Optimizing the prediction accuracy of concrete compressive
strength based on a comparison of data-mining techniques 174

4 Yaseen Z.M. [101] Predicting compressive strength of lightweight foamed
concrete using extreme learning machine model 170

5 Sadeghipour Chahnasir E. [102]
Application of support vector machine with firefly algorithm
for investigation of the factors affecting the shear strength of

angle shear connectors
165
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3.6. Countries

Numerous countries have presented more documents in the present research area
than others, and they plan to continue their contributions. The systematic map was
constructed so that readers may examine the regions performing ML applications research
for predicting concrete properties. The minimum number of documents a country could
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possess in order to be included was set at 10, and 31 countries satisfied this threshold.
The countries included in Table 5 produced a minimum of 10 documents on the current
topic of research. The United States, China, and India had the greatest number of papers,
with 298, 289, and 110 documents, respectively. In addition, papers from the United States
received 4260 citations, followed by papers from China with 2732 citations. Papers from
Vietnam received 1633 citations. Figure 10 shows the systematic map and the density
strength of countries linked by citations. In Figure 10a, the size of a node is proportional
to a country’s impact on the topic studied, based on the number of articles. As seen in
Figure 10b, the countries with the greatest levels of participation had a greater density.
The graphical depiction and quantitative record of the participating countries will assist
young scientists in creating scientific partnerships, launching collaborative ventures, and
exchanging creative approaches and concepts. Scholars from countries concerned with
advancing research on ML applications for concrete can collaborate with other professionals
in the field and benefit from their knowledge.
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Table 5. List of countries that presented at least 10 papers in the subject research domain from 2001
to May 2022.

S/N Country Documents Published Overall Citations

1 United States 298 4260
2 China 289 2732
3 India 110 725
4 Germany 84 479
5 Vietnam 82 1633
6 Australia 81 1066
7 Canada 77 824
8 South Korea 72 1063
9 Iran 62 1188

10 United Kingdom 58 578
11 Japan 58 468
12 Saudi Arabia 48 477
13 Pakistan 47 404
14 Poland 35 373
15 Italy 29 236
16 Turkey 29 217
17 Iraq 27 610
18 Greece 27 170
19 Malaysia 26 658
20 Taiwan 25 638
21 Russian Federation 24 59
22 France 22 237
23 Egypt 22 148
24 Hong Kong 21 175
25 South Africa 16 68
26 Spain 15 280

27 United Arab
Emirates 14 99

28 Thailand 13 68
29 Belgium 12 170
30 Portugal 12 117
31 Brazil 10 18

4. Discussions and Recommendations for Future Work

This systematic review performed statistical analysis and mapping of the bibliographic
data available on the applications of ML for predicting concrete properties. Previous manual
review studies lacked the capacity to link disparate areas of the literature completely and
precisely. This analysis identified the sources of publications (journals) that published
the most documents, the keywords most often used in publications, the documents and
researchers with the highest numbers of citations, and the countries that are vigorously
engaged in ML applications for concrete research. According to the keyword analysis, ML
has been utilized mostly to forecast concrete properties, particularly compressive strength.
In addition, the literature and the linkages based on citations were used to identify the
highly committed and participating countries, based on publication count. The graphical
representation and quantitative analysis of the participating countries and researchers
will help young scientists form scientific partnerships, establish joint ventures, and share
advanced methods and concepts. Scholars from countries concerned with expanding the
research on the applications of ML for concrete can collaborate with other professionals in
the discipline and benefit from their expertise.

We are on the verge of a fourth industrial revolution, in which data-driven smart
approaches, robotics, additive manufacturing, cloud computing, the Internet of Things,
and other developing tools will merge the physical, biological, and digital realms. The
building industry is lagging behind in seizing the openings presented by the world’s fast
transformation. The engineering properties of building materials and structures predicted
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by ML have applications in propagative smart design. Several knowledge gaps exist that
must be filled before structural engineers can imitate procedures employed in mechatronics,
robotics, and other sophisticated domains. Table 6 lists the various types of ML techniques
employed to estimate the properties of materials, the numbers of inputs and data samples
used to run the models, and the best ML techniques as recommended by the literature.
Most of the previous studies suggested increasing the number of inputs to include the
chemical composition of raw ingredients and the environmental conditions (humidity and
temperature). In addition, increasing the number of data samples via further experimental
tests might enhance the performance of ML models in terms of real and accurate predic-
tion [52,103–105]. Hence, practical applications of ML in the building sector require further
in-depth investigations, in order to propose guidelines for ML’s applicability.

Table 6. Types of machine learning techniques used in previous studies.

