
RESEARCH ARTICLE

Bayesian inference of transmission chains

using timing of symptoms, pathogen

genomes and contact data

Finlay CampbellID
1*, Anne Cori1, Neil FergusonID

1, Thibaut Jombart1,2,3*

1 MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology,

School of Public Health, Imperial College London, United Kingdom, 2 Department of Infectious Disease

Epidemiology, London School of Hygiene & Tropical Medicine, London, United Kingdom, 3 UK Public Health

Rapid Support Team, London, United Kingdom

* f.campbell15@imperial.ac.uk (FC); thibautjombart@gmail.com (TJ)

Abstract

There exists significant interest in developing statistical and computational tools for inferring

‘who infected whom’ in an infectious disease outbreak from densely sampled case data,

with most recent studies focusing on the analysis of whole genome sequence data. How-

ever, genomic data can be poorly informative of transmission events if mutations accumu-

late too slowly to resolve individual transmission pairs or if there exist multiple pathogens

lineages within-host, and there has been little focus on incorporating other types of outbreak

data. We present here a methodology that uses contact data for the inference of transmis-

sion trees in a statistically rigorous manner, alongside genomic data and temporal data.

Contact data is frequently collected in outbreaks of pathogens spread by close contact,

including Ebola virus (EBOV), severe acute respiratory syndrome coronavirus (SARS-CoV)

and Mycobacterium tuberculosis (TB), and routinely used to reconstruct transmission

chains. As an improvement over previous, ad-hoc approaches, we developed a probabilistic

model that relates a set of contact data to an underlying transmission tree and integrated

this in the outbreaker2 inference framework. By analyzing simulated outbreaks under vari-

ous contact tracing scenarios, we demonstrate that contact data significantly improves our

ability to reconstruct transmission trees, even under realistic limitations on the coverage of

the contact tracing effort and the amount of non-infectious mixing between cases. Indeed,

contact data is equally or more informative than fully sampled whole genome sequence data

in certain scenarios. We then use our method to analyze the early stages of the 2003 SARS

outbreak in Singapore and describe the range of transmission scenarios consistent with

contact data and genetic sequence in a probabilistic manner for the first time. This simple

yet flexible model can easily be incorporated into existing tools for outbreak reconstruction

and should permit a better integration of genomic and epidemiological data for inferring

transmission chains.
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Author summary

Reconstructing the history of transmission events in an infectious disease outbreak pro-

vides valuable information for informing infection control policy. Recent years have seen

considerable progress in the development of statistical tools for the inference of such

transmission trees from outbreak data, with a major focus on whole genome sequence

data (WGS). However, complex evolutionary behavior, missing sequences and the limited

diversity accumulating along transmission chains limit the power of existing approaches

in reconstructing outbreaks. We have developed a methodology that uses information on

the contact structures between cases to infer likely transmission links, alongside genomic

and temporal data. Such contact data is frequently collected in outbreak settings, for

example during Ebola, HIV or Tuberculosis outbreaks, and can be highly informative of

the infectious relationships between cases. Using simulations, we show that our contact

model effectively incorporates this information and improves the accuracy of outbreak

reconstruction even when only a portion of contacts are reported. We then apply our

method to the 2003 SARS outbreak in Singapore and describe the range of transmission

scenarios consistent with genetic data and contact data for the first time. Our work sug-

gests that, whenever available, contact data should be explicitly incorporated in outbreak

reconstruction tools.

Introduction

Inferring chains of transmission in an infectious disease outbreak can provide valuable epide-

miological insights into transmission dynamics, which can be used to guide infection control

policy. For example, reconstructed outbreaks have been used to identify drivers of ongoing

infection [1], characterize heterogeneous infectiousness in a population [2], evaluate the effec-

tiveness of interventions [3] and determine transmission mechanisms [4]. Consequently there

has been increased interest in developing statistical and computational tools for inferring such

‘transmission trees’ from various types of data, including times of symptom onset, contact

tracing data, spatial data and, increasingly frequently, pathogen whole genome sequence

(WGS) data [5–13].

Most state of the art outbreak reconstruction tools aim at approximating a posterior distri-

bution of likely transmission trees in a Bayesian MCMC framework. Two major approaches

have emerged, which can be defined by their treatment of genetic data [14]. The ‘pairwise
approach’ begins with a model of disease transmission and attaches to this a genetic model that

describes the pairwise genetic distance between putative transmission pairs [6–9]. The ‘phylo-
genetic approach’ uses genetic data to infer the unobserved history of coalescent events between

sampled pathogen genomes in the form of a phylogenetic tree and infers transmission trees

consistent with this phylogeny using epidemiological data. Such methods either use a fixed

phylogeny inferred a priori [10,15] or jointly infer the phylogeny alongside the transmission

tree itself [11–13].

These methodologies differ in their ability to identify unobserved or imported cases, accu-

rately describe evolutionary behavior in the presence of multiple dominant strains within-host

or incomplete transmission bottlenecks and accommodate multiple genetic sequences per

host. However, a notable similarity between these studies is the fact that they generally only

consider temporal and genetic data. Accordingly, such approaches rely heavily on highly infor-

mative genetic sequence data for identifying likely transmission pairs, as temporal data is gen-

erally consistent with a large number of potential ancestries [16].

