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Flotillin-2 promotes metastasis 
of nasopharyngeal carcinoma by 
activating NF-κB and PI3K/Akt3 
signaling pathways
Jie Liu1,*, Wei Huang1,*, Caiping Ren1, Qiuyuan Wen1, Weidong Liu1, Xuyu Yang1, Lei Wang1, 
Bin Zhu1, Liang Zeng2, Xiangling Feng1, Chang Zhang1, Huan Chen1, Wei Jia1, Lihua Zhang1, 
Xiaomeng Xia3 & Yuxiang Chen4

Lipid raft proteins have been confirmed to be important in cell signal transduction. Some reports 
have shown that the aberrant expression of lipid raft proteins is associated with malignant 
phenotypes in some cancers. However, the role of the lipid raft protein flotillin-2 (Flot-2) in 
nasopharyngeal carcinoma (NPC) remains to be comprehensively characterized. Here, overexpression 
of Flot-2 in NPC tissues and cell lines was detected by immunostaining, and Flot-2 expression was 
found to be positively associated with NPC metastasis. Furthermore, inhibiting Flot-2 expression 
impaired the malignancy of the highly metastatic NPC cell line 5-8F by constraining its growth and 
proliferation, mobility and migration, and decreasing the capacity of 5-8F cells to metastasize in 
nude mice. In contrast, forced overexpression of Flot-2 increased the malignancy of 6-10B, a non-
metastatic NPC cell line that weakly expresses Flot-2. Moreover, in 5-8F-shFlot-2 cells, which have 
inhibited Flot-2 expression, the NF-κB and PI3K/Akt3 pathways were inactivated. Subsequently, 
MMPs expression were decreased, and Foxo1 activity was increased. In addition, enhanced NF-κB 
and PI3K/Akt3 activities were observed in Flot-2 overexpressing 6-10B cells. Thus, Flot-2 exerts a pro-
neoplastic role in NPC and is involved in tumor progression and metastasis. Moreover, Flot-2 exerts 
its role through NF-κB and PI3K/Akt3 signaling.

Metastasis is one of the primary obstacles to effective therapy for tumors, and over 90% of deaths of 
patients with solid tumors result from metastasis1,2. Metastasis is the result of a complex cascade of 
events, including transformation, angiogenesis, mobility, and invasion. Tumor cells must manipulate the 
functions of numerous biological processes to achieve successful metastasis. Of these processes, cell 
membrane modification plays a vital role in initiating cell migration. Lipid rafts are specialized heter-
ogeneous microdomains found in the plasma membrane and have been demonstrated to exert their 
influence in many physiological and pathological processes such as cancer metastasis3–5.

Flotillins are key components of lipid rafts and belong to the stomatin/prohibitin(PHB)/flotillin/HflK/
C(SPFH) domain-containing protein family. There are two flotillin members of this family: flotillin-1 
(Flot-1) and flotillin-2 (Flot-2)5. These proteins can stabilize each other by forming a hetero-oligomer6. 
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Flotillins may play important roles in cancer development as positive regulators. A high level of expres-
sion of Flot-1 or Flot-2 can enhance tumor growth and tumor cell migration. Flot-1 and Flot-2 are 
considered to be candidate markers for lymph node metastasis and for predicting poor prognosis and 
may be useful therapeutic targets for some types of cancers7–13. Furthermore, reduced Flot-2 expression 
was shown to result in a reduction in lung metastases of breast cancer in a mouse breast cancer model12.

Nasopharyngeal carcinoma (NPC) is a type of malignant head and neck tumor. NPC is mainly preva-
lent in southeast Asia and coastal regions of China14. Radiation therapy may be used as a treatment alone 
or in combination with chemotherapy and surgery15. Distant metastasis is very common and is the main 
cause of death of NPC patients15. Our previous study revealed that NPC tumor cells with high Flot-2 
expression have a high metastatic potential, indicating that Flot-2 may be involved in NPC metastasis16. 
A recent study also revealed the correlation between Flot-2 expression and lymph node metastasis in 
NPC patients17. However, the roles of Flot-2 in NPC are largely unknown.

