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ABSTRACT

Short-read sequencers provide highly accurate reads
at very low cost. Unfortunately, short reads are often
inadequate for important applications such as as-
sembly in complex regions or phasing across distant
heterozygous sites. In this study, we describe novel
bench protocols and algorithms to obtain haplotype-
phased sequence assemblies with ultra-low error for
regions 10 kb and longer using short reads only. We
accomplish this by imprinting each template strand
from a target region with a dense and unique muta-
tion pattern. The mutation process randomly and in-
dependently converts ∼50% of cytosines to uracils.
Sequencing libraries are made from both mutated
and unmutated templates. Using de Bruijn graphs
and paired-end read information, we assemble each
mutated template and use the unmutated library to
correct the mutated bases. Templates are partitioned
into two or more haplotypes, and the final haplotypes
are assembled and corrected for residual template
mutations and PCR errors. With sufficient template
coverage, the final assemblies have per-base error
rates below 10–9. We demonstrate this method on
a four-member nuclear family, correctly assembling
and phasing three genomic intervals, including the
highly polymorphic HLA-B gene.

INTRODUCTION

Third-generation sequencing platforms such as PacBio and
Oxford Nanopore generate long-range sequencing informa-
tion useful for high-quality genome assemblies (1,2). Long-
reads are especially important when the genome studied is
diploid in order to phase distant heterozygous sites (3,4).
These platforms are error-prone and costly, particularly
when compared to the present generation of short-read se-
quencing machines. Short-read sequencers, however, can-
not phase distant variants or assemble genomic regions with
complex repeats.

We previously introduced muSeq (5,6), a method for
obtaining long-read information from short-reads by first
marking each template with a unique mutational pattern.
Mutation patterns were generated by partial bisulfite con-
version, randomly deaminating ∼50% of cytosine positions,
which converts C to T in the resulting sequence libraries. By
identifying reads with matching or overlapping mutational
patterns, we were able to count template molecules and as-
semble mapped cDNA reads into full-length isoforms. The
previous muSeq informatics relied on mapping reads to a
reference genome. This limited its utility to well-sequenced
organisms. Even in those cases, muSeq would struggle to
resolve insertion/deletion polymorphisms, splice junctions,
and complex genomic regions rich in polymorphisms such
as the HLA locus. It also struggled in long template preser-
vation and amplification.

In this paper, we remove the need for a reference genome,
presenting two bench protocols and a computer program
for haplotype-phased de novo assembly using muSeq. The
new protocols have significant improvements in template
length. Both bench protocols combine targeted, long-range
amplification with template mutagenesis. In the first proto-
col, we use partial bisulfite conversion to introduce random
mutation patterns into the amplified templates. In the sec-
ond protocol, we remove the need for chemical mutagenesis
by randomly incorporating methyl-cytosines into copies of
the initial templates. We then convert the unmethylated cy-
tosines using an enzymatic deaminase generating mutated
templates greater than 10 kb in length. Both methods gen-
erate sequencing libraries from between 50 and 1000 unique
full-length mutated templates.

The computer program we present in this paper takes
these sequencing libraries as inputs and returns a set of
haplotype sequences. The program first disentangles the
mutated template molecules using simple and conservative
de Bruijn graph assembly methods, which are then aug-
mented with paired-end read information. In lieu of a ref-
erence genome, the program uses an unmutated sequence
library to correct mutations introduced by the deamination
process. The program then identifies a collection of hap-
lotypes that best explain the observed data. For a diploid
region, this divides the templates into two sets. In the fi-
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nal steps, the program takes a consensus sequence for each
of the two sets, eliminating PCR errors and residual muta-
tions. When complete, the program returns two haplotype
sequences.

To demonstrate the protocol and informatics, we targeted
two 5 kb genomic regions and one 10 kb region using DNAs
derived from a four-member nuclear family (father, mother,
and two children) with prior whole-genome sequence data.
One region was selected for its difficulty to phase (>1 kb
stretches of homozygosity) and the second for its difficulty
to map (HLA). The resulting muSeq de novo assemblies over
both regions precisely recapitulate the sequence results in
the parents as expected by inheritance and in agreement
with the WGS data. Additionally, in silico read-mixing ex-
periments confirm that the algorithm accurately disentan-
gles mutated templates and can resolve complex cases with
more than two haplotypes. Finally, we exceeded our upper
limit for target size by switching to a new protocol, capable
of encoding mutation patterns in templates greater than 10
kb in length.

MATERIALS AND METHODS

The muSeq method has two primary components: wet-
bench protocols that imprint template molecules with
a mutation pattern, and an informatics protocol that
assembles haplotype sequences (Figure 1). We have devel-
oped two bench protocols: the first protocol uses sodium
bisulfite and can target regions up to 5 kb in length. The
second protocol randomly incorporates methyl-cytosines
and uses enzymatic deamination to target regions 10 kb
and longer. In practice, we amplified from 50 to 1000
mutated templates, which are then randomly fragmented
into Illumina sequencing libraries. The informatics pipeline
uses the short-read data to assemble as many of those
mutated templates as possible. Each mutated template is
assembled into a long sequence derived from a single hap-
lotype. We use this long-range information to resolve SNV
divergence between the haplotypes, coalescing sequences
from many unique templates into haplotype-specific
assemblies.

