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Heren, we analyzed Treg cells as potential biomarkers of disease activity in systemic lupus erythematosus (SLE) patients. Peripheral
blood mononuclear cells from 30 SLE patients (15 active: SLEDAI > 6/15 SLE remission: SLEDAI< 6) and 15 healthy volunteers
were purified. Treg immunophenotyping was performed using CD4, CD25, CD45, CD127, and FOXP3 markers. CD4+FOXP3+
Treg activation state was investigated based on CD45RA and FOXP3 expression. To increase the accuracy of our findings, a
multivariate linear regression was performed. We showed a significant increase in the frequency of CD4+FOXP3+ Treg cells in SLE
patients. However, unlike all other Treg cells phenotypes analyzed, only eTreg (CD4+FOXP3highCD45RA−) (p=0.01) subtype was
inversely correlated with disease activity while Foxp3+nontreg (CD4+FOXP3lowCD45RA−) (p=0.003) exerted a direct influence
in the outcome of the disease. Foxp3+nontreg cells were the most consistent SLE active indicator, confirmed by multiple linear
regression analyses. In summary, our results demonstrate Foxp3+nontreg cells as new biomarkers in the search of an effective
therapeutic strategy in SLE.

1. Introduction

Systemic Lupus Erythematosus (SLE) is an autoimmune dis-
ease characterized by the presence of antibodies against self-
antigens. SLE evolves by unpredictable episodes of intense
inflammatory activity and remission, with localized or sys-
temic damage [1–3].

In clinical practice, treatment depends on the manifesta-
tions of the disease; usually corticosteroid and immunosup-
pressant drugs are used. However, in a long-term treatment,
patients become refractory to these conventional drugs. This

can reduce chances of controlling the disease activity and
increases death risk [4].

Searching for new therapeutic strategies for autoimmune
diseases, regulatory T cells (Tregs) have a prominent place
[5]. Tregs cells play a key role in maintaining self-tolerance
and suppression of deleterious immune responses to patients.
Abnormalities in peripheral tolerance mechanisms mediated
by these cells are found in various autoimmune diseases [5–
8].

SLE pathogenesis is related to defects in Treg cell homeo-
static control [9–11]. Therefore, the disease development may
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be the result of an imbalance in the immune system effector
and regulatory T cells. This imbalance is associated with an
inadequate number, phenotype, or defective function of Treg
cells observed in SLE [8, 12].

FOXP3 is a key transcription factor for Treg pathway.
Cells termed “naturally occurring Treg cells” (nTreg or tTreg)
that can be identified by the phenotype CD4+FOXP3+CD25+
CD127− are widely studied in SLE; however, conflicting
results are reported in their definition and function [13,
14]. Some studies show poor suppressive ability; others do
not confirm these data or reflect a wide variability among
the subtypes studied [15–22]. In addition, different activa-
tion status of CD4+FOXP3+ Treg cell can be investigated
based on the expression of CD45RA and FOXP3. Thus,
cells having CD4+FOXP3lowCD45RA+ phenotype set the
resting cells group (naı̈veTreg), CD4+FOXP3highCD45RA−

the effector cells (eTreg), and CD4+FOXP3lowCD45RA− the
Foxp3+nontreg cells (Foxp3+nontreg) that have showed no
suppressive potential, different from the others CD4/FOXP3/
CD45RA subtypes [12].

Based on the SLE complexity, all percentage of Treg cell
subpopulations and their functions vary according to the
severity of the disease and the therapeutic course taken [23,
24]. However, the influences of Treg cell subtypes on SLE
activity remain poorly understood. Further investigation on
Treg cells subsets involved in the different clinical outcomes
will contribute to define new therapeutic strategies in SLE
[5, 23, 24]. Therefore, in this study, we investigated the
different Treg cells subsets in SLE patients with variable
clinical features.