In this study, we investigated Flot-2 expression in NPC cell lines and NPC tumor tissues and further 
explored the roles of Flot-2 in the development of NPC and the underlying mechanisms.

Results
Flot-2 expression was positively associated with the progression of NPC. Flot-2 staining was 
mainly located at the membrane and in the cytoplasm of epithelial cells. Flot-2 expression was generally 
heterogeneous in NPC tumor tissues, with two different patterns: diffuse expression in most living tumor 
cells (Fig. 1A) and focal expression at the proliferating periphery of tumor nests (Fig. 1B). Positive Flot-2 
expression was detected in all NPC tissues. In contrast, Flot-2 expression was not detectable (30/38) 
(Fig. 1D) or was detected at low levels (8/38) in the basal cells of nasopharynx (NP) tissues (Fig. 1C). 
Both the positive expression rate and the intensity of Flot-2 expression in metastatic NPC tissues were 
also significantly higher than those in non-metastatic NPC tissues (Table 1). These findings suggest that 
overexpression of Flot-2 is related to the occurrence of NPC and promotes NPC invasion and metastasis.

The expression pattern of Flot-2 in NPC cell lines. RT-PCR and Western blotting revealed ubiq-
uitous expression of Flot-2 in all NPC cell lines included in this study. Flot-2 expression was significantly 
higher in 5-8F cells than in 6-10B cells (Fig. 2A). Both 5-8F and 6-10B cells were isolated from SUNE-1 
cells. They have a similar genetic background but differ in their metastatic ability—5-8F cells are highly 
metastatic, whereas 6-10B cells are non-metastatic18. The expression of Flot-2 in non-metastatic 6-10B 
cells was also clearly lower than that in other NPC cells with metastatic potential (Fig. 2A). This result 
may imply that Flot-2 is associated with the metastatic feature of NPC tumors.

Upregulating Flot-2 expression promotes malignancy of 6-10B cells both in vitro and in 
vivo. A 6-10B cell line stably expressing Flot-2 (6-10B-Flot-2) was successfully established by trans-
fecting 6-10B cells with a pcFlot-2 expression vector (Fig.  2B). 6-10B-Flot-2 cells exhibited a Flot-2 
expression level that was comparable with that of 5-8F cells. 6-10B cells transfected with pcDNA3.1(+ ) 
empty vector (6-10B-pcDNA3.1(+ )), were used as a control. The influences of ectopic Flot-2 expression 
on the biological characteristics of 6-10B cells were analyzed both in vitro and in vivo.

Enhanced Flot-2 expression caused dramatic changes in the morphology of 6-10B cells, including 
the expansion of cells, a decrease in the nucleo-cytoplasmic ratio, and the formation of lamellipodia, 
resulting in morphological properties similar to mesenchymal cells but distinct from classic epithelial 
cells (Fig. 2C). Cytoskeleton staining revealed that 6-10B-Flot-2 cells exhibited a similar pattern of micro-
filament distribution to 5-8F cells in that microfilaments were densely distributed on the cell surface, 
which indicates cellular preparation for the formation of conspicuous lamellipodia and membrane ruffles 
(Fig. 2D). At the same time, ectopic Flot-2 expression resulted in more aggressive proliferation of 6-10B 
cells, reflected by the formation of larger and more numerous colonies and faster growth, probably by 
increasing the percentage of cells in the S phase (Fig. 3A).

In addition, the migratory and invasive abilities of 6-10B-Flot-2 cells were also significantly increased, 
as demonstrated by increased wound closure in a scratch wound healing assay (Fig.  3B), an increased 
migration rate in a transwell migration assay and an enhanced invasion rate in a Matrigel invasion assay 
(Fig.  3C). Moreover, intraperitoneal injection of 6-10B-Flot-2 cells not only induced primary tumor 
nodules on the surface of abdominal organs (the diaphragm, pancreas, porta, spleen, and mesentery) 
in nude mice but also caused the development of distant metastases, including metastases in the lungs 
and mediastinal lymph nodes (Fig. 3D). However, metastasis was not observed in 6-10B-pcDNA3.1(+ ) 
injected mice (only primary tumors were induced).

