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TP53 gene mutations are very common in human cancer. While such

mutations abrogate the tumor suppressive activities of the wild-type (wt)

p53 protein, some of them also endow the mutant (mut) protein with onco-

genic gain of function (GOF), facilitating cancer progression. Yet, p53 may

acquire altered functionality even without being mutated; in particular,

experiments with cultured cells revealed that wtp53 can be rewired to adopt

mut-like features in response to growth factors or cancer-mimicking genetic

manipulations. To assess whether such rewiring also occurs in human

tumors, we interrogated gene expression profiles and pathway deregulation

patterns in the METABRIC breast cancer (BC) dataset as a function of

TP53 gene mutation status. Harnessing the power of machine learning, we

optimized a gene expression classifier for ER+Her2- patients that distin-

guishes tumors carrying TP53 mutations from those retaining wt TP53.

Interestingly, a small subset of wt TP53 tumors displayed gene expression

and pathway deregulation patterns markedly similar to those of TP53-mu-

tated tumors. Moreover, similar to TP53-mutated tumors, these ‘pseudo-

mutant’ cases displayed a signature for enhanced proliferation and had

worse prognosis than typical wtp53 tumors. Notably, these tumors revealed

upregulation of genes which, in BC cell lines, were reported to be positively

regulated by p53 GOF mutants. Thus, such tumors may benefit from mut

p53-associated activities without having to accrue TP53 mutations.

1. Introduction

One out of eight women is likely to develop breast

cancer (BC) during her lifetime (DeSantis et al., 2017).

BC accounts for 30% of all estimated new cancer cases

in women and 25% of all estimated cancer-related

women’s deaths. A major challenge in treating BC is

its heterogeneity, comprising a large variety of sub-

types (Sorlie et al., 2001). Understanding each individ-

ual patient’s disease better, by its molecular and

genomic characterization, is a prerequisite for cancer

precision medicine, increasing treatment efficacy while
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minimizing side effects, and eventually reducing BC

mortality (Deng and Nakamura, 2017). With the

advent of the big data era, harnessing machine learn-

ing (ML) toward the optimization of individualized

treatments bears great promise for the future of cancer

therapy.

The p53 protein, encoded by the TP53 tumor sup-

pressor gene, has a central role in safeguarding cells

against cancer. Over half of all human cancers carry

TP53 mutations, which may be associated with poor

prognosis, increased treatment resistance, and relapse

(Silwal-Pandit et al., 2014). The most obvious conse-

quence of such mutations is loss of the tumor suppres-

sive activity of the wtp53 protein. However, some

TP53 mutations may also facilitate cancer progression

by endowing the mutant (mut) p53 protein with onco-

genic gain of function (GOF) (Brosh and Rotter,

2009). Such GOF, manifested by an increase in prolif-

eration, cell motility, therapy resistance, and more, is

driven mainly by interactions of the mut p53 with a

variety of other proteins, eventually altering gene

expression (Kim et al., 2009; Kim and Lozano, 2018).

Yet, about half of all human tumors retain wtp53

expression. How do such tumors evade p53’s tumor

suppressive effects? In some cell types or biological

contexts, p53 might lose its tumor suppressive capabili-

ties, alleviating the need to override its effects (Kim

et al., 2009). Alternatively, p53 may not reach suffi-

cient steady-state levels because of suppressed tran-

scription of the TP53 gene (Miller et al., 2005),

reduced translation, or rapid protein turnover, for

example, via augmented MDM2-mediated degradation

(Haupt et al., 1997; Kubbutat et al., 1997). Addition-

ally, wtp53 may undergo aberrant post-translational

modifications or be excluded from the cell nucleus,

depriving it of its ability to act as a transcription fac-

tor. All these mechanisms may result in p53 loss of

function, equivalent to genetic loss of both wt TP53

alleles.

Nevertheless, wtp53 may sometimes not only lose its

normal activity, but also acquire structural and func-

tional properties resembling those of bona fide GOF

mut p53 proteins (Furth et al., 2015, 2018; Milner,

1995; Trinidad et al., 2013; Zhang and Deisseroth,

1994). Such ‘pseudomutant’ (PM) wtp53 may become

an active contributor to cancer (Furth et al., 2018). An

early study by Miller et al. (2005), looking at data

from 251 breast tumors, identified a group of wtp53

cases that were labeled as mut on the basis of their

gene expression patterns.

Of note, the study of Miller et al was performed on

a mix of tumors of all BC subtypes, analyzed together

as one population. However, the relative abundance of

TP53 mutations varies greatly between subtypes; for

example, ER+tumors are predominantly wt TP53,

whereas a large proportion of ER- tumors carry TP53

mutations. Thus, part of the reported differences in

transcription profiles between wt and mut p53 were

most probably due to their unequal representation in

the different BC subtypes. Indeed, the wtp53 transcrip-

tional signature defined by Miller et al was enriched in

estrogen-inducible genes (Miller et al., 2005), which

might simply reflect the fact that the great majority of

wtp53 tumors are ER+.
To avoid a bias introduced by the unequal fre-

quency of TP53 mutations in the different BC sub-

types, we chose to compare the expression patterns of

wt and mut TP53 tumors only within the same sub-

type. We believe that this approach eliminates the

‘noise’ occurring from comparisons between different

subclasses of disease and thus enables rigorous identifi-

cation of wt TP53 tumors that indeed behave in a

mut-like manner.

We interrogated each BC subtype separately for the

existence of ‘PM’ tumors that harbor wt TP53 by

sequence, but nevertheless exhibit features suggestive

of the presence of a mut-like p53 protein. To that end,

we used the METABRIC BC dataset, in which both

the transcriptome (Curtis et al., 2012; Rueda, 2019)

and the p53 mutation status (Pereira et al., 2016; Sil-

wal-Pandit et al., 2014) are described for a large num-

ber of samples. Using ML, we constructed a classifier

that best distinguished wtp53 tumors from those carry-

ing bone fide TP53 mutations. Subsequently, we

searched for tumors that were identified by our classi-

fier as mut, despite harboring wt TP53. We found

among ER+Her2- BCs a subgroup of PM p53 tumors,

with a transcriptome resembling that of true mut p53

tumors. Moreover, like ER+Her2- BC with authentic

p53 mutations, these PM tumors exhibited an

enhanced proliferation signature and were associated

with worse prognosis. Understanding the mechanisms

that underlie the aberrant behavior of p53 in such

tumors may provide clues toward individualized treat-

ment, with improved patient outcome.

