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ABSTRACT
The directional movement toward extracellular chemical gradients, a process called chemotaxis, is
an important property of cells. Central to eukaryotic chemotaxis is the molecular mechanism by
which chemoattractant-mediated activation of G-protein coupled receptors (GPCRs) induces
symmetry breaking in the activated downstream signaling pathways. Studies with mainly
Dictyostelium and mammalian neutrophils as experimental systems have shown that chemotaxis is
mediated by a complex network of signaling pathways. Recently, several labs have used extensive
and efficient proteomic approaches to further unravel this dynamic signaling network. Together
these studies showed the critical role of the interplay between heterotrimeric G-protein subunits
and monomeric G proteins in regulating cytoskeletal rearrangements during chemotaxis. Here we
highlight how these proteomic studies have provided greater insight into the mechanisms by
which the heterotrimeric G protein cycle is regulated, how heterotrimeric G proteins-induced
symmetry breaking is mediated through small G protein signaling, and how symmetry breaking in
G protein signaling subsequently induces cytoskeleton rearrangements and cell migration.
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Chemotaxis, or directional movement toward extracellu-
lar gradient of chemicals, is fundamentally important for
processes as diverse as innate immune responses to bac-
terial infections, finding nutrients, and organizing
embryonic structures.1 Defects in chemotaxis have been
clinically linked to the progression of many diseases
including asthma, atherosclerosis, cancer, and several
chronic inflammatory diseases. Our understanding of
the mechanisms controlling chemotaxis has progressed
substantially, mainly through studies targeting specific
genes or pathways. Currently there are 2 major view-
points on chemotaxis; one concentrates on symmetry
breaking in intracellular signaling pathways,2 while the
second concentrates on pseudopods and the physical
process that regulates them.3 Key to understanding both
these viewpoints, which are not mutually exclusive, is to
understand how chemoattractants at the outside induce
major cytoskeleton changes in the inside of the cell. It is
clear that chemotaxis in amoeboid cells, such as neutro-
phils and Dictyostelium cells, starts with binding of the
chemoattractant to cell-surface G-protein coupled recep-
tors (GPCRs). The associated heterotrimeric G protein
are composed of Ga, Gb, and Gg subunits. Upon ligand

binding, GPCRs undergo a conformational change that
enables activation of the heterotrimeric G protein by
GDP to GTP exchange, resulting in the dissociation into
Ga-GTP and a Gbg dimer. This process, in turn, results
in the rapid activation of small G proteins, which also
switch between inactive GDP-bound and active GTP-
bound states. Only in the GTP-bound state can small G
proteins interact with downstream effectors. This GDP–
GTP cycle is strictly regulated by 2 categories of proteins:
guanine nucleotide-exchange factors (GEFs) and
GTPase-activating proteins (GAPs).4 GEFs facilitate
release of the bound nucleotide and allow the more
abundant GTP to rebind, whereas GAPs stimulate a
small G protein’s low intrinsic GTPase activity to stimu-
late the rate of hydrolysis of the bound GTP to complete
the cycle.

In Dictyostelium, members of the Ras and Rac family of
small G proteins are rapidly and transiently activated at the
presumptive leading edge of chemotaxing cells in response
to chemoattractant stimulation.5–9 In gradients of the che-
moattractant cAMP, the receptor occupancy and activation
of the receptor-linked heterotrimeric G protein is propor-
tional to the steepness of the gradient,10,11 while Ras and
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Rac activation at the leading edge is much stronger than
the steepness of the extracellular gradient.8,12–17 These find-
ings suggest that amplification of the extracellular signal
and symmetry breaking occurs between heterotrimeric and
monomeric G protein signaling. The establishment of an
intracellular gradient in monomeric G protein activation
leads to major changes in the cytoskeleton: actin polymeri-
zation occurs at the leading edge of the cell, while acto-
myosin filaments are formed at the rear and side of the
cell.1 The new actin filaments induce the formation of local
pseudopodia, while the acto-myosin filaments inhibit pseu-
dopod formation in the rear and retract the uropod. In
addition blebs are formed at the leading edge, probably as
a result of the cortical tension forces.18,19 Together these
cooperative changes in the cytoskeleton result in coordi-
nated cell movement.