Inferring transmission chains from temporal, genetic and contact data
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However, WGS are not always informative of the transmission route of an epidemic. Firstly,

genetic diversity across most outbreaks is low and a significant portion of genetic sequences

expected to be identical [17], most prominently if the pathogen genome is small (e.g. human

influenza [18]), the mutation rate low (e.g. Mycobacterium tuberculosis [19]), or the generation

time (delay between primary and secondary infection) short (e.g. Streptococcus pneumoniae
[20]). In these cases, transmission pairs cannot be accurately identified by genetic data alone,

resulting in an overall poorly resolved transmission tree. The informativeness of genetic

sequence data is also limited by complex evolutionary behavior. Didelot et al. demonstrated

that realistic genetic models accounting for within-host diversity, in which several strains coex-

ist inside a host and can be transmitted and sampled, place significant uncertainty around

ancestry allocation even when genetic diversity across the outbreak is high, as multiple trans-

mission scenarios are consistent with the genetic data [15]. Pathogens displaying significant

within-host diversity include those with long periods of carriage (e.g. Staphylococcus aureus
[21]) or a propensity for super-infections (Streptococcus pneumoniae [22]). WGS is also unin-

formative of the direction of transmission between donor-recipient pairs if multiple sequences

per host are not available [23]. Finally, WGS will generally not be available for all infected indi-

viduals, especially in resource poor settings. In the 2014 Ebola outbreak in West Africa, for

example, sequences were collected in only 5% of cases [24]. Genetic data is therefore frequently

of limited use in reconstructing transmission trees, and inference methods that rely heavily on

it will perform poorly in such circumstances.

Integrating other types of outbreak data is therefore necessary for inferring transmission

trees in realistic outbreak situations. A frequently collected and highly informative source of

data on likely transmission routes is contact data, an integral component of early outbreak

response that describes the network of reported contacts with infected individuals. Contact

data provided most of the information used to reconstruct transmission chains during Severe

Acute Respiratory Syndrome (SARS) [25], Middle East Respiratory Syndrome (MERS) [26]

and Ebola [1,27,28] epidemics, and is routinely collected in outbreaks of HIV [29] and Tuber-

culosis [30]. Contact data can be classified as ‘exposure’ data and or ‘contact tracing’ data. Expo-
sure data describes contacts between a given case and their potential infectors and is an

intrinsic part of case definition in diseases with person-to-person transmission. Contact tracing
data describes contacts between confirmed/probable cases and individuals they could have

infected: it is used for active case discovery and rapid isolation and is an integral part of con-

tainment strategy. Importantly, both types of contact data potentially contain information on

the topology of the transmission tree.

Here, we introduce a model which exploits contact data alongside dates of symptom onset,

information on the incubation period (delay between infection and symptom onset) and gen-

eration time, and pathogen WGS to reconstruct transmission chains. Our methodology

extends the outbreaker model introduced by Jombart et al. [6] with a contact model that

accounts for partial sampling and the presence of non-infectious contacts between cases. As an

improvement over other approaches, the integration of a full contact model reduces the reli-

ance on high quality genetic data for accurate inference. We evaluate the performance of this

new model and compare the value of the different types of data for inferring who infects

whom, using a variety of simulated outbreak scenarios. We then apply our approach to the

early stages of the 2003 SARS outbreak in Singapore, integrating the available data on contact

structures and genome sequences in a single statistical framework for the first time. The infer-

ence tool presented in this study is freely available as the package outbreaker2 for the R soft-

ware [31].

Inferring transmission chains from temporal, genetic and contact data

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006930 March 29, 2019 3 / 20

https://doi.org/10.1371/journal.pcbi.1006930


Results

Algorithm performance on simulated outbreaks

We tested our new model on simulated outbreaks of two pathogens with well-defined epide-

miological and evolutionary parameters, namely EBOV and SARS-CoV [27,32]. As SARS-CoV

WGS generally contain greater genetic diversity between transmission pairs and are therefore

more informative of transmission events than Ebola WGS [17], we describe contrasting out-

break settings where the added value of incorporating contact data may vary. Outbreaks were

simulated using empirical estimates of the generation time distribution, the incubation period

distribution and the basic reproduction number R0 (i.e. the average number of secondary

infections caused by an index case in a fully susceptible population [33]). To reflect observed

heterogeneities in infectiousness, outbreaks were simulated under strong super-spreading ten-

dencies, where a small number of individuals account for a high number of cases [2,25,34].

Genetic sequence data was simulated using estimates of the genome length and genome wide

mutation rate.

To describe contact tracing efforts in various outbreak scenarios, contact data was simu-

lated using two parameters (for a full description of the model, see Methods). Briefly, the prob-

ability of a contact being reported is described by ε, the contact reporting coverage. Non-

infectious mixing between cases that obscures the topology of the underlying transmission net-

work is described using the non-infectious contact probability λ, defined as the probability of

contact occurring between two sampled cases that do not constitute a transmission pair. A use-

ful corollary term to λ is the expected number of non-infectious contacts per person, ψ, as this

accounts for the size of the outbreak and describes the amount of non-infectious mixing in

terms of numbers of contacts.

We investigated the effect of the coverage of contact tracing efforts and the probability of

non-infectious contact on our ability to reconstruct transmission trees using using a grid of

values for ε and ψ. The informativeness of different types of outbreak data was determined by

reconstructing each outbreak four times, using combinations of times of sampling (T), contact

tracing data (C) and genetic sequence data (G): T, TC, TG and TCG. For an example of a simu-

lated transmission network, contact network and reconstructed transmission tree, see S1 Fig.

Transmission tree reconstruction was essentially impossible using only times of sampling,

with on average only 9% and 10% of infectors correctly identified in the consensus transmis-

sion tree for EBOV and SARs-CoV outbreaks, respectively (Fig 1). Statistical confidence in

ancestry allocation as defined by the average Shannon entropy of the posterior distribution of

potential infectors for each case, for which a value of 0 indicates complete posterior support

for a given ancestry and higher values indicates lower statistical confidence, was also low (S2

Fig). Including genetic data improved both the accuracy of inference and the statistical confi-

dence in these assignments. However, even in the idealized scenario of error free sequencing

and WGS for all cases, this data was insufficient for complete outbreak reconstruction under

our genetic likelihood, with on average only 29% and 70% of transmission pairs correctly

inferred in in EBOV and SARS-CoV outbreaks, respectively.