2. Materials and methods

2.1. Aims and strategy

2.1.1. Aims

To identify PM tumor samples and to characterize

these tumors and patients.
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2.1.2. Strategy

Using ML on single probe expression data, we con-

structed a robust conservative classifier that assigns

each sample a (learned) label of either wt or mut p53.

False-positive (FP) samples, which are labeled as mut

even though they are wt, are designated as PM.

2.2. Data

Probe-level expression data from the METABRIC

dataset (Curtis et al., 2012) were filtered and prepro-

cessed for 1928 tumor samples for which we had both

expression and TP53 status (see Data S1). The final

expression table, of 34,363 (HT-12 v3 platform, Illu-

mina_Human_WG-v3) probes representing 24,369

genes, for 1928 tumor and 144 normal samples, can be

found in Appendix S1 (provided upon request).

‘Ground truth’ TP53 mutation status was from

sequencing: from next generation sequencing (NGS)

when available (Pereira et al., 2016), or from Sanger

Sequencing (SS) (Silwal-Pandit et al., 2014). For the

learning process, samples without TP53 mutations and

with synonymous mutations were labeled wt, and

everything else was labeled mut. In some analyses, we

separated missense from all other mutations (the latter

are referred to as ‘null’). Samples that were suspected

to harbor germline mutations (n = 15) were excluded

from the analysis (Table S1). Our TP53 labels, the

mutation types and BC subtypes (ER+Her2-, ER-

Her2-, and Her2+, as determined by immunohisto-

chemistry), are summarized in Table 1 and given in

detail in Appendix S2, which contains also protein

change, survival, and treatment information and clini-

cal parameters. Learning, classification, validation, and

subsequent analyses were done separately for each

clinical subtype.

2.3. Focus on the ER+Her2- subtype

Since each BC subtype is a distinct disease with differ-

ent molecular characteristics, we analyzed tumors from

these three subtypes separately and independently. The

relative abundance of TP53 mutations varies greatly

between these subtypes, which biases the analysis of

the transcriptional effects of such mutations when all

subtypes are combined together into a single group

(Miller et al., 2005). We therefore chose to focus on

ER+Her2- tumors: This group comprises by far the

largest number of samples of the same subtype, ensur-

ing best statistics. ER+Her2- tumors exhibit pro-

nounced misbalance toward wt TP53 (1122 wt and

251 mut samples), whereas the Her2+ and ER-Her2-

groups exhibit the opposite misbalance; this also moti-

vated us to focus on the ER+Her2- subtype. Analyses

that try to compensate the learning algorithm for

imbalanced training sets introduce several uncontrolled

parameters. To avoid this, we used learning processes

that do not correct for imbalance. In the ER+Her2-

group, lack of compensation for the prevalence of wt

samples gives rise to a conservative classifier, with a

bias toward a wt call. Hence, we have high confidence

in the classification of those wt TP53 samples whose

transcriptome deviated so strongly from wt behavior,

that a mut call was generated; confidence in identifica-

tion of such ‘false positives’(FP) is essential for fulfill-

ing the aim of this analysis. With this said, we also ran

learning processes that did compensate for sample mis-

balance (see Data S2).

2.4. Constructing the wt/mutp53 classifier

The computational pipeline used to generate an opti-

mal classifier of p53 status on the basis of expression

data is presented in Fig. 1.

Step 1 is a 20–80% random split of the samples

[separately for the METABRIC Discovery and Vali-

dation sets (Curtis et al., 2012)] to test and learning

sets. The test set is used (only once!) to test the

final classifier. The learning set is randomly split to

validation (20%) and training (80%) sets. This is

repeated 100 times (each split is referred to as an ‘it-

eration’).

Step 2 is feature selection: Since the number of sam-

ples available for learning is about one thousand, the

number of variables (probes) used to fit these data

must be reduced drastically to avoid overfitting. We

started from two gene-probe lists (GL): (a) knowledge-

based, of p53-related genes (Allen et al., 2014; Schaefer

et al., 2009) (425 probes, corresponding to 272 genes)

and (b) using all 34,363 probes that correspond to

24,369 annotated genes. Next, four gene-probe ranking

(GR) methods were used to create a ranked GL

(Fig. 1B): Linear regression (Mining, 2009), correlation

(Corr)—ranking by the absolute value of the Pearson

Table 1. Number of samples of each clinical BC subtype and p53

mutation status. METABRIC data used for wt/mutp53

classification: see text for definitions of labels.

Subtype\p53 status p53 wt p53 missense p53 null Total

ER+Her2- 1122 153 98 1373

ER-Her2- 63 144 108 315

Her2+ 78 95 67 240

Total 1263 392 273 1928

1642 Molecular Oncology 14 (2020) 1640–1652 ª 2020 The Authors. Published by FEBS Press and John Wiley & Sons Ltd.

Pseudomutant p53 in breast cancer G. Benor et al.



Corr coefficient between the gene probes’ expression

and the TP53 status of the learning samples; forward

selection wrapper (FSW) (John et al., 1994), and

orthogonal matching pursuit (Pati et al., 1993) (see

Data S3). Only those N gene probes that passed Ben-

jamini–Hochberg FDR (Benjamini and Hochberg,

1995) at q = 0.05 for the property used for ranking

(e.g., Corr of expression with TP53 status) were

retained. For each iteration and each GL/GR combi-

nation, we generated a list of the top-ranked N ≤ 300

probes. Ranking features is a notoriously unstable pro-

cess—two slightly different training sets may produce

very different lists of top-ranked genes (Ein-Dor et al.,

2005, 2006). Repeating the process 100 times stabilizes

the results of feature selection by ranking; robustness

was tested according to several criteria (see Data S4,

Fig. S1, and Table S2).

Step 3 is learning: for each iteration and its associ-

ated ranked GL, we learned the p53 labels, using three

ML methods: linear discriminant analysis (Duda et al.,

2001), linear support vector machine (LSVM), and

Gaussian support vector machine (Mining, 2009).