Knockdown of Flot-2 impaired the metastatic ability of 5-8F cells. We further investigated 
whether downregulating Flot-2 expression in 5-8F cells could exert a negative effect on their metastatic 
ability. Two cell lines, 5-8F-shFlot-2-1 and 5-8F-shFlot-2-2, were established by introducing two short 
hairpin RNA expression cassettes (shFlot-2-1 and shFlot-2-2) into 5-8F cells to silence Flot-2 expres-
sion. Compared with 5-8F-shFlot-2-1 cells, 5-8F-shFlot-2-2 cells had a lower level of Flot-2 expression, 
detected by RT-PCR and Western blotting (Fig. 4A). Thus, we used 5-8F-shFlot-2-2 cells in the following 
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studies and designated them as 5-8F-shFlot-2 cells. The 5-8F-pSUPER.retro blank vector transfected 5-8F 
cells were established as a control cell line.

The MTT assay and the colony formation assay showed that the proliferation and colony formation 
abilities were markedly restrained in 5-8F-shFlot-2 cells compared with 5-8F cells and 5-8F-pSUPER.

Figure 1. Immunostaining of Flot-2 in clinical NPC and NP tissues. A, Flot-2 showed a diffuse staining 
pattern with different intensities in metastatic (upper panel) and non-metastatic (lower panel) NPC tissues. 
B, Flot-2 showed a focal expression pattern at the periphery of NPC nests with no or weak expression in the 
central areas. C, NP tissues with faint Flot-2 expression. D, NP tissues with negative Flot-2 expression. The 
histological manifestations shown in Fig. 1 are representative cases.

Characteristics

Flotillin-2 expression

Negative Weak Moderate Strong Total P value

(0) (1–4) (5–9) (10–15)

NP (a) 30 8 0 0 38 Pa-b <  0.01

Non-metastatic NPC (b) 0 19 19 7 45 Pb-c <  0.05

Metastatic NPC (c) 0 15 38 34 87 Pa-c <  0.01

Table 1.  Comparison of Flot-2 expression in NP and NPC tissues. Pa-b: probability value for Flot-2 
expression difference between NP and non-metastatic NPC. Pb-c: probability value for Flot-2 expression 
difference between non-metastatic NPC and metastatic NPC. Pa-c: probability value for Flot-2 expression 
difference between NP and metastatic NPC.
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retro cells (Fig. 4B). FACS analysis showed that reduced Flot-2 expression delayed the G1 to S progres-
sion (Fig. 4B), demonstrating that Flot-2 knockdown may inhibit 5-8F cell proliferation by inducing cell 
cycle arrest.

Furthermore, the in vitro scratch wound healing assay and the Matrigel invasion assay revealed that 
inhibition of Flot-2 expression significantly decreased the mobility and invasive capacity of 5-8F cells 
(Fig. 4C,B). In vivo analysis (Fig. 5) showed that 5-8F-shFlot-2 cells formed less distant metastases, with 
only one mouse developing a distant metastasis (1/5). In contrast, a high rate of metastasis was observed 
in mice inoculated with 5-8F cells (5/5) and 5-8F-pSUPER.retro cells (4/5). From these results, it can be 
concluded that downregulated Flot-2 expression impairs the metastastic ability of 5-8F cells.