Incorporating contact tracing data using our new contact model improved the accuracy of

transmission tree reconstruction across all simulations, with the magnitude of improvement

dependent on the values of ε and ψ (Fig 1). Unsurprisingly, accuracy of inferred ancestries

increased with coverage ε, as a greater number infectious contacts were reported, and

decreased with the number of non-infectious contacts ψ, as these reduced the proportion of

contacts informative of transmission events. In the idealized scenario of complete contact trac-

ing coverage and zero non-infectious contacts, outbreaks were reconstructed with near perfect

accuracy, even in the absence of genetic data, with the few incorrectly assigned ancestries

Inferring transmission chains from temporal, genetic and contact data
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attributable to misinformative sampling times. Encouragingly, improvements in accuracy per-

sisted in more realistic contact tracing scenarios with partial coverage and large numbers of

non-infectious contacts. For example, consider the contact tracing scenario with only 60%

coverage and on average two non-infectious contacts per person. When adding this data to the

purely temporal outbreaker model, the accuracy in reconstructing EBOV outbreaks increased

from 9% to 44%. Though more than half of ancestries remained incorrectly assigned, out-

breaks were in fact reconstructed with greater accuracy than when using WGS from Ebola

cases, for which accuracy was only 28%.

When comparing the informativeness of contact data and genetic data across all simula-

tions, we found that information on contact structures was frequently equally or more infor-

mative than fully sampled and error-free genetic sequence data, even under limitations of

partial coverage and significant levels of non-infectious contact (Fig 2). For example, contact

data with only 40% coverage and 4 non-infectious contacts per person was as informative as

fully sampled Ebola genetic data. Similarly, if the reporting coverage was 100%, contact data

was as informative as Ebola WGS even when individuals reported 10 non-infectious contacts

with other cases on average, meaning that only 17% of reported contacts represented true

transmission pairs. Though contact data was generally less informative than SARS-CoV WGS

in most scenarios, it still provided comparable increases in accuracy when coverage was high

(ε> 0.6) and contact of non-infectious contact low (ψ< 2).

As expected, accuracy of outbreak reconstruction was highest when using contact, temporal

and genetic data at the same time. Notably, contact data was able to correct a significant por-

tion of ancestries falsely assigned using only temporal data and WGS. For example, incorporat-

ing contact data with 80% coverage and 2 non-infectious contacts per person lead to an

increase in average accuracy of outbreak reconstruction from 28% to 79% for EBOV outbreaks

Fig 1. Accuracy of outbreak reconstruction using different types of outbreak data. 100 outbreaks were simulated and reconstructed at each grid point, using

different values for the contact reporting coverage ε and number of non-infectious contacts per case ψ. Each outbreak was reconstructed four times, using

different combinations of times of sampling (T), contact tracing data (C) and genetic data (G). The color of a grid point represents the average accuracy of

outbreak reconstruction.

https://doi.org/10.1371/journal.pcbi.1006930.g001

Inferring transmission chains from temporal, genetic and contact data
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(Fig 1). Contact data therefore contained significant additional information on likely transmis-

sion routes not available from pathogen WGS, which was successfully integrated in our infer-

ence framework.

In addition to the transmission tree itself, we inferred the model parameters ε and λ under

uninformative priors and observed accurate estimates of the simulated values for both EBOV

and SARS-CoV outbreaks (S3 and S4 Figs). When using temporal and contact data, the mean

posterior estimates of ε and λ across 100 outbreaks were generally distributed around the true

simulated value, and with low variance especially when the coverage ε was high. Only when λ
was high were the estimates slightly off-centered from the true value. Including genetic data

improved parameter inference across all scenarios, resulting in correctly centered estimates

with a reduced variance. ε and λ are therefore identifiable in our contact likelihood and gener-

ally well estimated by our inference framework, allowing appropriate probabilistic weighting

of contact data in the allocation of ancestries.

2003 SARS outbreak in Singapore

We applied our method to the early stages of the 2003 SARS outbreak in Singapore, for which

dates of symptom onset, whole genome sequences and contact information were collected for

Fig 2. Informativeness of contact data relative to fully sampled genetic data. 100 outbreaks were simulated and

reconstructed at each grid point, using different values for the contact reporting coverage ε and number of non-

infectious contacts ψ. The color of a grid point represents the difference between accuracy of outbreak reconstruction

using times of sampling and contact tracing data and using times of sampling and genetic data.

https://doi.org/10.1371/journal.pcbi.1006930.g002

Inferring transmission chains from temporal, genetic and contact data
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the first 13 cases [35,36]. Previous attempts to infer the transmission tree from these data either

reconstructed probable lineages by manual inspection [35,36], or entirely discarded informa-

tion on the six reported contacts between cases [6,37], even though they were all thought to be

epidemiologically significant [36].