Step 4 - Model selection: For every iteration, each

learning process (GL, GR, ML combination) was

applied using the top-ranked k = 1,2,3 . . . N probes,

adding one probe at a time. We call a classifier ‘valid’

if all its k probes passed the threshold of FDR = 0.05

(e.g., P-value for Corr). For each k, we required to

have at least C = 70 valid classifiers, for which the

classification error was calculated for the training set

and for the validation set, otherwise we stop at k-1.

Finally, the training and validation errors were aver-

aged over the valid classifiers and plotted as a function

of the number of probes used. These plots, together

Fig. 1. (A) Flowchart of the learning process to create a classifier of wt vs mut TP53 samples. (B) Detailed description of the central

learning module: For each one of the 100 iterations, we ran the learning process for every combination of C. GL (gene-probe list) , GR

(gene-probe ranking), and ML (machine-learning method). Each iteration uses a different learning set and corresponding ranked GL,

generating a subclassifier of k = 1,2,. . .N ≤ 300 genes. Optimal GL*, GR*, ML*, and k* are selected on the basis of the validation error and

robustness. The final model consists of the majority vote of C (70 ≤ C ≤ 100) subclassifiers based on k* genes and the selected GL*, GR*,

and ML* methods. See text for detailed description.
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with considerations of robustness, were then used to

determine the optimal learning process (GL*, GR*,

ML*) and k*, the number of probes used, to yield the

optimal set of subclassifiers.

Notably, the total number of classifiers that were

constructed is on the order of

2949393009100 = 720,000 (in practice it is smaller;

e.g., since the number of valid classifiers may be

< 100, the number of probes that passed various filters

may be < 300, and not all GL/GR/ML combinations

were tested).

Step 5: The final master classifier uses, for a given

sample, the expression levels of the k* probes of each

of the 70 ≤ C ≤ 100 subclassifiers to produce C pre-

dicted p53 labels; the majority vote of these constitutes

the final deduced p53 status.

Step 6: testing the master classifier. The samples of

the test set were submitted to the master classifier and

the test error was calculated. Tumors identified as mut

are referred to as ‘Positive’; the error is the ratio of

(false positives+false negatives)/(total number of classi-

fied samples).

Step 7: identification of the PM samples: FP sam-

ples from the test set were labeled PM. For the learn-

ing set, we relied only on misclassification of the

validation samples, using the following rule: identify

the iterations in which a wt sample was assigned to

the validation set; if in the majority of these iterations,

it was classified as mut—it is labeled PM.

2.5. Validating the classifier on an independent

dataset—TCGA

The classifier derived on the basis of METABRIC data

was tested on TCGA BC data (Koboldt et al., 2012).

The TCGA dataset contains 98 mut and 381 wt TP53

ER+Her2- samples, for which expression was mea-

sured using RNA-seq. The manner in which the

TCGA data were handled to account for different rep-

resentations of genes in TCGA and METABRIC is

described in Data S5.

2.6. Dimensionality reduction

To demonstrate intermixing of the PM group with

mut samples, principal component analysis and tSNE

(Van Der Maaten and Hinton, 2008) were used.

2.7. Characterizing the PM samples; Pathway-

level analysis

The METABRIC samples were studied also on path-

way level, using Pathifier (Drier et al., 2013; Livshits

et al., 2015). Lists of genes that belong to various

pathways were downloaded from KEGG (Ogata et al.,

1999), BioCarta (Nishimura, 2001), and the NCI-Nat-

ure curated Pathway Interaction Database (Schaefer

et al., 2009). All probes that appeared among the top

5000 varying ones (Drier et al., 2013) were used in the

analysis; hence, some genes were represented by more

than a single probe. For each pathway P and sample

k, we derived D(P,k), a Pathway Deregulation Score

(PDS), as described (Drier et al., 2013). The samples

and pathways were sorted using SPIN (Tsafrir et al.,

2005), to place together groups of similarly deregulated

pathways and samples with similar deregulation pro-

files. Deregulation of pathways in the PM samples was

compared to the mutants and to the wt (by sequence

and classification), by two-sided t-tests and Benjamini–
Hochberg FDR correction for multiple hypotheses. All

the genes belonging to the pathways that were signifi-

cantly differentially deregulated between the PM group

and mutp53 samples were collected. For each corre-

sponding gene-probe expression, we calculated a two-

sided t-test and FDR correction between the PM and

the mutp53 groups.

2.8. Clinical characterization

Kaplan–Meier analysis of survival data of the three

tumor types was performed by Matlab routine ‘ecdf’

for calculating the curve and ‘survdiff’ for calculating

the P-value of log-rank test.

3. Results

3.1. The training process

We generated classifiers that distinguish wt TP53

tumors from mut TP53 tumors, based on their gene

expression profiles. We present here results only for

ER+Her2- tumors; for the other subtypes, see Data

S6, Table S3, and Fig. S2. We assumed that if PM

tumors indeed exist, they probably constitute a minor-

ity of the wt TP53 cases, whereas most wt TP53 cases

retain a transcriptional profile distinct from that of

true mut TP53 tumors. For all tested combinations of

gene lists (GL), gene ranking (GR), and ML, 100 iter-

ations were performed. Classifiers based on k gene

probes were constructed by adding one probe at a

time, according to their ranking. Note that for

ER+Her2-, we stopped at k = 138 probes; beyond this,

the number of valid classifiers was < 70. For each k,

GL, GR, and ML combination, the average and stan-

dard deviation of the error (training and validation)
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over the 100 iterations was stored. These error curves,

together with considerations of their robustness (Data

S4), served to select the optimal classification model

(see Data S7 and Fig. S3). The selected model for

ER+Her2- tumors is presented in Table 2; it uses the

p53-related gene list as GL*, gene probes ranked by

Corr to p53 status as GR*, and LSVM as the ML*

method of choice. The fact that the p53-related GL

separates well wt TP53 tumors from those that carry

TP53 mutations supports our assumption that the

majority of the former tumors retain a wtp53-driven

transcriptional program.

The mean errors (of 70 ≤ C ≤ 100 classifiers) plot-

ted as a function of gene-probe number k, and the

mean receiver operating characteristic (ROC) curves

of the optimal classifiers, are presented in Fig. 2A,B,

respectively. We decided to use k* =62 probes, repre-

senting, on average, 49.3 � 0.1 genes (mean � SEM);

this yielded a mean � SEM validation error of

0.116 � 0.002 (Table 2). Shorter GLs are more

robust, and at 62 probes, we had 100 valid classifiers.