Microarray analysis in Flot-2 silenced NPC cells. To explore the molecular mechanisms of Flot-2 
in NPC, cDNA microarray analysis was conducted in 5-8F-pSUPER.retro cells and 5-8F-shFlot-2 cells. 
The expression of 481 genes was upregulated and the expression of 232 genes was downregulated in 
5-8F-shFlot-2 cells compared with 5-8F-pSUPER.retro cells (Supplementary Table 1). These genes are 
predicted to be involved in many biological processes such as cell adhesion, signal transduction, and 
immune response. The microarray analyses were further validated by confirming the expression levels 

Figure 2. The effect of Flot-2 overexpression on the morphology of 6-10B cells . A, The Flot-2 expression 
level in 5-8F, 6-10B and other NPC cells was detected by semi-quantitative RT-PCR and Western blotting. 
The expression of Flot-2 in 6-10B was weaker than that in other NPC cells. B, Semi-quantitative RT-
PCR and Western blotting were used to detect Flot-2 expression in 6-10B-Flot-2 cells. The 6-10B-Flot-2 
cells achieved a comparable Flot-2 expression level to that in 5-8F cells. C, The morphology of 6-10B and 
6-10B-Flot-2 cells observed by inverted microscopy (200× ). 6-10B-Flot-2 cells had a mesenchymal-like 
morphology with lamellipodia. D, Cytoskeleton of 6-10B, 6-10B-Flot-2 cells and 5-8F cells were recorded 
under confocal laser-scanning microscope. 6-10B-Flot-2 cells exhibited a similar microfilament distribution 
pattern to 5-8F cells, consisting of a high-density distribution of microfilaments on the cell surface, which 
precedes the formation of conspicuous lamellipodia and membrane ruffles.
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of randomly selected genes (both upregulated and downregulated) using qPCR (Supplementary Figure 
1). The microarray data can be achieved from GEO Datesets database with accession number GSE67456.