We obtained DNA from a four-member nuclear fam-
ily with prior whole-genome sequence data, comprising a
mother, a father, and two children (identified as ‘proband’
and ‘sibling’). Over most 5–10 kb regions of the genome,
the mother will have two distinct haplotypes (A and B), the
father will have two distinct haplotypes (C and D), and, ex-
cluding recombination and de novo mutation, each child will
inherit either A or B from the mother and either C or D from
the father. This provides a ‘built-in check’ for our haplotype
assembly method.

In total, we targeted three regions: Region 1
(chr14:92426797–92432250) was selected as a region
with few variants separated by long blocks of homozy-
gosity. Region 2 (chr6:31352646–31358270), contain-
ing the entire HLA-B gene, was selected as a region
dense in variation with poor mapping to the reference
genome. Region 3 (chr18:11666735–11677605) was se-
lected as a 10 kb span to test our protocol for enzymatic
mutagenesis.

Protocol I: Bisulfite mutagenesis

To prepare templates for bisulfite mutation, we first am-
plify a muSeq target region by PCR (Figure 1A). We re-
serve one aliquot of the PCR products for an unconverted
library while we subject a second aliquot to partial bisul-
fite conversion with conditions optimized to randomly con-
vert 40–60% of cytosines. We then apply a second round
of PCR using a nested primer pair. The primer target sites
are selected to be largely resistant to mutation in one of the
two strands. Samples were sonicated to an average length
of 400 bp and prepared for standard Illumina sequencing.
Both converted and unconverted libraries were sequenced
on a MiSeq in 150 bp paired-end mode at a median depth
of one million read-pairs per individual per region.

Protocol II: enzymatic mutagenesis

A new method for assessing genome-wide DNA methyla-
tion uses enzymatic protection of methyl-cytosines followed
by enzymatic deamination of unprotected cytosines using
an APOBEC enzyme (7). As enzymatic treatment is less
likely to fragment DNA than bisulfite treatment, we sought
to harness it for partial conversion. However, APOBEC
is a processive enzyme and thus is not suitable for ran-
dom deamination (8). Instead, we introduce randomness by
amplifying the target sequence with a mixture of dNTPs
that include 5-methyl-dCTP at a 1:1 ratio of dCTP to 5-
methyl-dCTP in the first round of PCR (Figure 1A). This
mixture results in the random incorporation of methyl-
C into the copies of the template molecules at a rate of
about 40–60% (see Supplementary Methods for more de-
tails). Subsequently, the methyl-C nucleotides were oxidized
by TET2 into 5-hydroxymethylcytosine, leaving only the
un-methylated dCTPs susceptible to the next step, C-to-U
deamination by APOBEC. After the APOBEC mutation,
we perform a second round of PCR as with Protocol I.
Unexpectedly, we found that including 5-methyl-dCTP in
the PCR nucleotide mixture significantly improved the suc-
cess rate of getting full-length products. We do not know
the reason for this. With the second PCR product, we pro-
ceeded with sonication and sequencing library preparation
as above.

Computational pipeline

Generating haplotype sequence assemblies from the mu-
tated and unmutated sequence reads requires a multi-step
computational pipeline (Figure 1B). First, we assemble mu-
tated template sequences using de Bruijn graphs augmented
with paired-end read information. Next, we ‘unmask’ most
of the mutated positions to their prior base by using a
lookup table built from the unconverted sequence library.
After unmasking, we co-align the template sequences, re-
lying on heterozygous SNVs to determine a parsimonious
set of haplotypes. Finally, we aggregate templates from the
same haplotype into a consensus sequence, resolving still-
masked polymorphism, and assigning a quality score for
every position. We provide an overview of the method steps
below and include details of the implementation in the Sup-
plementary Methods. We also include a link to commented
source code.
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Figure 1. muSeq workflow diagram. Panel A shows the bench component of the protocol while panel B shows the informatics. There are two methods for
obtaining mutated templates: along the blue arrows, we first amplify the target region and then perform a partial bisulfite reaction; along the red arrows,
we first amplify the target region with a mixture of dNTPs that also contain 5-methyl-dCTP. The resulting templates contain a mixture of C and methyl-C,
so that after complete enzymatic deamination, we obtain mutated templates similar to those obtained through bisulfite treatment. The mutated templates
are then selectively amplified for one of the two strands, and fragmented into a sequencing library. An unmutated portion of the initial template is also
reserved to generate an unmutated sequencing library. Panel B begins with the sequencing reads from the two libraries and outlines the major steps in
the assembly pipeline. (1) Mutated reads are used to assemble mutated contigs, then (2) we use the unmutated library to reverse as many of the C-to-T
mutations as possible. From the collection of templates over the region, we (3) determine the haplotypes and with reference to the unmutated reads (4) we
coalesce into a final assembly for each haplotype complete with quality score.