Hence, we preferred k* = 62, even though the valida-

tion error was slightly higher than for 125 probes

(Fig. 2A). The list of 62 probes used for each of the

final 100 subclassifiers is in Appendix S3. The ROC

curve presented is the average (over all the 100 classi-

fiers) of the ROC curves that were obtained sepa-

rately by Matlab routine ‘perfcurve’ for each

classifier.

3.2. Identifying ‘pseudomutant’ p53 tumors

The final wt/mutp53 call, for a previously unseen sam-

ple (e.g., from the test set), is obtained as a majority

vote of the 100 subclassifiers (Data S8, Table S4, and

Fig. S4). The test error of this final classifier was 0.13

(Table 2): Out of 224 wt TP53 samples, 14 were mis-

classified as mut and were defined as PM. Of note,

since we decided not to correct for the unbalanced

learning data (see Materials and methods), our classi-

fier is strongly biased toward wt calls and against mut

calls; as a result, out of the 51 mut TP53 test samples,

22 were falsely classified as wt (false negative, FN).

When the imbalance is corrected, this error rate is

reduced to 12/51. Appendix S4 lists the FN cases;

remarkably, NULL samples were under-represented in

this group, with P-values of 0.043 and 0.1464 (hyper-

geometric test) for the final classifier and the imbal-

ance-corrected classifier, respectively, raising the

interesting possibility that, in some tumors, mutp53

proteins retain partial wtp53 activity.

We then returned to the training set, to identify

additional PM tumors (see Materials and methods,

Step 7). Altogether, we found 30 such additional

cases (out of 898 wt TP53 training samples), so that

in total 44 out of 1122 (about 4%) wt TP53

ER+Her2- tumors were identified as PM (for patient

IDs, see Table S5). This fraction of 4% is very

robust: A similar percentage was obtained indepen-

dently of the GL, GR, and ML methods used (as

defined in Constructing the wt/mutp53 classifier)

(Data S9 and Table S8). Of note, our classifier is

conservative, with a bias against mut p53 calls; hence,

the frequency of PM cases may actually be higher.

Indeed, a larger number of samples (19 from the test

set and 76 from the validation sets, Data S2) were

identified as PM when we used a learning process

(Table S6) that compensates for the unbalanced

learning set (Data S2), bringing the percentage of PM

cases up to about 8.5%.

Next, we ranked the gene probes according to the

number of their appearances among the top 62 of the

100 iterations and used the top-ranked 62 probes to

represent each sample. Dimensionality reduction to

two dimensions (tSNE and PCA) was then applied

(Fig. 2C,D). Remarkably, the great majority of PM

samples projected onto ‘mut territory’ and were inter-

mixed with authentic mut TP53 tumors, further dis-

playing the similarity between the transcriptional

profiles of the two groups.

It is important to rule out the possibility that mis-

classification of wt as mut may have been due to

Table 2. Details of the final classifier for ER+Her2- tumors and the classification errors for METABRIC and TCGA data (see text).

#Training

samples

#Validation

samples

#Test

samples

#probes k*

(mean � SEM

genes)

Selected

GL*

(GR*)

Selected

ML*

method

Validation

error

mean � SEM

Training error

mean � SEM

Test error

(majority

vote)

TCGA test

error

(majority

vote)

878 220 275 62 (49.3 � 0.01) p53-

related

genes

(Corr)

Linear

SVM

0.116 � 0.002 0.0868 � 0.006 0.13 0.11
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questionable sequencing data. In that regard, we note

that 34 of the 44 PM tumors were sequenced by both

SS and NGS. Of those, 30 were called as wt TP53 by

both methods. Only for four was there a discrepancy;

they were called wt by NGS but mut by SS. Of the

remainder 10 wt TP53 cases, eight were sequenced

only by NGS and two only by SS (Table S7). The

probability of mistakenly identifying a sample as wt

by two independent methods is very low, giving good

reason to trust that the PM tumors are not mis-se-

quenced TP53 mutants. Deeper curation of the four

discordant tumors indicated that three of these (one

from the test set and two from the learning set, see

Data S10) were complex frameshifts, seen in SS chro-

matograms but missed by the NGS indel mutation

caller. A fourth case had a single indel read in NGS.

Importantly, the potential misclassification of this very

small number of tumors does not affect our conclu-

sions.

In all but one of the PM cases, mutations were iden-

tified in other sequenced genes (Appendix S5). This

strongly suggests that the cellularity and sequencing

quality of those samples should have been sufficient to

detect TP53 coding region mutations, had they existed

in those samples.

3.3. ‘Pseudomutants’ in TCGA data

The TCGA ER+Her2- BC dataset contains 98 mut and

381 wt TP53 samples. Gene expression was measured

by RNA-Seq, and some of the METABRIC genes we

used for classification had no reported expression levels

in TCGA. Consequently, only 42 out of the 100 subclas-

sifiers had TCGA expression data for all their genes,

and the majority vote of these 42 subclassifiers was used

for wt/mut TP53 calling. Nevertheless, the TCGA error

rate of 0.11 is even lower than that of the METABRIC

test error. Through this analysis, 15 PM samples were

identified in TCGA, which again constitutes about 4%

of all wt TP53 samples. Thus, our classifier works for a

different set of patients, with expression measured by a

different platform; this constitutes strong evidence for

the robustness of our method. The similar percentage of

PM cases indicates that their identification is not an arti-

fact of one particular dataset.

3.4. Differential expression of the main gene

probes of the classifier between wt and mutp53

Figure S5 shows the expression levels of the main

genes (and gene probes) which were used in the final

Fig. 2. Accuracy and error rates for the chosen model for ER+Her2- tumors. (A) Mean error rates of prediction of TP53 status (mut/wt) for

the validation and training sets, using the chosen ML, GR, and GL, for 100 iterations, vs the number of top-ranked gene probes used. The

test (METABRIC) and the TCGA errors of the final model (with 62 gene probes) are marked by green and red asterisks, respectively. The

mean validation and training errors of the selected model are marked by blue asterisks. (B) Mean ROC curves for the final model for both

validation and training sets. The area under the curve values for the validation curve and the training curve are 0.89 and 0.93, respectively.