2. Materials and Methods

2.1. Patients and Control. Thirty patients (28 women and 2
men) with an average age of 35.33 (±10.40) years were invited
to participate in this study. The control group consisted
of 15 healthy women with an average age of 34.19 (±11.16)
without diagnosis for autoimmune disease. All patients were
recruited from the Rheumatology Service of Hospital das
Clinicas, at the Federal University of Pernambuco, and met
the classification criteria for SLE of the American College
of Rheumatology [25]. Exclusion criteria were as follows:
patients who refused to sign the free and informed consent
term, pregnancy, comorbidities, and patients who had done
pulse therapy with methylprednisolone (in the last month
prior to sample collection) or used high dose steroids (greater
than or equal to 1mg/kg/day of prednisone). Clinical, labo-
ratory, and demographic parameters were assessed and are
summarized in Table 1. The activity index of the disease:
SLE disease activity index 2000 (SLEDAI- 2K) was used to
measure the activity of SLE. Patients with SLEDAI≥ 6 were
considered active (n=15), with SLEDAI≤ 6 being in remission
(n=15) [26]. All patients and healthy volunteers who partic-
ipated in this study signed a consent form approved by the
Ethics Committee of the Federal University of Pernambuco,
Brazil (CAAE–01420172000-09).

2.2. Laboratory Parameters. Serum samples, obtained from
patients’ peripheral blood, were stored at −80∘C until use.

Table 1: Clinical and demographic parameters of SLE patients.

Number of patients N = 30
Age (yrs), Mean (range) 38.17 ± 10.43 (19-61)
Sex, N (%)
Female 28 (93.33)
Male 2 (6.66)
Disease duration (Months)
Mean (range) 96 ± 72.94 (2 - 300)
Anti-dsDNA, N (%)
Positive 11 (36.66)
Negative 19 (63.66)
Complement, N (%)
Decreased 19 (63.66)
Normal 11 (36.66)
Treatment, N (%)
Steroids 26 (86.66)
Antimalarial agents 26 (86.66)
Azathioprine 21 (70)
Mycophenolate mofetil 10 (33.33)
Disease activity (SLEDAI), N (%)
Range 0-20
< 6 15 (50)
≥ 6 15 (50)
Nephritis, N (%)
Active 10(33.33)
Inactive 20(66.66)

Anti-dsDNA analysis was performed by indirect immunoflu-
orescence with Crithidia luciliae substrate using Inova Diag-
nostics kit (San Diego, USA). C3 and C4 complement factors
were evaluated by Immunoturbidimetry Technique (Roche
Diagnostics GmbH, Mannheim, Germany).

2.3. Purification of Mononuclear Cells from Peripheral Blood
(PBMC). The peripheral blood collected in heparin tubes
was directly added to Ficoll-Hypaque gradient (Amersham
Biosciences, Uppsala, Sweden) in 50 mL falcon tube. After
centrifugation at 400 x g for 40 min at 22∘C, peripheral blood
mononuclear cells (PBMCs) were recovered and washed
twice with PBS (Phosphate-buffered saline) (pH 7.2) at 350 x g
for 15 min.The PBMCs were then resuspended in RPMI 1640
medium (Roswell Park Memorial Institute) (Gibco, Thermo
Fisher Scientific) supplemented with L-Glutamine, 10% Fetal
Bovine Serum (Lonza), 10 mMHEPES (4- (2-hydroxyethyl)-
1-piperazineethanesulfonic acid) (Gibco, Thermo Fisher
Scientific), and 200 U/ml Penicillin/Streptomycin (Gibco,
Thermo Fisher Scientific). An aliquot of these cells was
removed for counting on a Neubauer chamber using Trypan
blue (Sigma, St. Louis, MO) as a viability dye.

2.4. Determination of Cell Phenotypes of Treg Cells. 105
PBMCs were resuspended in 100uL of PBS for labeling with
human cell-surface antibodies (all from eBioscience) in two
different conditions: (1) antiCD25 PECy7 (BC96), antiCD127
PerCPCy5.5 (eBioRDR5), antiCD4 FITC (RPA-T4;) together,



BioMed Research International 3
CD

4

FOXP3

1

CD25 CD127

2 3

(a)

ns

Healthy Individuals
All SLE patients

SLE remission
SLE active

% CD4+FOXP3+ T cell% CD4+ T cell

0

20

40

60

(%
) G

at
ed

 o
n 

Ly
m

ph
oc

yt
es

∗∗

∗∗

(b)
CD4+FOXP3+CD25+CD127-

0

20

40

60

80

%
 in

 C
D
4
+

FO
XP

3
+

ce
lls

(c)