Step one: assembling contigs of mutated templates. The
first step in our computational pipeline assembles long mu-
tated contigs, each derived from one mutated template.
There are two key parameters in this process: k, the length
of the k-mer used for initial assembly, and D, the disrup-
tion parameter which reflects the tolerance for mismatch in
the pair-end extension process. To establish initial contigs,
we use the mutated reads to construct a de Bruijn graph
from subsequences of length k (k-mers) and identify unam-
biguous paths. The choice of k-mer length strongly deter-
mines the distribution of initial contig lengths. Longer k-
mers have greater sequence diversity, reducing the chance
that two distinct mutated templates share a common k-mer.
However, longer k-mers require higher sequence coverage
to obtain uninterrupted paths. By counting the number of
distinct mutation patterns for each unmutated k-mer, we
can estimate the number of original starting templates. The
number of full-length initial contigs rarely reflect the num-
ber of starting templates. To greatly improve the yield of
full-length contigs, we employ paired-end reads. The pro-
cedure for joining initial contigs into extended contigs, de-
tailed in the supplement, strongly depends on the parameter

D, which controls for how much single-base amplification
error is tolerable when extending a contig.

To illustrate this process, we explore the distribution of
contig length for the 5 kb region 1, using data from both
strands and all four individuals, eight libraries in total. By
counting the number of distinct mutation patterns for each
unmutated k-mer, we estimate that there are ∼725 original
templates, approximately 100 templates per strand per per-
son (see Supplementary Figure S1). In Figure 2A, we show
the distribution of initial contig lengths as a sorted plot for a
range of k-mer length, with the estimated total of 725 tem-
plates shown as a dotted vertical line. Using 61-mers, the
longest initial contig is shorter than 2.5 kb. However, with
111-mers, the de Bruijn graph yields between 10 and 20 full-
length initial contigs.

To get many more long contig assemblies, we use paired-
end reads to join initial contigs into extended contigs. The
performance of extension depends upon the parameter D,
and we explore a range of values. For the highest value
(0.95) most intolerant of base-error, even the 111-mers re-
turn only 100 full length initial templates (Figure 2B). While
at the lowest value (0.55), we recover better than 90% of
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Figure 2. Contig length distributions. Each panel shows the distribution of contig lengths, sorted from longest to shortest with a log-scale for the x-axis.
Panel A–C show data derived from in silico mixing of eight libraries, four individuals and both strands, from region 1 for various choices of k-mer size
(line color). The dashed black line at 725 shows the expected number of templates (see Supplementary Figure S1). Panel A shows the sorted distribution
of initial contig lengths from the de Bruijn graph. In the next assembly step, we use paired-read information to join initial contigs. This is subject to a
disruption parameter, (D) Panels B and C show the sorted distributions of extended contig lengths when the disruption parameter is restrictive (panel B,
0.95) and less restrictive (panel C, 0.55). Panel D shows extended contig lengths from one library subject to down-sampling. The dashed black line at 200
indicates the expected number of templates. The color of the line indicates the number of reads used in terms of redundant coverage per-template. The
maximum coverage of 512× per template amounts to 1.74 million 150 bp paired-end reads while the minimum coverage of 16x per template amounts to
54 000 paired-end reads. At 128× per-template coverage or ∼400 000 reads, we recover ∼50 full-length templates.

the full-length templates (Figure 2C). We were concerned
that increasing tolerance to PCR error might lead to as-
sembly of chimeric contigs. To monitor this, we tracked ev-
ery read-pair to the individual and the strand from which it
arose. Happily, we found that for every value of D, all full-
length contigs derive their reads from one individual and
one strand. For Region 3, we adapt this method, by making
two separate libraries from the same strand and monitoring
for chimerism.

Step two: unmasking mutations. The extended contigs still
bear their mutation patterns with T at many positions that
initially were C. In the second step, we use the unmutated li-
brary to ‘unmask’ the mutation patterns from the extended

contigs, restoring the C at most (but not all, see below) mu-
tated positions. To do this, we map unmutated k-mers from
the unmutated library to the mutated contigs. An unmu-
tated k-mer is properly mapped if the aligned sequence in
the mutated contig could have arisen from the unmutated
k-mer by C-to-T conversions. About two-thirds of the time,
the pileup of unmutated k-mers over a T position confi-
dently reports a T, and about a third of the time, the pileup
confidently reports a C (better than 99%). In both cases,
we unmask the T in the contig to a C or a T according
to the pileup consensus. In a handful of cases, the pileup
is split between C and T. This happens when the position
is heterozygous or repeated imperfectly elsewhere in the re-
gion. We do not unmask such positions at this time, resolv-
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ing them only in step 4, after templates are partitioned into
haplotypes.