Ref. Material Type Properties Predicted ML Techniques
Employed

No. of Input
Parameters Data Points Best ML Technique

Recommended

[49] Recycled aggregate concrete Compressive strength
Decision tree, gradient

boosting, and
bagging regressor

8 638 Bagging regressor

[106] Concrete-filled steel tubes Ultimate axial capacity GEP 6 227 -

[107] Geopolymer concrete Compressive strength
Decision tree, GEP,

bagging regressor, and
random forest

9 371 Bagging regressor

[105] High-performance concrete Compressive strength

Decision tree, multilayer
perceptron neural

network, support vector
machine, extreme
gradient boosting,

AdaBoost, bagging
regressor, and
random forest

8 1030
Random forest and
decision tree with

bagging

[53] Recycled aggregate concrete Splitting tensile strength GEP, ANN, and
bagging regressor 9 166 Bagging regressor

[103] Rice husk ash concrete Compressive strength GEP and random forest 6 192 GEP

[52] Recycled aggregate concrete Compressive and
flexural strength

Gradient boosting and
random forest 12 638 Random forest

[108] Geopolymer concrete Compressive strength Decision tree, random
forest, and AdaBoost 9 363 AdaBoost and

random forest

[109] Recycled aggregate concrete Compressive and
splitting tensile strength

AdaBoost and
decision tree 9 344 AdaBoost

[110] Geopolymer concrete Compressive strength Decision tree, bagging
regressor, and AdaBoost 9 154 Bagging regressor

[51] High-performance concrete Compressive strength
Support vector machine,

AdaBoost, and
random forest

7 1030 Random forest

[35] High-performance concrete Compressive strength
Decision tree, GEP,

AdaBoost, and
bagging regressor

8 1030 Bagging regressor

[8] Recycled aggregate concrete Compressive strength GEP and ANN 9 344 GEP

[111] Fly-ash-based concrete Compressive strength GEP, ANN, decision tree,
and bagging regressor 7 98 Bagging regressor

[104] Fly-ash-based concrete Compressive strength GEP, decision tree, and
bagging regressor 8 270 Bagging regressor

[112] Waste-material
-based concrete

Surface chloride
concentration

GEP, decision tree,
and ANN 12 642 GEP

[113] High-strength concrete Compressive strength GEP and random forest 5 357 Random forest

ANN: artificial neural network; GEP: gene expression programming.

5. Conclusions

The purpose of this study was to undertake a scientometric assessment of the available
literature on machine learning (ML) applications for concrete, in order to evaluate various
metrics. The database Scopus was searched, 1367 related articles were found, and the data
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were evaluated using the VOSviewer application. The following conclusions were obtained
from this investigation:

• An assessment of publication journals including articles on ML for concrete research
revealed that “CONBUILDMAT”, “Materials”, and “Engineering Structures” were the
top three sources, with 94, 52, and 48 publications, respectively. In terms of total cita-
tions, the top three publishing sources were “CONBULDMAT” with 1677, “Engineering
Structures” with 602, and “Materials” with 441.

• A keyword analysis of the topic research field revealed that machine learning, learning
systems, forecasting, concretes, and compressive strength were the five terms occurring
most often. The keyword analysis found that machine learning had mostly been used
to forecast concrete properties, particularly compressive strength.

• The author analysis found that just 53 authors had published at least 7 articles on
ML for concrete research. The leading authors were categorized according to their
document count, overall citations, and average citations. With 25 publications, Aslam
F. was the most prolific author, followed by Wang Y. with 22 and Nehdi M.L. with
19 papers. In terms of total citations, Mangalathu S. had the highest number, with
385, followed by Wang Y. with 351 and Nehdi M.L. with 327 total citations. Moreover,
when comparing the average number of citations, the following writers stood out:
Mangalathu S. with roughly 48 citations, Alyousef R. with nearly 24, and Liu J., Li S.,
and Feng D.-C., each with an average number of citations of about 48.

• An evaluation of articles offering data on ML applications for concrete revealed
that the study by Prasanna P. [98] on “Automated Crack Detection on Concrete
Bridges” received 224 citations. Rafiei M.H. [99] and Chou J.-S. [100] obtained 184 and
174 citations, respectively, for their studies and were among the top three. In addition,
as of May 2022, only 14 papers had received more than 100 citations in the topic field.

• Based on their engagement in ML concrete research, the main countries were identified,
and it was found that only 31 countries had produced at least 10 publications. The
United States, China, and India produced 298, 289, and 110 papers, respectively. In
addition, the papers from the United States received 4260 citations, those from China
received 2732 citations, and those from Vietnam received 1633 citations.

• These revolutionary techniques will aid the building sector by enabling the creation
of efficient and economical methods for evaluating the properties of materials. In
addition, the adoption and application of a material in the building sector will be
expedited by encouraging computational methods.

• The prevalence of ML applications is forecast to increase as the Internet of Things,
big data, and automated systems continue to dominate the industrial sector in the
next decades.

• To improve the performance of ML models, it is recommended that a greater number
of input factors should be employed, such as the chemical composition of raw com-
ponents and the environmental conditions (humidity and temperature). In addition,
increasing the number of data samples through additional experimental testing may
improve the performance of ML models in terms of real and precise predictions.
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