Using outbreaker2, we were able to infer the range of transmission histories consistent

with the temporal, genomic and contact data in a probabilistic manner. We analyzed the

outbreak several times using different settings; with and without contact data and using dif-

ferent priors on λ (Fig 3). Under the assumption that the reported contacts were very likely

to be epidemiologically relevant, by fixing the non-transmission contact rate λ at 1e-4, con-

tact data significantly changed the posterior distribution of ancestries (Fig 3B and 3C). As

expected under these assumptions, transmission links in line with reported contacts were

better supported. For example, the most likely infector of cases sin2677 and sin2774 was

sin2500 when including contact data (Fig 3C), instead of sin2748 in the default analysis (Fig

3B). Even though these transmission events were less likely under the genetic likelihood, as

they implied the accumulation of 2 and 3 mutations, respectively, rather than 1 and 2 muta-

tions, these ancestries were supported by the contact data and were therefore credible under

our model. Importantly, the original transmission pathway inferred in the absence of

genetic data (sin2748 infecting sin2677 and sin2774) also remained plausible. Further novel

infection routes supported by contact data were sin849 infecting sin848, and sin848 infect-

ing sin852.

However, not all ancestries supported by contact data received significant posterior sup-

port. Even though sin849 was in contact with and therefore a likely infector of sin848, sin847
remained the consensus ancestor of sin848 with 78% posterior support, as it is separated from

sin848 by only 1 mutation, which is far more favorable under the genetic likelihood compared

to the 7 mutations separating sin849 and sin848. Furthermore, though sin850 and sin848 had a

reported contact, an infectious relationship between the two received no posterior support due

to the large number of mutations (10) separating the two. Therefore, while the contact model

generally provided support for transmission histories in line with epidemiological observations

of contacts, each ancestry allocation was the result of weighing the evidence provided by all

three, potentially conflicting, data sources.

Interestingly, incorporating contact data in our analysis affected ancestry allocations not

directly referenced in the contact network. For example, sin848 was suggested as a novel infec-

tor of sin847 with 22% posterior support, though these cases are not linked by a reported con-

tact. This is explained by a change in the inferred infection times (S5 Fig). sin848 infecting

sin852, as suggested by the contact data, resulted in an earlier inferred infection time for

sin848, which in turn made it a plausible infector of sin847. A similar change in the inferred

infection times of sin2500 and sin2748, driven by the contact data, reversed the directionality

of their consensus infectious relationship, even though this directionality was not provided in

the contact data. Incorporating the contact model alongside the genetic and temporal model

therefore allowed for high level interactions, beyond simply providing support for ancestries

indicated in the contact data.

We also analyzed the dataset using a weaker prior on λ (Beta(1, 10)) and an uninformative

prior. However, the resulting posterior ancestries were essentially identical to those inferred in

the absence of contact data (S6 Fig).

We then reconstructed the outbreak under the assumption that all reported contacts neces-

sarily occurred between direct transmission pairs by fixing λ at a value of 0 (Fig 3D). The pos-

terior distribution of transmission networks therefore spanned the contact network, with 6 of

the 12 ancestries remaining fixed. This rigid topology of plausible transmission networks

resulted in low variance among the remaining ancestries, producing essentially a single

Inferring transmission chains from temporal, genetic and contact data
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posterior tree. Notably, this analysis proposed several new ancestries (sin2679 to sin842, sin842
to sin847 and sin848 to sin850) rejected with a λ value of 1e-4 and had a substantially lower

average log-likelihood (-647.4 compared to -579.2). Therefore, while the assumption that λ
was 0 may have been valid, this approach forced the algorithm to accept ancestries highly

unlikely under the genetic and temporal likelihoods, thereby preventing a meaningful integra-

tion of different data sources.

Fig 3. Reconstruction of the 2003 SARS outbreak in Singapore. A) Circles represent individual cases, and edges the epidemiological contacts reported between them.

B) The outbreak was reconstructed using temporal and genetic data. Arrows represent posterior ancestries between cases, scaled in width by the posterior frequency of

that ancestry. Ancestries with a minimum posterior frequency of 0.01 were included. The color of a node corresponds to the median posterior infection time of that

case. C) The outbreak was reconstructed using temporal, contact and genetic data, and the non-infectious contact probability λ fixed at a value of 1e-4. D) The outbreak

was reconstructed using temporal, contact and genetic data, and the non-infectious contact probability λ fixed at a value of 0.

https://doi.org/10.1371/journal.pcbi.1006930.g003
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Discussion

The methodology described here represents, to our knowledge, the first outbreak reconstruc-

tion framework integrating contact data alongside the timing of symptom onset, reporting

rates and pathogen WGS data. Using simulations, we have shown how contact data can

improve epidemiological inference across a range of outbreak settings, including incomplete

contact tracing coverage, significant amounts of non-infectious contact and strong super-

spreading tendencies. By integrating contact data in the analysis of early stages of the 2003 Sin-

gaporean SARS outbreak for the first time, we have illustrated how our approach can work in

a realistic outbreak scenario and provide a probabilistic description of plausible transmission

routes in the face of conflicting outbreak data. The general applicability of our model, in addi-

tion to being implemented in a freely available and well-documented software package, makes

outbreaker2 useful to a broad epidemiological audience.

Our work reduces the reliance of outbreak reconstruction tools on WGS data. This is signif-

icant when considering that genetic diversity in many pathogens arises too slowly to resolve a

significant portion of transmission pairs by genetic means [17], and that within-host genetic

diversity of other pathogens hinders accurate transmission tree reconstruction from genetic

data [38]. Furthermore, sequencing pathogen genomes from enough cases in an outbreak to

resolve individual transmission events is frequently unrealistic in the face of logistical and

financial limitations [24]. In contrast, contact tracing is routinely conducted during outbreak

response, and therefore provides a valuable additional window of information on transmission

events without placing an additional burden on field epidemiologists. Indeed, given the simu-

lation model and likelihoods used for inference, our work suggests that even incomplete con-

tact tracing data may be more informative than fully sampled, error-free genetic sequence data

of some pathogens.