(C) tSNE dimensional reduction from the space of the 62 most used gene probes (see text) to 2 dimensions. Positions of wt (blue), mut

(red) and PM (circled) show that the PM tumors are intermixed with the mut tumors. (D) Same as C, using PCA.
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classifier for the ER+HER2- subtype, for the mutp53,

wtp53, and PM samples. We show separately results

for up and downregulated gene probes (in mut vs wt

p53) and for each cohort (METABRIC/TCGA). For

the ER-Her2- and Her2+ subtypes, expression levels of

the corresponding main gene probes are shown in Figs

S6 and S7 for the wtp53 and mutp53 samples. For

each case tested, the difference in expression between

wt and mutp53 was statistically significant.

The list of these main genes and gene probes is in

Appendix S6; the manner in which they were selected

is described in Data S11.

3.5. Pathway deregulation in the PM tumors

Moving from single gene-based transcriptomes to

pathway level, we combined the expression profiles the

1373 ER+Her2- tumors with those of 144 normal

breast samples and calculated the PDS (Drier et al.,

2013; Livshits et al., 2015) of each sample for 379

pathways that passed a threshold of stability. The

heatmap of these scores is presented in Fig. 3A. Both

samples and pathways are ordered in a manner that

places in proximity objects with similar PDS profiles

(Tsafrir et al., 2005). Again, most PM samples were

assigned to a region preferentially occupied by mut

TP53 tumors, indicating that their pathway deregula-

tion profiles resemble those of these tumors.

Next, we looked for pathways displaying signifi-

cantly different mean PDS in PM vs the rest of the wt

TP53 tumors. Out of 574 tested pathways, 336 passed

as differentially deregulated in PM vs wtp53 at an

FDR of 0.05. Ordering these pathways by the mean

PDS of the mut TP53 samples, we plotted the mean

PDS of the PM, mutp53, and wtp53 tumors and of

normal mammary tissue samples (Fig. 3B). Interest-

ingly, the PDS of the wtp53 tumors were closest to

normal tissue, while those of the mutp53 cases were

higher. Remarkably, the PM tumors had the highest

mean pathway deregulation: Nearly all 336 pathways

had a higher mean PDS for the PM than for the mut

TP53 cases, indicating an extremely significant overall

deregulation difference (on a multipathway level).

Thus, at least by PDS assessment, the PM tumors

appear to behave as even ‘more mutant’ than true

mutants.

Deregulation of cancer-related pathways can cause

wtp53 to adopt mut-like behavior (Furth et al., 2015).

We therefore looked for pathways that are preferen-

tially deregulated in the PM samples, relative to mut-

p53 breast tumors, and therefore may potentially drive

wtp53 protein into a PM state. Using an FDR thresh-

old of 0.1, we found three such pathways (Fig. 3C):

the IGF1 (BIOCARTA), IL5, and TCPTP pathways

(NCI). Altogether, these three pathways comprise 67

genes. When each of the corresponding gene probes

was tested individually for differential expression

between the PM and mutp53 groups, only two probes,

both representing GRB2, were significantly differen-

tially expressed. Growth Factor Receptor Bound Pro-

tein 2 (GRB2) is an adaptor protein that links growth

factor receptors to the Ras signaling pathway. As seen

in Fig. 4, its mean expression, in both METABRIC

and TCGA, was indeed higher in the PM tumors than

in the mut or wtp53 tumors.

3.6. Clinical features of the PM tumors

MKI67 mRNA levels, indicative of cell proliferation,

were significantly higher (P = 1.5 9 10�5) in the PM

group than in the wtp53 group, resembling those of

mutp53 samples (Fig. 5A). Hence, PM tumors possess

higher average proliferation rates than the remainder

of the wt TP53 tumors (Fig. 5A). Moreover, the prog-

nosis of BC patients with ER+Her2- PM tumors is sig-

nificantly worse than that of patients with

‘conventional’ wtp53 tumors, and similar to that of

patients with authentic mut TP53 tumors, as assessed

by overall survival (Fig. 5B) and distant relapse-free

survival (Fig. S9A). In agreement, patients with PM

tumors tend to be associated with a greater number of

positive lymph nodes than those with wt TP53 tumors

(Fig. S9B). Hence, PM tumors resemble bona fide mut

TP53 tumors not only in gene expression and pathway

deregulation patterns, but also in clinical features.

Lastly, since common p53 missense mutants can

exert oncogenic GOF effects, we asked whether PM

p53 may also possess GOF activities in BC. To

demonstrate p53 GOF formally, one needs to show

that depletion of the tested p53 protein attenuates can-

cer-related features. Obviously, this is impractical for

archived tumor specimens. Therefore, we took advan-

tage of a study of TP53-mutated BC cell lines (Waler-

ych et al., 2016). Silencing the endogenous mutp53,

followed by RNA-Seq analysis, identified a core group

of 205 genes that are specifically regulated by mutp53

and contribute to its GOF in BC (Walerych et al.,

2016). These 205 genes are represented in METABRIC

by 337 probes; 178 of these probes separate wt from

mut TP53 cases at FDR < 0.05 (see Fig. 5D for heat-

map of their expression for all samples), while 104 sep-

arate PM from the other wt cases (with 88 probes

shared between these two lists). In Fig. 5C, we display

results for the six genes with the highest fold change

between the mutp53 and the wtp53 ER+Her2- samples

in the METABRIC dataset. As expected, all six genes
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were expressed more abundantly in the mutp53 tumors

compared to wt tumors; in most cases, their expression

was slightly higher in tumors with hotspot p53 muta-

tions [10 most frequent TP53 mutations in IARC

mutation database (Hainaut et al., 1998)], consistent

with their proposed contribution to mutp53 GOF.

Notably, expression of those genes in the PM tumors

was at least as high as in hotspot mutp53 tumors

(Fig. 5C). This raises the intriguing possibility that in

tumors where wtp53 acquires PM features, it not only

loses its tumor suppressive activities but may even gain

cancer-promoting activities.