Step three: partitioning haplotypes. When the unmasked
contigs are all derived from the same haplotype, they
will co-align exactly except for the unresolved T positions
and early template amplification errors. However, when
the contig sequences derive from two or more haplotypes,
SNVs and indel differences between the haplotypes man-
ifest as imperfect alignments between unmasked contigs.
Over much of the genome, human haplotypes differ by ∼1
SNV per kb. We use the SNV differences between long as-
semblies of haplotypes to establish a parsimonious partition
of the longer unmasked contigs (>1.5 kb) into distinct hap-
lotypes.

We first select the longest unmasked contig to serve as
a stand-in reference, and then use the Needleman-Wunch
algorithm to co-align each of the longer unmasked con-
tigs to this reference. We next summarize the mapped align-
ments, identifying bi-allelic positions and generating a ma-
trix of observations: A row for each unmasked contig and
a column for each bi-allelic position. A haplotype H is
a base assignment for each bi-allelic position and, using
a simple probabilistic model, we can determine the likeli-
hood that each unmasked contig derived from haplotype
H. We can naturally extend this likelihood to pairs of hap-
lotypes (H1 and H2) or any ploidy M (H1 . . . HM) by set-
ting the likelihood that an unmasked contig derives from
a set of haplotypes as the maximum probability that it de-
rived from any one of them. If the number of bi-allelic po-
sitions and haplotypes is small, we compute the probabil-
ity over all possible configurations to identify the global
maxima. Otherwise, we apply a simulated annealing algo-
rithm to search for the optimal solution. Details of how
to identify SNVs, express the likelihood function, and ap-
ply simulated annealing are included in the Supplementary
Methods and extensively commented code. At the end of
the process, we build a set for each haplotype comprised of
the unmasked contigs that are far more likely (better than
1 in a 1000) to derive from that haplotype than any of the
others.

Step four: final alignment. In the fourth and final step, con-
tigs from the same haplotype are co-aligned and averaged
to eliminate residual mutation (e.g. at C–T polymorphisms)
and PCR errors. Alignment proceeds as before, using the
Needleman-Wunch algorithm and starting from the longest
unmasked contig in a haplotype set. However, to account
for the chance of encountering an indel error in the longest
contig, we include an iterative loop that corrects for indels
errors. After alignment, for each position in the common
alignment, we summarize the base calls in all contigs that
cover that position. Finally, we report the most likely base
under the same probabilistic model used in step three. One
consequence of the model is the assignment of a confidence
score to each base in the assembly. For positions that are
covered by at least 10 templates, the error rates are typically
in the range of 10–9. We log-transform this probability into a
Phred quality score reporting the set of sequences and qual-
ities in a FASTQ output file.

RESULTS

Experimental design

Previously, we established the theory of sequence assembly
and enumeration from partially mutated templates (5). We
then demonstrated feasibility for short DNA and cDNA
fragments given actual bench protocols utilizing a reference
sequence to facilitate read alignment (6). In the following,
we sought to assemble long fragments of DNA without
a reference sequence. Moreover, we sought to achieve this
from a diploid genome for which assembly is confounded
by haplotypic sequence variation. For this purpose, we ini-
tially chose two regions of the human genome: Region 1
with a low incidence of variation and Region 2 with excep-
tionally high sequence variation encompassing the HLA-B
gene. In these two cases, we used bisulfite mutagenesis for
partial deamination. Bisulfite mutagenesis is harsh and de-
grades DNA, thus limiting the size of the region we could
mutagenize to ∼5 kb. During the course of our work, we
developed a new method for partial mutagenesis by ran-
domly incorporating methylated cytosine into copies of the
templates prior to complete enzymatic deamination. As this
method is gentle, we tested this protocol on the larger 10 kb
Region 3.

Assembly from a library of long mutated templates, in
the absence of a reference map, required the development
of new algorithms and new methods for validation. For de
novo assembly of the mutated templates, we use de Bruin
graphs to build initial contigs and then use paired-end reads
to join initial contigs into extended contigs. Each extended
contig derives from a single initial template still imprinted
with its unique mutation pattern. To restore the initial se-
quence to its pre-mutated state, we use k-mer counts ob-
tained from an unmutated library over the same region to
‘unmask’ positions that were certainly C before mutation
to T. Positions that cannot be unmasked this way are either
C/T heterozygous sites or duplicated regions with C/T vari-
ants. Although few in number, they are important for haplo-
typic assembly and resolving duplication. These ambiguous
positions are resolved after the haplotypes are settled. We
next partition the unmasked contigs into haplotype-specific
subsets using a maximum likelihood method. Within each
haplotype subset, we resolve the still-masked heterozygous
C/T site. This yields the final assemblies, with each position
annotated by a quality score reflecting the confidence in the
call.