Methodologically, our contact model differs from previous methods for relating contact

data to epidemiological processes, with several advantages [39–41]. Soetens et al. estimate

effective reproduction numbers by assigning transmission links on the basis of contact data,

while accounting for right censoring of case counts [39]. However, they assume complete sam-

pling of contacts and cases, and automatically designate confirmed cases with a known contact

as transmission pairs. This is equivalent to fixing λ at a value of 0 in our model, which our anal-

ysis of the SARS dataset has shown is unsuitable for integrating other types of data in a mean-

ingful manner. Similarly, Hens et. al. restrict transmission pairs to those supported by

reported contacts [40], thereby mis-assigning ancestries if contacts are only partially reported.

Jewell and Roberts establish a more statistically rigorous approach for epidemiological

inference from contact data by explicitly modelling the contact process that drives the infec-

tious process in an SINR compartmental framework [41]. Such a mechanistic model natively

relates epidemiological processes to a set of observed contact data and has the advantage of

potentially accommodating complex contact structures caused by non-random mixing in the

future. However, a prospective model of this sort is considerably more complex to develop in a

statistically tractable manner and has necessitated the assumption of a single index case,

whereas multiple infectious introductions are easily accounted for in our contact likelihood.

Furthermore, their approach does not explicitly model under-reporting of contacts, and there-

fore does not allow valuable prior information on the coverage of the contact tracing effort to

inform the analysis. Our approach is therefore applicable to a wider range of realistic outbreak

settings.

Incorporating this contact model alongside a temporal and genetic model represents an

improvement over previous, ad-hoc methods to data integration, which generally use contact

data to exclude transmission links and then explore the remaining transmission tree space

Inferring transmission chains from temporal, genetic and contact data
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using other data [42,43]. By modelling contact tracing as a probabilistic process in a Bayesian

framework, information on the contact tracing effort can also be embedded in the prior to

improve the inferential process and more explicitly describe the assumptions underlying it.

For example, if most contacts in an outbreak are expected to have been reported, the prior on

the contact reporting coverage ε can be shifted to provide greater support for higher values,

reducing support for ancestries that lack a contact. ε could even be fixed at a value of 1, mean-

ing a reported contact is required for a given transmission pair to be inferred, given the

assumption that every contact has been reported. Similarly, as shown for the 2003 SARS out-

break, an informative prior on the non-infectious contact probability λ should generally be

used. As most contact tracing efforts are conducted under the belief that non-transmission

pairs experience contacts with significantly lower probability than transmission pairs, the

prior on λ should provide support for lower values, in turn placing greater weight on reported

contacts when assigning ancestries.

Our method also allows conflicting data to be treated in a systematic manner, as demon-

strated by the analysis of the the 2003 SARS outbreak, where several ancestries were supported

by contact data yet separated by an implausibly large number of mutations. In contrast to

existing tools [6,35], outbreaker2 can evaluate these inconsistencies and determine the distri-

bution of likely transmission trees under multiple data types. While not necessarily improving

the accuracy of the inferred transmission tree, our approach better captures the uncertainty

around these ancestry assignments given the available data.

However, it is important to note both the intrinsic informational limitations of contact data

as well as the methodological limitations of the work presented here. Contact tracing consti-

tutes a significant logistical challenge, as most if not at all infected individuals must be followed

up, and suspected cases monitored past the upper end of the incubation period distribution

[44–46]. The coverage of contact tracing efforts conducted in low resource settings may there-

fore be low [47], and consequently poorly informative of the transmission network (Fig 1).

Even if a significant proportion of contacts are reported, a high degree of mixing between

cases can obscure the topology of the underlying transmission network, for example within

hospital wards or classrooms. Contact data alone will therefore not always suffice for complete

reconstruction of an outbreak. Nevertheless, the framework presented here allows even mini-

mally informative contact data to be incorporated into transmission tree inference alongside

other available data.

Furthermore, the use of strong priors on ε and λmay be required to ensure adequate

weighting of contact data, especially in the face of conflicting genetic data as shown in the anal-

ysis of the 2003 SARS outbreak. While our framework forces an explicit description of these

assumptions, the sensitivity of the algorithm outputs to the prior distributions should be noted

and explored adequately.

Our model of epidemiological contacts also makes a number of simplifications, some of

which could be improved upon in future work. As the contacts are undated, the model does

not consider that they are only indicative of transmission events if they occur during the infec-

tious period of the infector, potentially resulting in overconfident ancestry assignments if con-

tacts frequently occur outside this time period. However, as epidemiologists generally only

record meaningful contacts occurring within likely windows of infection, the assumption that

recorded contacts represent epidemiologically plausible transmission pairs appears reasonable.

As currently implemented, our model also does not account for different weights between con-

tacts, which could be useful for example to stratify different types of sexual intercourse by their

risk of HIV transmission [48], or TB contacts by their duration of contact (e.g. household vs.

casual). However, it could be easily extended to do so by using separate parameters for the

reporting coverage (e.g. ε1, ε2, ε3) and non-infectious contact probability (e.g. λ1, λ2, λ3) of

Inferring transmission chains from temporal, genetic and contact data
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each type of contact. Furthermore, the contact model is undirected and treats exposure data

and contact tracing data equally, resulting in a loss of information about the potential direc-

tionality of the infectious interaction which must instead be inferred from other data. Direc-

tionality could be incorporated with relative ease by treating reported contacts as asymmetric

(individual i contacting individual j is distinct from j contacting i) and relating this to the

infector-infectee relationship in the putative transmission tree (I infecting j is distinct from j
infecting I). However, the current model generally inferred directionality successfully from

temporal data simulated under realistic delay distributions (Fig 1).