4. Conclusions

Breast cancer is a heterogeneous disease, with diverse

subtypes, each driven by distinct molecular and genetic

mechanisms. We developed classifiers, separately for

each BC subtype, which differentiate well between

tumors that retain wtp53 expression and those that have

undergone TP53 mutations. To avoid the confounding

effect of the marked differences in percentages of mut-

p53 in the different subtypes, each subtype must be ana-

lyzed as a separate group. The large number of samples

in the METABRIC study, with available expression

Fig. 3. Pathway deregulation-based analysis of ER+Her2- tumors. (A) Heatmap of the PDS of 1373 tumors and 144 normal breast samples,

encompassing 379 pathways. Samples and pathways were ordered by SPIN, placing in proximity objects of similar deregulation profiles.

The second color bar from the bottom identifies TP53 mutation status: wt, missense, and null. The bar below it identifies the PM samples;

remarkably, these samples cluster in the region dominated by mutants. Different pathway clusters are identified on the right side. (B) Mean

PDS of 336 pathways that were differentially deregulated in PM vs wtp53 tumors. Pathways were ordered by their mean PDS in the mut

samples. (C) Mean PDS of normal breast tissue and of the wtp53, mutp53, and PM groups, for three pathways that are differentially

deregulated between PM and mutp53 tumors.

Fig. 4. Mean (log) expression values of GRB2 for the different groups of samples. (A) METABRIC, probe ILMN 1742597, PM vs mut;

P = 0.00035; (B) METABRIC, probe ILMN 1748721, PM vs mut; P = 0.00003; (C) TCGA, PM (n = 15 samples) vs mut; P = 0.11.
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data (Curtis et al., 2012), TP53 sequencing (Pereira

et al., 2016; Silwal-Pandit et al., 2014), and clinical

information enable statistical robustness of subtype-

specific analysis. For the largest group, of ER+Her2-

patients, even though 275 tumors were set aside as a test

set, the number of tumors that remained available to be

used for learning was large enough for reliable training

and validation. By combining 100 repeats of the entire

training process, each with its own random training/val-

idation split, we overcame the lack of stability of ranked

GLs that has plagued most single-gene-based classifiers

(Ein-Dor et al., 2005). We derived a very robust expres-

sion-based classifier, which separated successfully mut

from wt TP53 tumors also in the independent TCGA

cohort of patients (Koboldt et al., 2012).

Using this approach, we identified a group of

ER+Her2- patients whose tumors harbor wt TP53 but

display a mut p53-associated transcriptional program.

These ‘PM p53’ tumors resemble authentic TP53-mu-

tated ER+Her2- breast tumors not only in their gene

expression and pathway deregulation profiles, but also

in their highly proliferative nature and shorter patient

survival.

What may cause a wt TP53 tumor to acquire a PM

transcriptional profile? Potentially, such an outcome

might be obtained by complete loss of p53 expression,

rendering these tumors practically p53-null (Miller

et al., 2005). However, although we saw a slight reduc-

tion in p53 mRNA levels in our PM group relative to

the rest of the wtp53 samples (Fig. S8), p53 expression

was significantly higher in the PM tumors than in

tumors carrying nonsense/frameshift mutations (P-

value = 0.0022, two-sided t-test). Thus, additional

mechanisms are likely to contribute to the PM behav-

ior. These might involve deregulation of cancer-rele-

vant signaling pathways; for example, it was previously

shown that deregulation of the Hippo pathway can

alter the functionality of wtp53 (Furth et al., 2015).

Indeed, pathway-level comparisons (Drier et al., 2013)

demonstrated that hundreds of biological pathways are

significantly more deregulated in PM than in wtp53

tumors. Interestingly, elevated expression of GRB2 was

particularly symptomatic of PM tumors. GRB2 is

involved in relaying signaling downstream to numerous

growth factor receptors. Hence, although causality

between high GRB2 and PM p53 behavior remains to

Fig. 5. (A) Expression levels of MKI67 in PM, wt, and mutp53 ER+Her2- breast tumors and in normal breast tissue samples. (B) Kaplan–

Meier survival curves for BC patients bearing PM, wt, or mutp53 ER+Her2- tumors, with P-value = 0.00276, calculated by log-rank test,

between the survival of PM vs wt. (C) Expression fold change values in the indicated tumor groups, relative to wtp53 tumors, of six mut

p53-regulated genes. ‘Hotspots’ indicates tumors harboring one of the 10 most common TP53 hotspot mutations, according to the IARC

mutation database (Hainaut et al., 1998). (D) Mean expression of 178 gene probes corresponding to mut p53-regulated genes (Walerych

et al., 2016) that passed FDR < 0.05 between wt and mutp53, displayed for the wt, PM, mut, and p53 hotspots groups of samples. The

gene probes were ordered by hierarchical clustering, using the ‘clustergram’ Matlab function.
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be proven, it resonates well with the early observation

that wtp53 protein can be shifted into a mut-like con-

formation upon growth factor stimulation (Zhang and

Deisseroth, 1994). Additionally, epigenetic changes

may also contribute to acquisition of a PM p53 pheno-

type, as suggested by the mut-like behavior of wtp53 in

cancer-associated fibroblasts (Arandkar et al., 2018).

Elucidation of the molecular mechanisms that drive

wtp53 into a PM state may identify potential treat-

ments that can restore wtp53 functionality in tumors

harboring PM p53. This may selectively benefit

patients whose tumors display PM features in associa-

tion with bad prognosis. Thus, further elaboration of

the underlying mechanisms is highly desirable.

Acknowledgements

This work was supported in part by grants from Dr.

Miriam and Sheldon G. Adelson Medical Research

Foundation, the Rising Tide Foundation, and the

DKFZ-MOST Cooperation in Cancer Research.

Conflict of interest

The authors declare no conflict of interest.

Data accessibility

All data are available in the Appendix.

Author contributions

GB, ED, and MO designed research; GB performed

research; GF provided computational advice, S-FC,

OMR, and CC provided insights about the data; SM

and SA performed RNA quantification; ED, MO, and

YA conceived the study; ED and MO provided com-

putational and biological guidance, respectively. GB,

ED, and MO wrote the paper.

Consent to publish

The authors are fully responsible for the contents of

this manuscript, and the views and opinions described

in the publication reflect solely those of the authors.