To validate correct assembly, we compare to the reference
map, and to validate haplotype resolution and variant res-
olution, we compare to the transmission patterns of the nu-
clear family obtained from WGS. We show that with suf-
ficient template coverage, the confidence of assembled se-
quence is very high and that the algorithms are capable of
resolving mixed genomes of high ploidy. Finally, we show
how disentanglement of intentionally mixed libraries can
be used to establish proper parameter settings for the al-
gorithms.

Region 1: locus with sparse variation

We begin our exploration of assembly using DNA from
a four-member nuclear family with prior whole genome
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sequence data. For Region 1, we selected a 5 kb region
(chr14:92 426 797–92 432 250) that has only a few variants
separated by long blocks of homozygosity. The blocks are
so long that phasing the variants in any individual is impos-
sible using short sequence reads. However, because we have
WGS from the four member nuclear family, we can infer the
haplotypes and validate the results of muSeq.

For this region, we generated two mutated libraries per
family member: one targeting the top strand and one target-
ing the bottom strand. We first processed each family mem-
ber separately using either (i) the top strand, (ii) the bot-
tom strand or (iii) both (see Supplementary Table S1 for all
haplo-assemblies). Using the top-stand mutation data and
applying the assembly pipeline as described in the Materi-
als and Methods, we obtained two full-length 5.1 kb con-
tiguous assemblies per family member. These assemblies
match the reference genome exactly except for the SNVs
and deletions highlighted in Figure 3A. The figure depicts
the haploid sequence assemblies from top-strand data for
each member in the family. The haplotype sequence as-
semblies in the children are identical to assemblies found
in the parents. Specifically, one maternal haplotype (A) is
transmitted to both the proband and the sibling, while the
other maternal haplotype (B) is transmitted to neither child.
One paternal haplotype is transmitted to the proband (C)
while the other is transmitted to the sibling (D). The full
haplotype sequences, including 29 distinct SNVs and the
two deletions, match the phasing inferred from the whole
genome sequencing data for this family.

Our assembly algorithm assigns a quality score to each
position, reflecting the confidence we have in the base-
call. This confidence score is based on the base-call infor-
mation from all templates covering that position. For our
top-strand assemblies, all positions were covered by >40
templates per haplotype. Consequently, our base-call con-
fidence was very high, with quality scores in excess of 90
(i.e. error less than 1 in 10–9). We sought to validate our
top-strand assemblies with our bottom-strand assemblies.
Here, we used fewer mutated templates, with some positions
covered by fewer than 10 templates. This resulted in lower
quality scores for these positions. The bottom-strand data
confirmed the C/T heterozygous calls confidently made in
the top-strand assemblies. However, at low-coverage, one
G/A het locus (which appears as C/T in the bottom strand)
had poor quality scores and an incorrect base-call (position
5276 in Supplementary Table S1). Since the C/T positions
of one strand are G/A in the other, combining data from
both strands can improve confidence. For this reason, we
wrote the muSeq assembly pipeline to work with data from
both strands when available.

We designed the muSeq program to assemble the two
highly similar templates present in a diploid genome. These
methods, however, generalize to genomes of any ploidy or
to mixtures of genomes. As a demonstration, we combined
read data from both strands and all four family members,
generating a mixed in silico sample that has four haplo-
types over the region. Using this mixed data as input for
the muSeq algorithm, we correctly assemble all four dis-
tinct haplotypes (A–D). Upon examination, we find that
every mutated template is constructed from reads derived
from only one of the eight input libraries. This result also

suggests that the algorithm does not generate chimeric as-
semblies, an observation that we use to explore parameter
settings (see Supplementary Methods, informatics step 1).

After the assembly of mutated templates, we confirm the
validity of a template by mapping the mutated reads back
to the assembly. We noticed that all templates that assemble
to full-length have a median coverage of 100× or greater.
Since many templates are covered to depths of 1000x, we
decided to test the performance of our assembly algorithm
when presented with lower coverage data.

We began with a single library (top strand, mother) con-
taining 1.8 million 300-bp reads over a 5.1 kb region for
coverage >100 000 reads per base position. As in Supple-
mentary Figure S1, we estimate the number of templates by
counting distinct mutated k-mers for each position in the
final assembly. Using a minimum k-mer count of 20, we es-
timate 200 template molecules for an average of ∼530× cov-
erage per position per template. We therefore down-sample
the reads from the sequence library so that the coverage per-
template ranges across five orders of magnitude: from 512x
per template down to 16× per template (Figure 2D). We find
that at the highest coverage, nearly all templates are recov-
ered at full length (150 of 200). There is a marginal reduction
at 256× coverage, and at 128× average per-template cover-
age, we still recover ∼100 full-length templates, sufficient for
a correct and confident haplotype assembly.