It should also be noted that the use of fixed generation time and incubation period distribu-

tions is poorly suited to epidemic scenarios with highly connected contact networks, for which

hazard-based approaches are more suitable [49,50]. However, as demonstrated in Fig 1, con-

tact data is only informative when the contact network itself is fairly sparse (i.e. λ is low). The

assumption of fixed generation time and incubation period distributions is therefore suitable

for the use cases of our contact model [10,13,51].

Finally, the assumptions underlying the pairwise genetic model should be considered when

using outbreaker2. The likelihoods of pairwise genetic distances are treated as independent,

when in fact they are dependent on the underlying infectious relationships between cases (e.g.

the genetic relatedness of case A and its infector B is dependent on the infector of B). Similarly,

by considering only genetic distances, our method disregards histories of shared mutations

between genomes. These assumptions can result in loss of information and potential misinter-

pretation of genetic signals, especially when evolutionary histories are complex [38]. In such

cases, character-based, phylogenetic models should be considered [10,11].

In conclusion, the work presented here provides a simple yet flexible methodology for inte-

grating contact data with genetic and temporal data in the inference of transmission trees. By

allowing contact data to complement and/or substitute genetic data as the primary source of

information on infectious relationships between individuals, our work increases both the

scope and accuracy of methodologies for outbreak reconstruction.

Methods

Outbreaker model

Our work is an extension of the outbreaker model developed by Jombart et al. [16], re-writ-

ten in a manner to be more extensible This model considers, for each case I (i = 1, . . .,N),

the probability of a proposed transmission history given the time of symptom onset ti and a

pathogen genetic sequence si (Table 1). Assumptions on the temporal relationship between

transmission pairs are given by the generation time distribution w, defined as the distribu-

tion of delays between infection of a primary and secondary case, and the incubation

period distribution f, defined as the distribution of intervals between infection and symp-

tom onset of a case. w and f are assumed to be known, and not estimated during the infer-

ence process.

The unobserved transmission events are modelled using augmented data; case i is infected

at time Ti
inf, and its most recent sampled ancestor denoted αi. To allow for unobserved cases,

the number of generations separating i and αi is explicitly modelled and denoted κi (κi� 1).

The proportion of cases that have been sampled is defined by the parameter π and is inferred

as part of the estimation procedure. The other estimated parameter is the mutation rate μ,

measured per site per generation of infection.

This model is embedded in a Bayesian framework. Denoting D the observed data, A the

augmented data and θ the model parameters, the joint posterior distribution of parameters

Inferring transmission chains from temporal, genetic and contact data
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and augmented data is defined as:

P A; yjDð Þ ¼
PðD;AjyÞPðyÞ

PðDÞ

The first term describes the likelihood of the data, the second term the joint prior (for a

complete description of both, see Jombart et al. [6]). Briefly, the likelihood is computed as a

product of case-specific terms, and can be decomposed into a genetic likelihood O1, a temporal

likelihood O2 and a reporting likelihood O3.

The genetic likelihood describes, for a given case i, the probability of observing the genetic

distance between sequence si and that of its most recent sampled ancestor sαi, given the pro-

posed ancestries and parameters:

Ω1

i ¼ pðsijai; sai ; ki; mÞ

and is defined as:

ðkimÞ
dðsi ;sai Þð1 � kimÞ

lðsi ;sai Þ� dðsi ;sai Þ

This calculates the probability of d(si,sj) mutation events occurring at the observed nucleo-

tide positions and no mutations occurring at the remaining positions, while summing over the

κi generations in which the mutations could have occurred. For a full derivation of this likeli-

hood, see S1 Text. The temporal likelihood describes the probability of observing the time of

symptom onset and proposed time of infection:

Ω2

i ¼ pðtijT
inf
i ÞpðT

inf
i jai;T

inf
ai
; kiÞ

and is calculated as:

f ðti � Tinf
i ÞwkiðTinf

i � Tinf
ai
Þ

Table 1. Notation of outbreaker model [6].

Symbol Type Description

i Data Index of cases

N Data Number of cases in the sample

si Data Sequence of case i
ti Data Collection date of si
ci,j Data Contact status between case i and case j
w Function Generation time distribution

f Function Incubation period distribution

d(si,sj) Function Number of mutations between si and sj
l(si,sj) Function Number of comparable nucleotide positions between si and sj
αi Augmented data Index of the most recent sampled ancestor of case i
κi Augmented data Number of generations between αi and i
Ti

inf Augmented data Date of infection of i
μ Parameter Mutation rate, per site and per generation of infection

π Parameter Proportion of cases sampled in the outbreak

ε Parameter Proportion of contacts reported

λ Parameter Probability of non-infectious contact between cases

η Parameter Probability of contact between transmission pairs

z Parameter Probability of false-positive reporting a contact

https://doi.org/10.1371/journal.pcbi.1006930.t001
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wκ = w�w�. . .�w, where � is the convolution operator and is applied k times. The first term

describes the probability of the imputed time of infection under the incubation period distri-

bution. The second term describes the probability of observing the delay between infection

times of the case and its most recent sampled ancestor under the generation time distribution,

over the imputed number of generations. The reporting likelihood describes the probability of

unobserved intermediate cases:

Ω3

i ¼ pðkijpÞ

and is calculated as:

NBð1jki � 1; pÞ

where NB is the probability mass function of the negative binomial distribution, and describes

the probability of not observing κi—1 cases given a probability of observation of π.