The studies so far thus have shown the critical role of the
interplay between heterotrimeric G protein subunits and
monomeric G proteins in regulating cytoskeletal rearrange-
ments during chemotaxis. But it also raised many new
interesting and central questions that must be answered in
order to understand directional sensing. How is the hetero-
trimeric G protein cycle regulated to provide the spatial
outputs of Ga and Gbg? What are the mechanisms by
which heterotrimeric G proteins induce activation of
monomeric G proteins? What are the connecting compo-
nents of the core chemotaxis pathway? How is G protein
signaling coupled to activation of cytoskeletal elements and
subsequently cell movement? We, and others, have adopted
comprehensive proteomic approaches to identify additional
components of the chemotaxis pathways in order to answer
the questions addressed above (Fig. 1).20–22

In both mammalian neutrophils and Dictyostelium,
chemotaxis is initiated by the binding of chemoattrac-
tants to cell surface G protein coupled receptors
(GPCRs) (Fig. 1). Dictyostelium depends on chemotaxis
toward folate for chasing bacteria as food source,
whereas chemotaxis to cAMP is essential for the develop-
ment into fruiting bodies upon starvation.23 The cAMP
receptor, cAR1, was the first chemoattractant GPCR dis-
covered in eukaryotic cells.24 In contrast, the folate
receptor remained unknown for more than 4 decades
after folate was identified as chemoattractant.25 Since
ligand binding to almost all GPCRs induces the phos-
phorylation of its C-terminus, Pan et al., generated phos-
phoproteomic data in the presence and absence of folate
to identify the folic acid receptors, fAR1 and fAR2.22

Importantly, fAR1 not only controls chemotaxis toward
folic acid secreted by the bacteria but it is also essential
for phagocytosis of the bacteria. This mechanism may
well be conserved as neutrophils might use a similar che-
moattractant-mediated engulfment mechanism for the
clearance of bacterial infections.

Binding of chemoattractants to cell surface GPCRs
results in the rapid GDP-GTP exchange and subsequent
dissociation of Ga-GTP and the Gbg dimer (Fig. 1). From
a classical point of view, Ga subunits might be considered
to serve as “timer” to govern Gbg signaling by releasing
and re-associating Gbg dimer from/to GPCRs through
GDP/GTP exchange and the subsequent hydrolysis of
GTP. As a result, less attention has been paid to direct sig-
naling by the Ga subunit. However, recently, it has been
realized that Ga plays an equally important role in trans-
ducing signal from GPCRs to downstream effectors as,
more and more, Ga-specific effectors in chemotaxis have
been identified. For instance, in mammalian neutrophils,
Gai can interact with Elmo1/Dock180,26 mInsc,27 and
Homer3,28 while Ga12/13 is able to bind to p115RhoGEF29

and mTORC2.30 In Dictyostelium, disruption of Ga2, the
Ga subunit that interacts with the cAMP receptor cAR1,
results in cells that do not respond to stimulation by the
chemoattractant cAMP and are unable to aggregate.31