Figure 3. The effect of Flot-2 overexpression on the biological characteristics of 6-10B-Flot-2 cells. A, 
MTT assay, colony formation assay and flow cytometric analysis were carried out to analyze the influence 
of ectopic Flot-2 expression on the growth, proliferation, and cell cycle stage of 6-10B cells. Enhanced 
proliferation (significant differences were observed since Day3), colony formation (colony number: 
6-10B-pcDNA3.1(+ ): 5.48 ±  1.44, 6-10B-Flot-2: 13.67 ±  2.45) and cell cycle progression(S stage ratio(%): 
6-10B-pcDNA3.1(+ ): 36.01 ±  0.08, 6-10B-Flot-2: 20.54 ±  0.79) were observed for 6-10B-Flot-2 cells. B, 
Effects of Flot-2 on cell motility of 6-10B cells measured by an in vitro scratch wound healing assay. C, The 
influences of Flot-2 on the motility and in vitro invasiveness of 6-10B cells measured by a migration assay 
(cell number: 6-10B-pcDNA3.1 (+ ):16.7 ±  3.34, 6-10B-Flot-2: 46.58 ±  4.35) and an in vitro Matrigel invasion 
assay (cell number: 6-10B-pcDNA3.1 (+ ): 63.75 ±  8.13, 6-10B-Flot-2: 132.21 ±  17.63). 6-10B-Flot-2 cells 
displayed significantly stronger migratory and invasive capacities than that of 6-10B-pcDNA3.1 (+ ) cells in 
vitro. D, In vivo metastasis assay of 6-10B-Flot-2 cells. After intraperitoneal inoculation, 6-10B-Flot-2 cells 
invaded into diaphragmatic muscle, metastasized to lung and formed multiple metastases, and metastasized 
to the mediastinal lymph nodes. Thus, the invasive and metastatic capacities of 6-10B-Flot-2 were also 
confirmed in vivo. All data were representative of three independent experiments. The data were analyzed by 
a two-tailed student t-test.* indicates P <  0.05.
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Figure 4. The effects of Flot-2 knockdown on biological characteristics of 5-8F cells. A, Stable Flot-2 
knockdown was successfully established in 5-8F cells, reflected by RT-PCR and Western blotting. Analysis 
showed the expression level of Flot-2 was significantly downregulated (more than 75%) in 5-8F-shFlot-2-2 
cells. B, Flot-2 knockdown resulted in slower growth(significant differences were observed since Day3) and 
proliferation(colony number: 5-8F-shFlot-2: 9.3 ±  1.52, 5-8F-pSUPER.retro: 32 ±  4.58, 5-8F: 27.7 ±  3.51), 
cell cycle arrest (S stage ratio(%): 5-8F-shFlot-2: 30.49 ±  2.23, 5-8F-pSUPER.retro: 42.58 ±  3.56, 5-8F: 
40.43 ±  3.67) and impaired invasiveness of 5-8F cells (cell number: 5-8F-shFlot-2: 106.25 ±  13.28, 
5-8F-pSUPER.retro: 185.32 ±  30.54; 5-8F: 227.41 ±  17.46 ), measured by MTT assay, soft agar colony 
formation assay, FACS analysis and in vitro Matrigel invasion assay. C, Scratch wound healing assay 
demonstrated that Flot-2 knockdown could decrease the motility of 5-8F cells. All data were representative 
of three independent experiments. The data were analyzed by a two-tailed student t-test. * indicates P <  0.05.
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Figure 5. In vivo metastasis assay of 5-8F-shFlot-2 cells. Only one mouse (1/5) developed a metastasis 
of 5-8F-shFlot-2 cells, which metastasized to lung and formed only micro-metastases (representative photo 
is shown in the upper left corner). Four mice (4/5) inoculated with 5-8F-pSUPER.retro cells developed 
metastases in the mediastinal lymph nodes and lungs. In the lung tissues, tumor embolus could be easily 
found (representative photo is shown in the middle left picture). All mice (5/5) inoculated with 5-8F cells 
developed metastases in the mediastinal lymph nodes and lungs. A representative photo showing the 
metastasis to the mediastinal lymph node is presented here (the lower left corner). After intraperitoneal 
inoculation, 5-8F-shFlot-2 cells migrated to the diaphragmatic muscle without obvious invasion (the upper 
right corner), whereas 5-8F-pSUPER.retro cells (the middle right photo) and 5-8F cells (the lower right 
corner) invaded deeply into the diaphragmatic muscle. The in vivo invasion and metastatic ability of 5-8F 
cells was inhibited by Flot-2 knockdown.
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Flot-2 knockdown led to downregulated expression of MMPs, most likely by inhibiting the 
activity of the NF-κB signaling pathway. Western blot analysis showed that the expression of 
MMP2, MMP7 and MMP9 were clearly downregulated in 5-8F-shFlot-2 cells (Fig. 6B). The activation of 
NF-κ B signaling has been revealed to regulate the expression of MMPs in some tumors19,20. Therefore, we 
further detected the activation status of key regulators in NF-κ B signaling. Decreased activity of NF-κ B 
was observed in 5-8F-shFlot-2 cells and was directly illustrated by the translocation of p50 from the 
nucleus (active) to the cytoplasm (inactive), a lower level of phospho-p65 in the nucleus, and the upreg-
ulation of Iκ B (Fig. 6A). Accordingly, alterations in the expression of upstream regulators of NF-κ B, such 
as p5321, p3822, and GSK3β 23 also confirmed the inactivation of NF-κ B (Fig. 6A). In addition, the altered 
expression patterns of Bcl-xL, Bcl-2, and Bax (Fig. 6B), which are proteins involved in cell survival and 
targeted by NF-κ B, are an additional piece of evidence indicating downregulated activity of NF-κ B sig-
naling. Collectively, it appears that the downregulation of Flot-2 weakened the expression of MMPs by 
inactivating NF-κ B signaling, which subsequently decreased the migratory capacity of NPC cells.