Figure 1: Naturally occurring Treg lymphocytes of SLE patients and healthy individuals. (a) CD4+FOXP3+CD25+CD127− Phenotyping:
CD4+FOXP3+ cells (1), CD4+FOXP3+CD25+ cells (2), CD4+FOXP3+CD25+CD127− in CD4+FOXP3+ cells (3); (b) CD4+ T Lymphocytes and
CD4+FOXP3+ Treg cells; (c) CD4+FOXP3+CD25+CD127− cells in CD4+FOXP3+ Treg cells. ∗∗p≤0.002.

or (2) antiCD4FITC (RPA-T4) and antiCD45RAPerCPCy5.5
(HI100). Cells were then permeabilized with the “Human
FoxP3 Buffer Set” BD-Pharmingen (San Diego, CA) accord-
ing to the manufacturers’ recommendation and labeled with
FOXP3 PE (236A). A hundred thousand events per sample
were acquired by Attune� (Thermo Fisher Scientific) flow
cytometer. Analysis was done with FlowJo 7.6.5 (Tree Star�
Inc.) (Figure 2). Previous antibody titrations and FMO
(FluorescenceMinusOne) control were also performed, ideal
for showing gating boundaries in multicolor flow cytometry
[27](Figure S1).

2.5. Statistical Analysis. Data analysis that did not follow
the normal distribution was performed using univariate
comparisons through nonparametric tests (Mann–Whitney,
Kruskal-Wallis, and Kolmogorov-Smirnov). For data that
followed the normality, we apply parametric tests (t-test or
one-way ANOVA). Our data was plotted with the GraphPad
Prism� version 6.0 (La Jolla, USA) and the results were
set considering the median value, maximum and minimum.
Multiple linear regression analyses were used to increase the
accuracy of dependent correlations of two or more variables.
The F-test was properly applied to validate the correlations

with multiple variables, being considered p <0.05 significant
for all tests.

3. Results

3.1. Naturally Occurring Treg Cells in SLE Patients andHealthy
Donors. We investigated naturally occurringTreg cells in SLE
patients and healthy donors according to Figure 1(a). Patients
with active disease or remission had the lower proportions
of CD4+ T lymphocytes (21.10%, 3.76-49.20% and 33.9%,
5.12-45%, respectively) compared to the healthy individuals
(37.6%; 31.5-46.7%) (Figure 1(b)). A significant reduction was
recorded in patients in the active disease group (p<0.001)
compared to controls (Figure 1(b)). There was a significant
increase inCD4+FOXP3+ Treg cells of the patientswith active
disease (3.73%, 1.31-7.01%) and remission (3.54%, 1.39-6.97%)
in contrast to the healthy individuals (1.63%, 1.05-2.79%)
(p=0.003).However, this phenotype did not vary according to
the disease activity (p> 0.05) (Figure 1(b)). For amore specific
T regulatory cell profile analysis, CD25 and CD127 expres-
sions were also evaluated in the CD4+FOXP3+ Treg cells.
For the CD4+FOXP3+CD25+CD127− Treg cell profile, there
were no significant variations among groups of patients with
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Figure 2: FOXP3+ Tregs subset phenotyping in patients with systemic lupus erythematosus (SLE) and healthy donors. (a) Gating strategy
for Treg cells characterization in PBMCs: lymphocytes gate (1); TCD4+ lymphocytes (2); CD4+CD45RA+FOXP3low (näıve Tregs) (3);
CD4+CD45RA−FOXP3high (eTregs) (4); CD4+CD45RA−FOXP3low (Foxp3+nonTreg) (5). (b) naı̈veTreg, eTreg, and Foxp3+nontreg in TCD4+
cells. ∗p < 0.05; ∗∗p≤0.002; ∗∗∗p<0.0001.

active SLE (36.38%, 4.70-61.80%), remission (28.12%, 3.12-
63.83%) or healthy subjects (38.80%, 19.72-68.07%) (p>0.05)
(Figure 1(c)). Likewise, there was no significant difference
between all SLE patients (32%; 31.23-63.83%) and healthy
subjects group (p>0.05) (Figure 1(c)).

3.2. CD4+CD45RA−FOXP3𝑙𝑜𝑤 (Foxp3+nonTreg) and CD4+

CD45RA+FOXP3𝑙𝑜𝑤 (naı̈ve Treg) T Cells Increased in SLE
Patients. Since SLE patients showed an increase in CD4+
FOXP3+ Treg cells, we decided to investigate its subtypes.
Based on the differential expression of the CD45RA marker
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Table 2: Influence of Treg cells subtypes on SLEDAI score for sample.