Region 2: the HLA-B locus

We next applied muSeq de novo assembly to a highly poly-
morphic region: a 4.8 kb genomic fragment on chromosome
6 that contains the HLA-B gene. This region is notoriously
variable in the human population, but due to its medical
importance, many haplotype sequences have been assem-
bled and archived in the IMGT/HLA genomic sequence
database. Using just the single canonical reference sequence
for mapping whole genome reads often results in poor and
uneven coverage. In the family chosen for this study, the cov-
erage is sufficient to guess that there are four different (un-
resolved) alleles in the parental genomes, with all four alle-
les appearing in the children. For this region, we assembled
each family member using top-strand data only. The muSeq
protocol (Figure 3B) generates two assemblies per person,
eight in total. These assemblies occurred in matched pairs of
four distinct sequences, two in each parent, and two in each
child, consistent with inferences about transmission made
from the WGS data. In Figure 3, we mark up the variants
relative to the canonical reference sequence. There are far
more variants in this locus than in the previous locus, and
more deletions and insertions. We queried the IMGT/HLA
genomic sequence database, and found a perfect match to
an HLA-B variant for each of the four haplotypes. As we
did for the previous locus, we mixed the reads from all the
libraries, thereby creating a tetraploid assembly problem.
MuSeq returns the same four haplotypes.

Region 3: enzymatic mutagenesis

We successfully assemble and haplotype 5 kb templates us-
ing partial bisulfite conversion as the means of mutagene-
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Figure 3. Assembly plots. A graphical description of the muSeq assemblies for each of the three regions (panels A–C). The haplotype assemblies are
aligned to the reference genome sequence for the region with SNV differences depicted by color and indels shown in bubbles. Maternal haplotypes are
labeled A and B; paternal haplotypes are labeled C and D. Panel A shows the final haplotype assemblies for region 1 for each of the four family members
(mother, father, proband and sibling). The maternal haplotype A was inherited by both children, while paternal haplotype C is inherited by the proband and
paternal haplotype D by the sibling. These results agree with the expectation from whole-genome sequencing. Panel B shows the final haplotype assemblies
for region 2, which includes the HLA-B gene. As expected, the haplotypes are highly divergent. All but paternal haplotype C differ significantly from the
reference genome. The parental haplotypes are in exact agreement with the children’s haplotypes and each of the sequences has a perfect match to a known
HLA-B variant in the IMGT/HLA genomic sequences database. Panel C shows the haplotype assemblies over a 10 kb region from the mother, using data
from either the top strand or bottom strand. Both assemblies are in agreement and match expectations from whole-genome sequence data.

sis. Unfortunately, the bisulfite protocol degrades templates,
and performing muSeq on much longer templates results in
unacceptable losses of efficiency. Soon after our first suc-
cesses with 5 kb assembly, a commercial kit became avail-
able that deaminates unmethylated cytosine enzymatically.
The enzyme is processive, and so cannot be used to imprint
a random pattern of C to U conversions. But by incorpo-
rating mixtures of dCTP and 5-methyl-dCTP into the first
copies of templates, we hoped to create nearly random pat-
terns of C to U conversion in copies of a given template at
any desired proportion.

We generated three converted sequence libraries for the
mother: one top-strand library and two bottom-strand li-
braries, from the 10.5 kb Region 3 (chr18:11 666 735–11
677 605). We then tested the libraries from the new pro-
tocol in our established assembly pipeline using the same
assembly parameters as we established for the 5 kb region.
We assembled each library separately, but also assembled
an in silico mixture of the two bottom-strand libraries. As
shown in Figure 3C, the algorithm assembled both haplo-
types consistently. When compared with the family trans-
mission data generated by whole-genome sequencing, we
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confirm that the assemblies are all without error (see Sup-
plementary Table S2 for all haplo-assemblies and inferred
WGS haplotypes).

Finally, we examine the template assemblies from the in
silico mixture of the two bottom-strand libraries. As in Re-
gion 1, we count the number of distinct mutation patterns
in the mutated libraries for each unmutated k-mer (Supple-
mentary Figure S2) and estimate ∼600 full-length original
templates. The extended contigs generated in the first step of
the pipeline include 104 contigs greater than 10 kb in length
and 645 contigs greater than 5 kb in length (Supplementary
Figure S3). If some of the assemblies have errors in join-
ing the extended contigs, half of those errors would cross
between the two libraries. Since the libraries are mixed in
silico, we can determine in retrospect whether a contig is
built from reads from one or both libraries. From the 2234
extended contigs >1.5 kb in length, we identified two that
exhibited chimerism, for an estimated rate of 0.2%. On ex-
amination, the two chimeric assemblies were short (4 kb and
3.5 kb), and the chimeric junctions occurred in regions of
low mutational complexity.