Contact likelihood

To integrate contact data into outbreaker, we developed a method for modelling contact data

from transmission trees (Fig 4). The model considers undated, undirected, binary contact

data, such that the contact status ci,j is set to 1 if contact is reported between individuals i and j
and set to 0 otherwise. The model is hierarchical and describes two processes: the occurrence

of contacts and the reporting of contacts. Transmission pairs experience contact with probabil-

ity η. This formulation accounts for the possibility of transmission occurring without direct

contact, for example by indirect environmental contamination as is observed with Clostridium
difficile [52]. Sampled, infected individuals that do not constitute a transmission pair experi-

ence contact with probability λ, the non-infectious contact probability. Contacts that have

occurred, either between transmission pairs or non-transmission pairs, are then reported with

probability ε, the contact reporting coverage. Contacts that have not occurred are reported

with probability z, the false positive reporting rate.

We make two assumptions to simplify this model, which can be relaxed in future work if

necessary. Firstly, we assume that direct contact is necessary for transmission and set η to 1.

Fig 4. Modelling contact data from transmission trees. Circles represent sampled, infected individuals. ci,j represents the contact status between cases i and j, with 1

indicating a reported contact and 0 the absence of a reported contact. Transmission pairs and non-transmission pairs experience contact with probabilities η and λ,

respectively. These contacts are reported with probability ε. False positive reporting of contacts that have not occurred occurs with probability z. In the simplified model

implemented in outbreaker2, as indicated by colored shading and solid outlines, η is assumed to be 1 and z assumed to be 0.

https://doi.org/10.1371/journal.pcbi.1006930.g004

Inferring transmission chains from temporal, genetic and contact data

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006930 March 29, 2019 13 / 20

https://doi.org/10.1371/journal.pcbi.1006930.g004
https://doi.org/10.1371/journal.pcbi.1006930


Furthermore, we assume that false reporting of contacts that have not occurred is negligible

and set z to zero. This model allows us to define a contact likelihood O4, describing the proba-

bility of observing the contact data C (a symmetrical, binary, NxN adjacency matrix with zeros

on its diagonal) given a proposed transmission tree and parameters ε and λ. Formally, for indi-

vidual i:

Ω4

i ¼
YN

i¼1;j6¼i

pðci;jjai; ki; �; kÞ

Using the contact model described in Fig 4 and the simplifying assumptions made above:

pðci;j ¼ 1jai ¼ j; ki ¼ 1Þ ¼ �

pðci;j ¼ 0jai ¼ j; ki ¼ 1Þ ¼ 1 � �

pðci;j ¼ 1jai 6¼ jÞ ¼ pðci;j ¼ 1jai ¼ j; ki > 1Þ ¼ l�

pðci;j ¼ 0jai 6¼ jÞ ¼ pðci;j ¼ 0jai ¼ j; ki > 1Þ ¼ ð1 � lÞ þ lð1 � �Þ

For a mathematical description of the unsimplified model, see S2 Text. The updated joint

posterior distribution is therefore proportional to the product of the four likelihood terms and

the joint prior:

PðA; yjDÞ / pða; m; p; �; lÞ
YN

i¼1

Ω1

iΩ
2

iΩ
3

iΩ
4

i

Prior distributions

The prior distributions are assumed independent, such that:

pða; m; p; �; lÞ ¼ pðaÞpðmÞpðpÞpð�ÞpðlÞ

The prior on ancestries p(α) is uniform, and the prior on the mutation rate μ exponentially

distributed. π, ε and λ represent probabilities and are assigned Beta distributed priors with

user-defined parameters, to allow flexible specification of previous knowledge on the sampling

coverage, contact reporting coverage and non-infectious contact probability.

Simulation scenarios

Transmission trees and genetic sequence evolution were simulated using the simOutbreak
function from the R package outbreaker. To describe heterogeneities in infectiousness within a

population, well-documented in both EBOV [34] and SARS-CoV [25] outbreaks, and capture

consequent ‘superspreading’ events, in which a small portion of the population accounts for a

large number of infections, we described the ‘individual reproductive number’ Ri, a variable

describing the expected number of secondary cases caused by a particular infected individual

[2]. Following previous studies by Lloyd-Smith et al. [2] and Grassly and Fraser [53], we

assumed Ri to be Gamma distributed with a mean of R0 and a dispersion parameter k, with

lower values of k indicating greater heterogeneity in infectiousness. The resulting offspring dis-

tribution is a negative binomial [2].

Estimates of the generation time distribution, R0, mutation rate and genome length were

taken from a literature review described by Campbell et al. [17] Estimates of the incubation

period distribution and dispersion parameter of Ri were drawn from the literature (Table 2).

Inferring transmission chains from temporal, genetic and contact data
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Generation time distributions and incubation period distributions were described by discre-

tized gamma distributions, generated using the function DiscrSI from the R package EpiEstim
[54].

Contact data was simulated from transmission trees using the model described in Fig 3,

using a grid of values for the reporting coverage (ε ∊ [0, 1]) and the number of non-infectious

contacts per person (ψ ∊ [0, 10], λ ∊ [0, 0.18]). For a mathematical description of the relation-

ship between ψ and λ, see S3 Text. At each grid point, 100 outbreaks were simulated, with a

single initial infection in a susceptible population of 200 individuals. Simulations were run for

100 days, or until no more infectious individuals remained. The first 60 ancestries of each out-

break were reconstructed four times using the R package outbreaker2, using combinations of

times of symptom onset (T), contact data (C) and WGS (G): T, TC, TG and TCG. For each

analysis, one MCMC chain was run for 10,000 iterations with a thinning frequency of 1/50

and a burn-in of 1,000 iterations. The prior distributions used for ε and λ were uninformative

(Beta(1,1)), and default priors used otherwise.