SLEDAI Coef. Std. Err. P > |t| R-squared Prob > F
eTreg −1.206469 .435602 0.010

0.2890 0.0065Foxp3+nonTreg .3915982 .1208674 0.003
näıveTreg .3039881 .3204841 0.352
∗Treg −.3861103 .6703293 0.569 0.0147 0.7717
∗∗CD25 .998021 1.5654 0.529
∗Treg: CD4+FOXP3+ cells/∗∗ CD25: CD4+FOXP3+CD25+CD127− cells.

Table 3: Clinical parameters influence in eTreg cells frequencies of SLE patients.

eTreg Coef. Std. Err. P > |t| R-squared Prob > F
Proteinuria −1.271477 .4145096 0.006

0.3255 0.0163

Hematuria .3083865 .7977254 0.703
Pyuria −.5732928 1.006636 0.575
Anti-dsDNA −2.084068 .9786697 0.045
serum complement 1.581082 1.260822 0.223
Rash −1.476643 .5323137 0.011

and FOXP3 by CD4+ T lymphocytes, näıve Treg (Figure 2(a),
gate 3), eTreg (Figure 2(a), gate 4), and nonTreg (Figure 2(a),
gate 5) cells were evaluated. When analyzing all SLE patients,
3.6% (0.07-10.70%) of CD4+ T cells were näıve Treg and 1.14%
(0.0-9.91%) eTreg.These values were higher than those found
in healthy volunteers for the same subtypes (näıve Treg: 2.3%;
1.35-4.17% and eTreg: 0.64%; 0.25-1.8%), but only naı̈ve Treg
increase in SLE patients was significant (p=0.034). The most
significant divergence was SLE Foxp3+nonTreg cells rates
(9.18%, 1.19-34.10%) in contrast to that observed in healthy
volunteers for this subtype (4.04%; 2,02-11.90%) (p<0.0001).
In relation to SLE disease activity, naı̈ve Treg or eTreg pattern
did not vary between active and remission patients groups.
However, patients with active disease showed the highest
levels of Foxp3+nonTreg cells (9.7%, 1.19- 34.10%) compared
to the group of patients in remission (9.19%, 1.32-15.50%)
(p=0.002) (Figure 2(b)).

3.3. eTreg and Foxp3+nonTreg Subsets Indicate SLE Activity.
To deepen the analysis, the influence of Treg cell subtypes
on SLE activity, measured by SLEDAI through multiple
linear regression analysis, was also evaluated. The eTreg,
Foxp3+nonTreg, and näıveTreg together exerted an influence
of 28.90% on SLEDAI score variability, with a high signif-
icance recorded by F-test (p=0.006). In this specific type
of analysis, it was possible to detect that the eTreg subtype
exerts an inverse influence on the severity of the disease
(p=0.010), whereas Foxp3+nonTreg subtypes (p=0.003) is
associated with an increased SLEDAI score. The correlation
with näıve Treg and the disease activity was not significant
(p=0.352). Also, the FOXP3+CD4+ phenotype (p=0.56) and
FOXP3+CD4+ CD25+ CD127− (p=0.52) had low influence
on disease activity (1.47%), confirming our previous remarks.
Additionally, this poor correlation was indicated by F-test
(p=0.771), that showed no significance between these phe-
notypes and the disease activity evaluated by SLEDAI score
(Table 2).

3.4. Proteinuria, Anti-dsDNA, and Rash Are Related to eTreg
Reduction. Since the eTreg and Foxp3+nonTreg subtypes had
the greatest influence on the SLE activity, we investigated
specific SLEDAI clinical parameters that exerted influence
on our sample correlated to these Treg subtypes (Table 3).
We observed that an increase of proteinuria (p=0.006), anti-
dsDNA (0.045), and rash (p=0.011) correlated inversely to
the eTreg subtype frequency.Moreover, together, proteinuria,
hematuria, pyuria, anti-dsDNA, complement, and rash may
explain 32.55% (R squared) of population variability of the
eTreg subtype on SLE patients (p=0.01) (Table 3). However,
a similar analysis for the Foxp3+nonTreg subtype showed
that the same set of clinical parameters did not significantly
explain the variability of this subtype in our SLE sample
(p=0.114) (data not shown). Therefore, Foxp3+nonTreg cells
are the most significant SLE activity indicator identified, but
only eTreg phenotype correlates with the specific disease
clinical manifestations that we evaluated.