Another possible source of chimerism is recombination
between templates during PCR. We examined the rate of
strand-recombination within one bottom-strand library by
looking for templates that are inconsistent for haplotype
across their length (see Supplementary Figure S4). From
1313 extended contigs greater than 1.5 kb in length, only
one template shows evidence of strand recombination. This
approach can be used to monitor for chimeric recombina-
tion which may depend on PCR conditions.

Lastly, we examined the rate of PCR error in tem-
plate assemblies (see Supplementary Methods). Over all as-
signed templates, we estimate the rate of SNV error to be
∼7.4 × 10–4 and the rate of indel error to be ∼7.7 × 10–5.
Upon further examination, 68% of indel errors occur at
mononucleotide or dinucleotide microsatellite sequences
and 92% occur at positions which are mononucleotide re-
peats under full genomic conversion. Even at these posi-
tions, the error rate is sufficiently low that aggregation re-
sults in the correct haplotype sequence.

DISCUSSION

Short reads are excellent for measuring local genomic vari-
ation over most of the genome. When short reads cannot be
assembled unambiguously, for example, over repetitive re-
gions or when phasing haplotypes over regions of low vari-
ation density, then long reads are needed. Unfortunately,
while short reads are virtually a commodity, long read plat-
forms require expensive dedicated equipment. Moreover,
despite industrial-scale investment over many years, long-
read sequencing platforms remain costly and have high er-
ror rates. We proposed a solution using short-reads for
highly accurate long-range assembly: imprint each template
molecule with a unique mutational signature (5). To realize
this solution, we developed muSeq, a method for embed-
ding random mutation patterns using partial bisulfite con-
version of C to U (6). We showed that with muSeq we could
do assembly, count initial templates, and further improve
sequence accuracy.

The first version of muSeq faced two major limitations.
First, partial bisulfite conversion is destructive, limiting the

length of templates we can assay. Second, our informat-
ics relied on a reference genome, restricting applications
to well-characterized genomic regions. The present study
updates muSeq with a gentler protocol for template mu-
tagenesis and new algorithms for assembly that do not
require a reference genome. These improvements enable
short-read sequencing platforms to perform highly accurate
long-range assembly in virtually any context.

In the past and present study, we used the sodium bisul-
fite reaction for partial mutagenesis of templates. Although
the bisulfite reaction is harsh, after controlling time, temper-
ature, and reagent proportion (see Supplementary Meth-
ods), we can routinely recover mutated templates up to 5 kb.
However, obtaining significantly longer templates with this
protocol was problematic. To overcome this constraint, we
devised a gentler procedure using enzymatic deamination of
cytosine. In our initial attempts, limiting enzymatic activity
did not achieve random conversion. Therefore, we first in-
corporate methyl-cytosine randomly into copies of the tem-
plate. We then subject the templates to the TET2 enzyme,
which oxidizes the methyl-cytosines. In the next step, we add
the APOBEC enzyme which converts the non-oxidized cy-
tosines to uracil. The result is a unique random pattern writ-
ten into each copy of the initial template. (We note one im-
portant detail in this protocol. We could not replicate long
templates following TET2 and APOBEC treatment using a
standard mixture of dNTP. However, we achieved efficient
amplification of the mutagenized templates if we included
methyl-dCTP in the mixture.) We demonstrate this protocol
on 10 kb templates; and based on the high yield of mutage-
nized full-length templates, we project the method to be lim-
ited only by the length of molecules that can be replicated
in vitro.

The first version of muSeq borrowed from existing meth-
ods in bisulfite methylome sequencing to align sequence
reads and determine mutation patterns. These methods re-
quire a reference genome. In contrast, for de novo assembly,
we use only the existing sequence variation in the reads to
assemble the mutated template molecules. Our template as-
sembly method combines elements of graph-based assem-
bly (de Bruijn graphs) and fast-mapping alignment (suffix-
array read-mapper) to build and join consensus assem-
blies. Though crude, our method recovers in full-length
between 50 and 90% of initial template molecules from
amidst hundreds of nearly identical sequences. There are
likely other approaches for template assembly that would
improve on our results and we discuss some suggestions
below.

In the previous version of muSeq, we used the reference
genome to restore mutated positions to their original base.
For de novo assembly, we devised a new approach that uses
a set of unmutated sequence reads over the same region
to restore mutated positions. The approach is analogous to
building a set of very short reference genomes from the k-
mers in the unmutated reads, weighted by their frequency.
This approach unmasks 99% of mutated positions, leav-
ing the remaining 1% which are C/T heterozygous posi-
tions and imperfect repeats. These positions cannot be re-
solved without additional information because either base
is compatible with the unmutated data. To resolve such po-
sitions with confidence requires aggregation over identical
templates with different mutation patterns.
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This is precisely what we have when sampling a region
of the human genome with the important caveat that the
input genomes are diploid, and so we have two sets of iden-
tical templates, one set for each haplotype. What makes this
problem vexing is that the two haplotypes are often very
similar to each other, but not identical, with distinct dif-
ferences of about 1 SNV per kb. Since we target regions
of 5 kb and greater, we can use these SNVs to phase the
haplotypes. For this paper, we built a maximum likelihood
method to identify the best two haplotypes to explain the
observed SNV data. Our method phases C/T heterozygous
positions, handles data from both strands, and scales up to
any ploidy.