Akt3 and Foxo1 level in 5-8F-shFlot-2 cells. Western blot analysis confirmed the downregu-
lated expression of CCNA1 and CCNE2 and upregulated expression of CDKN1A (also named p21) in 
5-8F-shFlot-2 cells observed in the microarray analysis (Fig. 6D). The FACS analysis above had revealed 
that the 5-8F-shFlot-2 cells were arrested in G1/S phase, suggesting an association between cell cycle reg-
ulation and Flot-2 expression. In light of this result, the activity of Foxo1, a key negative regulator of the 
cell cycle was detected in both 5-8F-pSUPER.retro cells and 5-8F-shFlot-2 cells. Reduced expression of 
phospho-Foxo1 (inactive form) was conspicuous in 5-8F-shFlot-2, which then increased the expression 
of several important negative cell cycle regulators such as p21 and p27 (Fig. 6D). The PI3K/Akt signaling 
axis is the main upstream pathway that regulates the activity of Foxo124. Indeed, the expression of PI3K 
was inhibited in 5-8F-shFlot-2 cells (Fig. 6D). However, the levels of neither Akt1 nor Akt2, the two PI3K 
effectors in the majority of circumstances, were altered in 5-8F-shFlot-2 cells. In contrast, phospho-Akt3 
expression was significantly decreased (Fig.  6D). An Akt-specific inhibitor, Akt Inhibitor VIII, and 
siRNA-mediated knockdown of Akt3, were applied to confirm the effects of Akt3 in 5-8F cells. The 
activity of Foxo1 was augmented by the inhibition of Akt activity by Akt Inhibitor VIII (1 μ M) or knock-
down of Akt3 expression (Fig. 6D). We also detected the activity of mTOR and found that the p-mTOR 
level was similar between 5-8F-pSUPER.retro and 5-8F-shFlot-2 cells (Fig.  6C), thereby excluding the 
influence of the PI3K/Akt/mTOR axis. Thus, these findings suggest that Flot-2 may activate Akt3, which 
then inhibits Foxo1 and promotes the progression of the cell cycle. In addition, upregulated expression 
of E-cadherin has been demonstrated to repress metastasis in oral squamous cell carcinoma cells with 
inhibited Akt activity25. A similar outcome was observed in 5-8F-shFlot-2 cells (Fig. 6C), suggesting that 
Flot-2 depletion could impair the metastatic ability of 5-8F cells by enhancing E-cadherin expression.

Flot-2 overexpression enhanced the activity of PI3K/Akt3 and NF-κB in 6-10B cells. To ver-
ify that Flot-2 knockdown could inhibit the activity of PI3K/Akt3 and NF-κ B, from a different per-
spective, we analyzed the influences of Flot-2 overexpression on 6-10B cells. Here, the expression of 
phospho-Akt3, PI3K, phospho-p65 and phospho-Foxo1 was increased in 6-10B-Flot-2 cells (Fig. 7A,B). 
Accordingly, the expression of CCNA1, MMP2, MMP7, MMP9, GSK3β  was also increased (Fig. 7A,B). 
However, the negative regulators of tumor growth, such as Foxo1, p21, E-cadherin, and p53, were sup-
pressed (Fig. 7A,B). Therefore, enhanced malignancy of 6-10B-Flot-2 cells may be due to the increased 
activity of PI3K/Akt3 and NF-κ B resulting from the overexpression of Flot-2.

Flot-2 can interact with Flot-1 and shows a positively related expression pattern in NPC 
cells. The positive relationship in the expression patterns of flotillins, (i.e., decreased or increased 
expression of one leads to the same expression pattern of the other), has been observed in both cells 
and knockout mouse models6,26,27. Here, we first confirmed the interaction of Flot-1 and Flot-2 in 293T 
cells (Fig. 8A) and 5-8F cells (Fig. 8B) by co-immunoprecipitation (co-IP). Then, we detected whether 
flotillin-2 knockdown or overexpression affects the expression of its counterpart, flotillin-1. We found 
that the expression of Flot-2 and Flot-1 was positively correlated in NPC cells, as demonstrated by 
increased or decreased Flot-1 expression in 6-10B-Flot-2 or 5-8F-shFlot-2 cells, respectively (Fig.  8C). 
Thus, the positive correlation between Flot-2 and Flot-1 suggested that Flot-2 may be involved in the 
stability of Flot-1 and Flot-1 may play a certain role in the outcome of Flot-2 alterations, though these 
require further investigation.