References

Allen MA, Andrysik Z, Dengler VL, Mellert HS, Guarnieri

A, Freeman JA, Sullivan KD, Galbraith MD, Luo X,

Kraus WL et al. (2014) Global analysis of p53-

regulated transcription identifies its direct targets and

unexpected regulatory mechanisms. Elife 3, e02200.

Arandkar S, Furth N, Elisha Y, Nataraj NB, van der Kuip

H, Yarden Y, Aulitzky W, Ulitsky I, Geiger B and

Oren M (2018) Altered p53 functionality in cancer-

associated fibroblasts contributes to their cancer-

supporting features. Proc Natl Acad Sci USA 115,

6410–6415.
Benjamini Y and Hochberg Y (1995) Controlling the false

discovery rate: a practical and powerful approach to

multiple testing. J R Stat Soc Ser B 57, 289–300.
Brosh R and Rotter V (2009) When mutants gain new

powers: news from the mutant p53 field. Nat Rev

Cancer 9, 701–713.
Curtis C, Shah SP, Chin S-F, Turashvili G, Rueda OM,

Dunning MJ, Speed Doug, Lynch AG, Samarajiwa S,

Yuan Y et al. (2012) The genomic and transcriptomic

architecture of 2,000 breast tumours reveals novel

subgroups. Nature 486, 346–352.
Deng X and Nakamura Y (2017) Cancer precision

medicine: from cancer screening to drug selection and

personalized immunotherapy. Trends Pharmacol Sci 38,

15–24.
DeSantis CE, Ma J, Goding Sauer A, Newman LA and

Jemal A (2017) Breast cancer statistics, 2017, racial

disparity in mortality by state. CA Cancer J Clin 67,

439–448.
Drier Y, Sheffer M and Domany E (2013) Pathway-based

personalized analysis of cancer. Proc Natl Acad Sci

USA 110, 6388–6393.
Duda RO, Hart PE and Stork DG (2001) Pattern

Classification. Wiley, New York, NY.

Ein-Dor L, Kela I, Getz G, Givol D and Domany E (2005)

Outcome signature genes in breast cancer: is there a

unique set? Bioinformatics 21, 171–178.
Ein-Dor L, Zuk O and Domany E (2006) Thousands of

samples are needed to generate a robust gene list for

predicting outcome in cancer. Proc Natl Acad Sci USA

103, 5923–5928.
Furth N, Aylon Y and Oren M (2018) p53 shades of

Hippo. Cell Death Differ 25, 81–92.
Furth N, Bossel Ben-Moshe N, Pozniak Y, Porat Z, Geiger

T, Domany E, Oren M (2015) Down-regulation of

LATS kinases alters p53 to promote cell migration.

Genes Dev 29, 2325–2330.
Hainaut P, Hernandez T, Robinson A, Rodriguez-Tome P,

Flores T, Hollstein M, Montesano R (1998) IARC

Database of p53 gene mutations in human tumors and

cell lines: updated compilation, revised formats and

new visualisation tools. Nucleic Acids Res 26, 205–
213.

Haupt Y, Maya R, Kazaz A and Oren M (1997) Mdm2

promotes the rapid degradation of p53. Nature 387,

296–299.
John GH, Kohavi R and Pfleger K (1994) Irrelevant

features and the subset selection problem. Mach Learn

Proc 1994, 121–129.

1650 Molecular Oncology 14 (2020) 1640–1652 ª 2020 The Authors. Published by FEBS Press and John Wiley & Sons Ltd.

Pseudomutant p53 in breast cancer G. Benor et al.



Kim E, Giese A and Deppert W (2009) Wild-type p53 in

cancer cells: when a guardian turns into a blackguard.

Biochem Pharmacol 77, 11–20.
Kim MP and Lozano G (2018) Mutant p53 partners in

crime. Cell Death Differ 25, 161–168.
Koboldt DC, Fulton RS, McLellan MD, Schmidt H,

Kalicki-Veizer J, McMichael JF, Fulton LL, Dooling

DJ, Ding L, Mardis ER et al. (2012). Comprehensive

molecular portraits of human breast tumours. Nature

490, 61–70.
Kubbutat MHG, Jones SN and Vousden KH (1997)

Regulation of p53 stability by Mdm2. Nature 387, 299–
303.

Livshits A, Git A, Fuks G, Caldas C and Domany E

(2015) Pathway-based personalized analysis of breast

cancer expression data. Mol Oncol 9, 1471–1483.
Miller LD, Smeds J, George J, Vega VB, Vergara L,

Ploner A, Hall P, Klaar S, Liu E t and Bergh J (2005)

From the cover: an expression signature for p53 status

in human breast cancer predicts mutation status,

transcriptional effects, and patient survival. Proc Natl

Acad Sci USA 102, 13550–13555.
Milner J (1995) Flexibility: the key to p53 function? Trends

Biochem Sci 20, 49–51.
Mining D (2009) Springer series in statistics: the elements

of statistical learning. Math Intell 27, 83–85.
Nishimura D (2001) BioCarta. Biotech Softw Internet Rep

2, 117–120.
Ogata H, Goto S, Sato K, Fujibuchi W, Bono H and

Kanehisa M (1999) KEGG: kyoto encyclopedia of

genes and genomes. Nucleic Acids Res 27, 29–34.
Pati YC, Rezaiifar R and Krishnaprasad PS (1993)

Orthogonal matching pursuit: recursive function

approximation with applications to wavelet

decomposition. In Proceedings of 27th Asilomar

Conference on Signals, Systems and Computers (pp.

40–44). IEEE Comput. Soc. Press.

Pereira B, Chin S-F, Rueda OM, Vollan H-KM,

Provenzano E, Bardwell HA, Pugh M, Jones L,

Russell R, Sammut S-J et al. (2016) The somatic

mutation profiles of 2,433 breast cancers refine their

genomic and transcriptomic landscapes. Nat Commun

7, 11479.

Rueda OM, Sammut SJ, Seoane JA, Chin SF, Caswell-Jin

JL, Callari M, Batra R, Pereira B, Bruna A, Ali HR,

et al. (2019) Dynamics of breast-cancer relapse reveal

late-recurring ER-positive genomic subgroups. Nature

567, 399-404.

Schaefer CF, Anthony K, Krupa S, Buchoff J, Day M,

Hannay T and Buetow KH (2009) PID: the pathway

interaction database. Nucleic Acids Res 37, D674–
D679.