Having split the haplotypes by SNVs, we conclude by
aggregating contigs from the same haplotype to recover
the full haplotype sequence. Aggregation returns the most
likely haplotype sequence, averaging over template differ-
ences that arise from somatic variation or polymerase er-
ror. These differences are typically sparse, and for most po-
sitions in the sequence, better than 99% of templates will
agree on the base. The aggregation step also generates a con-
fidence score for each base in the assembly, reflecting the
coverage and error at that position. Positions in the assem-
bly that are still masked present a special case: either all of
the templates will agree on T (the original base was T) or
half the templates report T and the other half a C (the orig-
inal base was a C). For these positions, we require higher
coverage to obtain the same confidence in the base. Includ-
ing data from the opposite strand, in which the complemen-
tary base is not subject to mutation, will also improve the
confidence of the base call.

We chose to develop our protocols and informatics and
demonstrate the validity of muSeq in solving a very difficult
genomics problem, namely haplotype assembly. Because we
have samples from a family pedigree, we could verify our re-
sults by observing expected patterns of transmission from
parents to children. We also had whole-genome sequence
data for the whole family, which confirmed haplotype phas-
ing for well-mapped genomic regions. Haplotype assembly
presents a useful test for muSeq since correct phasing re-
quires assembling strands that are otherwise nearly identi-
cal. We chose three regions to test our methods. The first
region we selected for its low rate of variation, making phas-
ing impossible from short reads alone. The second region we
selected for its high rate of variation: the HLA locus is no-
toriously variable in the population, making reference map-
ping difficult. Further, because of its importance in predict-
ing graft-host response, having an accurate read of these loci
is of practical value. Our third region was well-mapped by
the whole genome data, but otherwise selected at random
for its greater length.

The muSeq method recovered the correct haplotype se-
quences for all three regions. Further, we obtained full-
length recovery of nearly every mutated template, even
faced with the presence of hundreds of similar templates.
We stressed the ability to accurately assemble templates by
in silico mixing of different individuals from the same fam-
ily. We find that nearly all templates identified in the family
mixture derive their reads from one of the eight sequenc-
ing libraries. This strongly suggests that the assembly algo-
rithms rarely make errors in assembly.

Sequence assembly is a read-intensive process, typically
requiring read coverage between 100 and 200× (9–11).
The de novo muSeq assembly pipeline requires about that
level of coverage for each mutated template. If there are
100 mutated templates in the mix, then muSeq requires
∼10 000× coverage to assemble them all. From our down-
sampling experiments, we estimate that nearly all templates
with better than 100x coverage are successfully assembled
to full-length.

To develop muSeq into a universal long-read sequenc-
ing technology requires only a few additional improve-
ments. To apply to a generic sample, we would not use
targeted sequence primers, but instead, ligate mutation-
resistant primers onto the input molecules. These primers
would include either methyl-C or use a reduced alpha-
bet that omits C, to evade conversion during mutagenesis.
These primers could then be used for post-conversion am-
plification.

Our assembly pipeline successfully demonstrates that all
the sequence information is present for accurate template
assemblies, and that assembly does not require a preex-
isting reference genome. However, while functional, this
assembly pipeline is likely not final. One recurrent prob-
lem in template assembly is early-round polymerase er-
rors in copies of the mutated templates. When these er-
rors introduce single-nucleotide errors, they can be cor-
rected by properly tuning the disruption parameter. But
insertion-deletion errors, which are common in some se-
quence contexts, such as direct short repeats, are not well-
handled by the present pipeline. We address this problem
separately in another manuscript (12), where we demon-
strate that partial mutagenesis can accurately recover mi-
crosatellite repeat lengths with applications beyond genome
assembly.

MuSeq is, in effect, a protocol to use accurate short-read
sequencing platforms to obtain accurate long single tem-
plate sequences. We illustrated its operation on many tem-
plates, all from specific loci and all with the same registry.
But there is no fundamental obstacle to its application on
more complex populations of molecules, which may arise
from multiple loci, even from multiple complex cells in a
sample, for example, as one might encounter in a cancer
biopsy. Our approach bears some similarity to the Linked-
Read method of the 10X Genomics Chromium platform
(13). However, Linked-Reads have sparse information over
each template molecule and expressly do not assemble the
templates, so it cannot resolve complex or repetitive regions.
Moreover, Linked Reads rely on reference genome mapping
to co-localize variants for genomic phasing and are of lim-
ited utility in de novo assembly (13). MuSeq makes the Illu-
mina platform comparable to expressly long-read sequenc-
ing platforms, probably at similar costs, but with greater ac-
cessibility and higher accuracy.
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