4. Discussion

SLE often evolves with hematological disorders including
anemia, leukopenia, lymphopenia, and thrombocytopenia
[28–30]. In our study, this was confirmed by the reduced
proportion of CD4+T cells in SLE patients, even greater in the
group with active disease. On the other hand, the percentage
of FOXP3+CD4+ Treg cells was higher in patients, regardless
of disease activity. Pan et al. (2012) [20] also showed higher
CD4+FOXP3+ Treg cells in patients with SLEDAI> 5, while
others studies did not show quantitative differences for the
same phenotype [13, 19, 31].

Aiming to understand the role of Treg cells in SLE activity,
other phenotypes of these cells have been explored in the
disease. However, emerging analysis of CD4+CD25+CD127−
and CD4+CD25+FOXP3+ cells suggest that the latter is a
promising SLE activity indicator, especially in renal involve-
ment, and may facilitate the detection of Treg subsets
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with clinical relevance [21]. Therefore, we also investigated
CD4+CD25+FOXP3+ phenotype, but we did not observe any
variation according to disease activity (data not shown). For
a more precise analysis of this phenotype, we also assessed
CD127 expression, since according to previous reports the
high CD25 expression and low CD127 expression analysis
was equivalent to FOXP3 expression [32, 33]. However,
CD4+CD25+FOXP3+CD127− phenotype remained in con-
stant proportions among patients in our sample, regardless
of disease activity.

Although higher in SLE patients, CD4+FOXP3+ cells
were not a good indicator of SLE disease activity. Therefore,
we investigated its activation state according to differential
expression of CD45RA and FOXP3, featuring the subtypes
CD4+FOXP3lowCD45RA+ (naı̈veTreg), CD4+FOXP3high

CD45RA− (eTreg), and CD4+FOXP3lowCD45RA− (Foxp3+
nonTreg). Likewise Miyara [12] and Pan [20] groups, we
also identified larger proportions of naı̈veTreg and Foxp3+
nonTreg subtypes in SLE patients. Accordingly, we also
detected a significantly higher percentage of Foxp3+nonTreg
cells as a hallmark of SLE patients with an active disease. It is
possible that the activation of this phenotype is a universal
marker of the disease activity.

The Miyara group [12] was also able to observe a signifi-
cant reduction in eTreg subtype among patients with active
disease. Regardless of the convergence of data in different
studies, it must be considered that they were conducted with
patients in different degrees of disease activity. The nonuni-
formity in patient activity groups is a general limitation of
studies with this disease.

Furthermore, these differences could depend not only
on unclear definition of the Treg phenotype, as previously
reported [21], since assessments of the same phenotypes
provided contradictory results [34, 35]. These divergences
probably arise from the different clinical parameters that
constitute SLEDAI score for each sample of SLE patients
investigated. This can justify, for example, why Pan and
coworkers [20] were able to observe an increase in the
frequency of näıve Treg cells related to the development of
anti-dsDNA antibody in active SLE and we did not. This is
consistent with the low frequency (36.66%) of anti-dsDNA
antibody formation in our sample.

The analysis of naı̈ve Treg, eTreg, and Foxp3+nonTreg
together explains 28%of SLEDAI score variability in our sam-
ple. Evaluating the correlation coefficients for each subtype
and their respective significance, we concluded that the eTreg
subtype is inversely correlated with disease activity (p=0.010)
while Foxp3+nonTreg (p=0.003) exerted a direct influence.
Although näıveTreg frequencies exerts a direct influence, it
was without significance for our sample (p=0.352). Addition-
ally, we confirmed the low influence exerted byCD4+FOXP3+
and CD4+CD25+FOXP3+CD127− cells frequencies on the
SLEDAI score, both related only to 1.47% of the disease
activity. It was also found that proteinuria (p = 0.006), anti-
dsDNA antibody (0.045), and rash (p=0.011) were associated
with eTreg cell reduction. Analysis of proteinuria, hema-
turia, pyuria, anti-DNA, complement, and rash may explain
32.55% eTreg frequency variations. Equivalent analysis for

Foxp3+nonTreg did not identify specific clinical parameters
related to frequency of this subtype, probably because the
Foxp3+nonTreg phenotype can be correlated to multiple
variables that go beyond those described in SLEDAI score.