Despite the essential function of Ga2 in cAMP-mediated
chemotaxis, Ga2 had not been reported to directly activate
downstream chemoattractant effectors in Dictyostelium.
We identified GflB as the first Ga2 effector in a proteomic
screen in Dictyostelium by using purified Ga2 protein as a
bait.20,32 GflB is a Ga2-stimulated Rap1 specific GEF that
is required for efficient directional sensing and cell move-
ment during chemotaxis.16 Therefore, GflB forms a direct
connection between heterotrimeric G protein and mono-
meric G protein signaling (Fig. 1). GflB binds specifically
to Ga2 (cAMP GPCR) and not Ga4 (folate GPCR): the
activation of GflB thus provides a mechanism for Dictyos-
telium cells to respond differently to distinct chemoattrac-
tants. During chemotaxis to cAMP, GflB accumulates at
the leading edge via an actin dependent positive feedback
loop mechanism. Translocation of GflB to the cell mem-
brane is initiated by Ga mediated lipid binding of the N-
terminal domain of GflB, followed by localization to the
cell cortex via binding of the C-terminal domain of GflB.
At the leading edge, GflB regulates the balance between
Ras and Rap1 activation, which regulates cAMP-mediated
cytoskeletal rearrangements, resulting in recruitment of
additional GflB to the cortex. GflB thus provides a direct
link from Ga activation to localized monomeric G protein
signaling and localized cytoskeletal rearrangement.
Although human Rap1 was initially identified as a suppres-
sor of Ras signaling, it is now clear that in both mammals
and Dictyostelium Ras and Rap1 activation are strongly
interconnected.33,34 Using a proteomic approach, we
recently identified the Target of Rapamycin Complex 2
(TORC2) as integrator of Dictyostelium Ras and Rap1 sig-
naling in response to chemoattractants (Fig. 1).21 TORC2
has conserved roles in regulating cytoskeleton dynamics
during chemotaxis in eukaryotes. The Dictyostelium
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TORC2 complex consists of Lst8 (mLst8 in mammals),
Rip3 (mSin1), Pia (RICTOR) and Tor (mTor). We found
that both Rap1 and RasC activate the TORC2 complex by
binding to the RIP3/SIN1, and the catalytic domain of
TOR, respectively. The interactions between Dictyostelium
TORC2 and Ras/Rap1 appear to be conserved in human.21

Recent data also suggest that in mammalian cells the
TORC2 complex is not only regulated by monomeric G
proteins, but also by heterotrimeric G proteins.35 These
new studies suggest that the highly conserved TORC2
functions to integrate G protein signals to coordinate cellu-
lar migrations in many systems. Future studies need to be
directed at determining whether the interacting proteins
are all activators of the complex or whether some function
as scaffold to localize the complex. Is simultaneous interac-
tion with multiple components required for activation of
the TORC2 complex (coincidental detector), or can each
activator stimulate the enzyme by itself?

The work discussed here has provided important new
insights in the molecular mechanisms underlying the regu-
lation and connection of G protein signaling and cytoskele-
ton during chemotaxis. Interestingly, a recent study

revealed that Dictyostelium Ras also plays a central role in
micropinocytosis, suggesting that these 2 important signal-
ing pathways overlap.36 Together this also demonstrates
that the use of Dictyostelium as model system, in combina-
tion with mass spectrometry based proteomic, provides an
excellent strategy to get new insights in the molecular
mechanisms underlying regulation of intracellular signal-
ing. The observed similarities to pathways in mammalian
cells suggest that these mechanisms are highly conserved
through evolution and thus presumably apply to normal
cell functionality and human disease processes.
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Figure 1. Cartoon depicting the recently identified GPCR-mediated pathways that regulate Dictyostelium chemotaxis. In Dictyostelium
chemotaxis is initiated by binding of the chemoattractants to GPCRs, cAR1 (cAMP receptor) and fAR1 (folate receptor), leading to the
dissociation of heterotrimeric G protein into Ga2-GTP/Ga4-GTP and a Gbg dimer. Subsequently, Ga2-GTP, Ga4-GTP and Gbg all can
regulate Ras signaling via Ras specific GEFs. Moreover, Ga2-GTP can directly interact with its effector GflB to activate Rap1, thereby initi-
ating a subset of downstream singling pathways. TORC2 is a common effector of Rap1 and Ras signaling. RasC directly binds the kinase
domain of TOR and Rap1 positively regulates the RasC-mediated activation of TORC2 by binding to RIP3, providing a possible mecha-
nism by which TORC2 integrates the Ras and Rap1 pathways during chemotaxis.
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