Silwal-Pandit L, Vollan HKM, Chin S-F, Rueda OM,

McKinney S, Osako T, Quigley DA, Kristensen VN,

Aparicio S, Borresen-Dale A-l et al. (2014) TP53

mutation spectrum in breast cancer is subtype specific

and has distinct prognostic relevance. Clin Cancer Res

20, 3569–3580.
Sorlie T, Perou CM, Tibshirani R, Aas T, Geisler S,

Johnsen H, Eisen MB, van de Rijn M, Jeffrey SS,

Thorsen T et al. (2001). Gene expression patterns of

breast carcinomas distinguish tumor subclasses with

clinical implications. Proc Natl Acad Sci USA 98,

10869–10874.
Trinidad AG, Muller PAJ, Cuellar J, Klejnot M, Nobis M,

Valpuesta JM and Vousden KH (2013) Interaction of

p53 with the CCT complex promotes protein folding

and wild-type p53 activity. Mol Cell 50, 805–817.
Tsafrir D, Tsafrir I, Ein-Dor L, Zuk O, Notterman DA

and Domany E (2005) Sorting points into

neighborhoods (SPIN): data analysis and visualization

by ordering distance matrices. Bioinformatics 21, 2301–
2308.

Van Der Maaten L and Hinton G (2008) Visualizing data

using t-SNE. J Machine Learn Res 9, 2579-2605.

Walerych D, Lisek K, Sommaggio R, Piazza S, Ciani Y,

Dalla E, Rajkowska K, Gaweda-Walerych K, Ingallina

E, Tonelli C et al. (2016) Proteasome machinery is

instrumental in a common gain-of-function program of

the p53 missense mutants in cancer. Nat Cell Biol 18,

897–909.
Zhang W and Deisseroth AB (1994) Conformational

change of p53 protein in growth factor-stimulated

human myelogenous leukemia Cells. Leuk Lymphoma

14, 251–255.

Supporting information

Additional supporting information may be found

online in the Supporting Information section at the end

of the article.
Appendix S1. Final expression table of 34,363 (HT-12

v3 platform, Illumina_Human_WG-v3) gene-probes

representing 24,369 genes, for 1928 tumor and 144

normal samples.

Appendix S2. TP53 labels, the mutation types and

breast cancer subtypes (ER+Her2-, ER-Her2- and

Her2+, as determined by Immunohistochemistry),

protein change, survival and treatment information

and clinical parameters.

Appendix S3. List of probes used for each of the final

100 subclassifiers.

Appendix S4. List of False Negative cases.

Appendix S5. Mutations identified in other sequenced

genes.

Appendix S6. List of main genes and gene probes used

in the classifier for each breast cancer subtype.

Data S1. Pre-processing.

Data S2. Imbalanced Learning.

1651Molecular Oncology 14 (2020) 1640–1652 ª 2020 The Authors. Published by FEBS Press and John Wiley & Sons Ltd.

G. Benor et al. Pseudomutant p53 in breast cancer



Data S3. Forward Selection Wrapper and Orthogonal

Matching Pursuit.

Data S4. Robustness measurements for both genes

and lists.

Data S5. TCGA pre-processing.

Data S6. Results of the learning process for ER-Her2-

and for Her2+.

Data S7. Additional error curves for ER+Her2-

tumors.

Data S8. Additional information about pseudomutant

classification for ER+Her2- samples.

Data S9. Comparison of the number of ER+Her2-

pseudomutant (PM) samples using varying combina-

tions of ML, GL and GR methods.

Data S10. Discrepancy between NGS and Sanger

sequencing for TP53 mutations for the PM samples.

Data S11. Comparison of the expression of the main

gene-probes, used by the final classifier, between the

wtp53 and mutp53 groups.

Table S1. Samples suspected to have germline muta-

tions (n = 15).

Table S2. Robustness of the final model’s gene lists

(ER+Her2- using p53 related genes). The mean and

std of the intersection and the total number of genes

appearing among the 100 lists of top 62 ranked probes

are displayed.

Table S3. The final constellation of ML*, GR*, GL*

and k* for ER-Her2- and Her2+and the correspond-

ing error rates.

Table S4. The number of ER+Her2- samples that

were falsely classified at least once during the training

phase and the validation phase of the final classifiers.

The numbers of mut and wt samples, and percentage

of mutants at the training stages (without test data),

are shown in the three right columns.

Table S5. PM samples (from ER+Her2-) that were

recognized by the final classifier both METABRIC

and TCGA datasets.

Table S6. Chosen parameters for the final imbalance-

corrected model for ER+Her2- and its corresponding

errors (training, validation, test, and TCGA), with the

number of models having all required genes in the

TCGA (out of the 100 subclassifiers).

Table S7. Discrepancies between NGS and Sanger

sequencing for the 44 pseudomutant (PM) samples.

Table S8. About 4% incidence of PM tumors was

obtained independently of the GL, GR and ML meth-

ods used. The number of FP samples and the percent-

age of the FP group, revealed using 6 different

combinations of ML, GL GR is presented below for

ER+Her2- subtype. The first line displays the results

of the final classifier that was used in the paper.

Fig. S1. Number of appearances of each gene amongst

the 62 top ranked probes, chosen from the p53 related

gene list to be used in at least one final subclassifier,

during the 100 iterations for ER+Her2- tumors.

Fig. S2. Accuracy and error rates for the chosen mod-

els for ER-Her2- and Her2+tumors.

Fig. S3. Additional error rates for ER+Her2- tumors,

each based on 100 iterations (and therefore 100 error

rates).

Fig. S4. The number of wtp53 ER+Her2- samples from

the validation set, which were misclassified as false posi-

tive (mutp53 classification) at least once (n = 81).

Fig. S5. Mean expression of the main gene probes (see

SI appendix 10) used by the final classifier for predict-

ing p53 state, for ER+Her2- subtype in METABRIC

(panels A&B) and TCGA (panels C&D) cohorts,

shown for the PM, wt and mutp53 groups.

Fig. S6. Mean expression of the main gene probes (see

SI appendix S10) used by the final classifier for pre-

dicting p53 state, for ER-Her2- subtype in METAB-

RIC (panels A&B) and TCGA (panels C&D) cohorts,

for the wt and mutp53 groups.
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