Unlike näıveTreg and eTreg, Foxp3+nonTreg phenotype
includes cells with a Th17 potential, that have no suppressive
capacity, enhanced cell proliferation response, and exhibits
strong IFN-𝛾, IL-17 and IL-2 production [12]. Therefore,
this phenotype is consistent with disease progression and
is in accordance with the predominance of a Th17 profile.
In additional Th17 and Treg serum cytokyne analysis, we
observed greater levels of IL-23 in SLE patients than in
healthy subjects (Figure S 2.A). In supplementary analyses,
we did not identify any correlation between serum levels
of the investigated cytokines and Treg subsets or clinical
characteristics (Figures S 2.B, C, D, and E).

Immunotherapies that target Treg cells and/or recovery of
Treg cell homeostasis stand out in the search formore specific
treatments for autoimmune diseases [5, 11, 24]. However,
further studies are needed to optimize the characterization of
these Treg cell subtypes, their functions, clinical correlations,
and manipulations for self-tolerance reestablishment.

All SLE patients in this study were in treatment as shown
in Table 1. This limitation of our study should be considered
since such drugs may affect our results. Other studies in SLE
context also shared this difficulty [10, 36]. However, we found
that Treg subsets did not change in relation to the treatment
adopted (p>0.05) (Figure S 3).

5. Conclusions

Our data demonstrated that eTreg and Foxp3+nonTreg
frequencies correlate significantly with disease activity in
systemic lupus erythematosus patients. The use of CD45RA
as activation marker in CD4+FOXP3+ Treg cells allowed a
more accurate analysis of a potential biomarker for active
SLE, unlike conventional analysis based on CD25 and CD127
expression and in FOXP3+ CD4+ Treg cells. Although het-
erogeneity of Brazilian population is considerable [37, 38],
we demonstrated that Foxp3+nonTreg subset is the most
consistent indicator of SLE activity, which was confirmed by
multiple linear regression analyses. In addition, we highlight
Foxp3+nonTreg cells as an important tool for assessing
disease activity in the search of new therapeutic strategies to
reduce this phenotype and promote SLE remission.
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Supplementary Materials

Figure S1: additional representative analysis of the pos-
itive region delimitation. eTreg (1), Foxp3+nonTreg (2),
naı̈veTreg (3), and CD4+FOXP3−CD45RA+ T cells (4) (A).
Differential PE-conjugated anti-FOXP3 antibody fluores-
cence intensity in eTreg, Foxp3+nonTreg, naiveTreg, and
CD4+FOXP3−CD45RA+ T cells (4) subtypes (B). FMO
control for FOXP3 delimitation (all fluorochromes minus
FOXP3 marker) (C). Figure S2: Th17 and Treg related
cytokines in the serum of SLE patients and healthy donors
(A). Foxp3+nonTreg cells related to serum concentrations
of IL-17 (B), IL-23 (C), TGF-𝛽 (D), and IL-10 (E) in SLE
patients. All cytokines in SLE patients serum and healthy
donors were measured using specific ELISA kits following
the manufacturer’s recommendations (eBiosciences or BD
Biosciences). ∗p< 0.05. Figure S3: Treg subsets did not change
in relation to the treatment adopted. (%) of the CD4+FOXP3+
Treg cells (A), CD4+FOXP3+CD25+CD127− Treg cells (B),
naı̈veTreg cells (C), eTreg cells (D), and Foxp3+nonTreg cells
(E) in relation to the treatment adopted for SLE patients.
(Supplementary Materials)
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et al., “Regulatory T cells in patients with systemic lupus
erythematosus,” Journal of Autoimmunity, vol. 27, no. 2, pp. 110–
118, 2006.

[20] X. Pan, X. Yuan, Y. Zheng et al., “Increased CD45RA +FOXP3
low regulatory T cells with impaired suppressive function in
patients with systemic lupus erythematosus,” PLoS ONE, vol. 7,
no. 4, Article ID e34662, 2012.
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