Discussion
In this study, overexpression of Flot-2 was observed both in NPC biopsies and cell lines. Flot-2 knock-
down impaired the malignancy of 5-8F cells, as demonstrated by their reduced capacity to form colonies, 
migrate and invade in vitro, as well as to metastasize in nude mice. Silencing Flot-2 expression in 5-8F 
cells inhibited NF-κ B and PI3K/Akt3 signaling and subsequently decreased MMPs expression, increased 
E-cadherin expression, enhanced Foxo1 activity and induced cell cycle arrest. To exclude the possibility 
of clonal variance, we also detected the influence of Flot-2 knockdown on 5-8F-shFlot-2-1 cells, and we 
observed similar outcomes (data not shown). These findings provide strong evidence that Flot-2 plays 
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Figure 6. Western blotting was used to compare the activities of NF-κB and PI3K/Akt3 signaling between 
5-8F-pSUPER.retro and 5-8F-shFlot-2 cells. A, Direct or indirect evidence for inactivation of NF-κ B in 
5-8F-shFlot-2 cells. Cyto, cytoplasm; Nuc, nucleus; WCL, whole cell lysate. The reduced expression levels of 
nuclear p50 and phosphorylated p65 in 5-8F-shFlot-2 cells were direct evidence for the inactivation of NF-κ B. 
Enhanced Iκ B and p53 expression combined with lower p38 and GSK3β  expression were indirect evidence. B, 
Detecting the expression of downstream effectors of NF-κ B including MMP2, 7, 9, Bcl-xL, Bcl-2, and Bax. The 
expression of MMPs, Bcl-2 and Bcl-xL was reduced and the expression of Bax was enhanced in 5-8F-shFlot-2 
cells, compared with 5-8F-pSUPER.retro cells. C, Detecting the expression of E-cadherin and p-mTOR in 
5-8F-shFlot-2 cells. The expression of E-cadherin was upregulated in 5-8F-shFlot-2 cells, and there was no 
difference in expression of p-mTOR between 5-8F-shFlot-2 cells and 5-8F-pSUPER.retro cells. D, Reduced 
activity of the PI3K/Akt3/Foxo1 signaling axis in 5-8F-shFlot-2 cells was confirmed by RNA interference 
and Akt Inhibitor VIII treatment. Flot-2 knockdown impaired the PI3K/Akt3/Foxo1 axis in 5-8F cells, as 
demonstrated by inhibited expression of PI3K, p-Akt3, p-Foxo1, CCNA1 and CCNE2 and enhanced expression 
of p27, p21 and Foxo1. Similar outcomes were obtained in 5-8F cells treated by Akt3 Inhibitor VIII and Akt3 
knockdown in 5-8F cells. All data were representative of three independent experiments. The gels have been 
run under the same experimental conditions and the original pictures for clipped ones like E-cadherin, MMPs, 
p-Akt3, NF-κ B factors and p-Foxo1 were showed in suppleplementry figs 2–5. The western blot bands were 
quantified and analyzed by a two-tailed student t-test. * indicates P <  0.05.
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a significant role in promoting NPC progression through the regulation of NF-κ B and PI3K/Akt3 sig-
naling.

The roles of flotillins in cancer progression have been studied in various cancers. Knockdown of 
Flot-1 or Flot-2 by RNAi inhibits the proliferation, invasion, migration and metastasis of cancerous 
cells. Both Flot-1 and Flot-2 are promising markers for the diagnosis and prediction of outcome for 
some cancers10,11,17. Here, we observed the overexpression of Flot-2 in NPC tissues and cell lines, and the 
expression pattern of Flot-2 was positively correlated with NPC metastasis, a finding that is supported 
by recent work that indicates that Flot-2 can serve as a novel biomarker for lymph node metastasis in 
NPC. In accordance with the findings in other cancers13,28, knockdown of Flot-2 inhibited the prolifer-
ation, mobility and invasion abilities of 5-8F cells. Overexpression of Flot-2 in 6-10B cells resulted in 
mesenchymal-like morphology and enhanced invasive and metastatic ability. With these results, we have 
demonstrated that Flot-2 can also promote progression of NPC, similar to other tumors.