Quantifying accuracy and statistical confidence

The accuracy of outbreak reconstruction was defined as the proportion of correctly assigned

ancestries in the consensus transmission tree, itself defined as the tree with the modal posterior

infector for each case. The uncertainty associated with an inferred ancestry was quantified

using the Shannon entropy of the frequency of posterior ancestors for each case [68]. Given K
ancestors of frequency fK (k = 1, . . .,K), the entropy was defined as:

�
XK

k¼1

fklogðfkÞ

Analyzing the 2003 SARS outbreak in Singapore

Thirteen previously published [35,36] and aligned [6] SARS whole genome sequences were

obtained for our analysis. Data on epidemiological contacts were described by Vega et al. [36].

The same generation time distribution and incubation period distribution used for the analysis

of the simulated SARS outbreaks were used (Table 2). As the number of non-transmission

contacts was assumed to be low and a total of 6 contacts were reported in an outbreak of 13

cases, the proportion of contacts reported was believed to be about 50%. The prior on ε was

therefore chosen as Beta(5, 5). Several priors on the non-transmission contact rate λ were

tested; Beta(1, 10), Unif(0, 1), a fixed value of 0 and a fixed value of 1e-4. The priors on the

mutation rate μ and proportion of cases sampled π were uninformative. The MCMC chain

was run for 1e7 iterations with a thinning frequency of 1/50 and a burn-in of 1,000 iterations.

Table 2. Epidemiological and genetic parameters for EBOV and SARS-CoV.

Parameter EBOV SARS-CoV

Mean generation time in days (SD) 14.4 (8.9) [1,55,56] 8.7 (3.6) [57–59]

Mean incubation period (SD) 9.1 (7.3) [55] 6.4 (4.1) [60]

Mean Ri (dispersion) 1.8 (0.18) [34,55] 2.7 (0.16) [2,32]

Mutation rate (per site per day) 0.31 x 10−5 [61–63] 1.14 x 10−5 [36,64,65]

Genome length (bases) 18958 [61,66] 29714 [35,67]

https://doi.org/10.1371/journal.pcbi.1006930.t002
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Supporting information

S1 Text. Derivation of genetic likelihood.

(DOCX)

S2 Text. Derivation of un-simplified contact model.

(DOCX)

S3 Text. Derivation of the number of non-infectious contacts per person from the non-

infectious contact probability.

(DOCX)

S1 Fig. Example of simulated transmission tree, contact network and reconstructed trans-

mission tree. A) An Ebola-like outbreak of 15 cases was simulated in a susceptible population

of 50 susceptible individuals. B) A contact network was simulated with a reporting coverage ε
of 0.8 and a non-infectious contact probability λ of 0.1. Solid lines represent reported contacts;

green lines correspond to transmission pairs, red lines to non-transmission pairs. Dashed

green lines represent contacts between transmission pairs that were not reported. C) The out-

break was reconstructed using temporal and genomic data, and the consensus transmission

tree, describing the modal posterior infector for each case, determined. Green lines correspond

to correctly inferred ancestries, red lines to incorrectly inferred ancestries. The accuracy of

outbreak reconstruction was 46%. D) The outbreak was reconstructed using temporal, geno-

mic and contact data, with an accuracy of 94%.

(TIF)

S2 Fig. Statistical confidence in ancestry assignment using different types of outbreak

data. 100 outbreaks were simulated and reconstructed at each grid point, using different values

for the contact reporting coverage ε and number of non-infectious contacts per case ψ. Each

outbreak was reconstructed four times, using different combinations of times of sampling (T),

contact tracing data (C) and genetic data (G). The colour of a grid point represents the average

entropy of ancestry assignments and is related to the number of plausible infectors of a given

case. Lower average entropy indicates greater statistical confidence in the proposed transmis-

sion tree.

(EPS)

S3 Fig. Parameter estimates of the contact reporting coverage ε and non-infectious contact

probability λ for simulated EBOV outbreaks. The density plots represent the mean posterior

estimates of ε and λ across 100 reconstructed outbreaks. The shading represents the data used

during the inference process, namely temporal and contact data only (TC), or temporal, con-

tact and genetic data (TCG). The true, simulated value is indicated by a vertical dashed line.

(EPS)

S4 Fig. Parameter estimates of the contact reporting coverage ε and non-infectious contact

probability λ for simulated SARS-CoV outbreaks. The density plots represent the mean pos-

terior estimates of ε and λ across 100 reconstructed outbreaks. The colour of the plot repre-

sents the data used during the inference process, namely temporal and contact data only (TC),

or temporal, contact and genetic data (TCG). The true, simulated value is indicated by a verti-

cal dashed line.

(EPS)

S5 Fig. Infection time estimates for the 2003 SARS outbreak in Singapore. The violin plots

indicate the posterior distribution of infection times for the 13 cases in the outbreak. The black

dots represent times of symptom onset. The colour of the violin plot indicates the settings used

Inferring transmission chains from temporal, genetic and contact data

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006930 March 29, 2019 16 / 20

http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1006930.s001
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1006930.s002
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1006930.s003
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1006930.s004
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1006930.s005
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1006930.s006
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1006930.s007
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1006930.s008
https://doi.org/10.1371/journal.pcbi.1006930


to reconstruct the outbreak, namely using temporal and genetic data only (TG), or temporal,

contact and genetic data (TCG). The prior used for the non-transmission contact probability λ
is indicated in brackets.

(EPS)

S6 Fig. Posterior ancestries for the 2003 SARS outbreak in Singapore under different prior

distributions for non-infectious contact probability λ. Columns represent sampled cases in

the outbreak, rows represent potential sampled infectors. The size of each circle represents the

posterior frequency of a given infector-infectee pair.

(TIF)
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