Breaking through the extracellular matrix and basement membrane is an essential step for the metas-
tasis of cancerous cells2,29. Increased expression of MMPs plays a vital role in disrupting the extracellular 
barriers, which then facilitates the migration of cancerous cells30. The positive correlation between Flot-2 
and metastasis in breast cancer8, melanoma11, and gastric cancer31 as well as NPC17, were demonstrated 
by clinical pathological analysis. The pro-metastatic role of Flot-2 was demonstrated in a mouse breast 
cancer model12. Activation of NF-κ B signaling, observed in most cancers, has been shown to contrib-
ute to cancer occurrence and progression by regulating multiple processes, including cell survival and 
proliferation, EMT (epithelial to mesenchymal transition), inflammation, and angiogenesis, as well as 
metastasis19,20. Activated NF-κ B has been verified to upregulate expression of MMPs in a variety of met-
astatic cancers32,33. The suppression of NF-κ B activity and inhibition of metastasis resulting from down-
regulated Flot-1 have been confirmed in esophageal and oral squamous cell carcinomas7,34. However, the 
relationship between Flot-2 and NF-κ B has been rarely analyzed. Here, the downregulated and upregu-
lated activities of NF-κ B/MMPs in 5-8F-shFlot-2 and 6-10B-Flot-2 cells, respectively, demonstrated that 
the pro-metastatic role of Flot-2 in NPC might result from its ability to promote MMPs expression by 
activating NF-κ B.

The PI3K/Akt signaling pathway plays an important role in fundamental intracellular signaling trans-
duction systems. It regulates various cellular and physiological activities such as cell growth, proliferation, 
apoptosis, angiogenesis and metabolism by phosphorylation of various downstream effectors such as 
Foxo1 and mTOR35,36. However, aberrant activation of PI3K/Akt signaling contributes to tumorigenesis 

Figure 7. The activities of NF-κB and PI3K/Akt3 pathways were reinforced in 6-10B-Flot-2 cells. A, 
Enhanced activity of the PI3K/Akt3 axis was confirmed in 6-10B-Flot-2 cells by detecting upregulated 
expression of PI3K, p-Akt3 and Akt3. Additional evidence includes the altered expression of downstream 
effectors, such as upregulated p-Foxo1 and CCNA1 and downregulated Foxo1, p21 and E-cadherin. B, The 
NF-κ B pathway was also activated in 6-10B-Flot-2 cells, reflected by upregulated p-p65, GSK3β  and MMPs 
and downregulated p53. All data were representative of three independent experiments. The gels have been 
run under the same experimental conditions and the original pictures for clipped ones like E-cadherin, 
MMPs, p-Akt3, NF-κ B factors and p-Foxo1 were showed in suppleplementry figs 2–5. The western blot 
bands were quantified and analyzed by a two-tailed student t-test. * indicates P <  0.05.



www.nature.com/scientificreports/

1 1Scientific RepoRts | 5:11614 | DOi: 10.1038/srep11614

Figure 8. Analysis of the interaction between Flot-2 and Flot-1 both in 293T and 5-8F cells, and 
expression patterns of Flot-1 in 5-8F-shFlot-2 and 6-10B-Flot-2 cells. A, positive bands of anti-Flag 
(Flot-2) or anti-His (Flot-1) were detected in complexes immunoprecipitated by anti-His or anti-Flag, 
respectively, in 293T cells. B, A positive band of Flot-2 was detected in a complex immunoprecipitated by 
anti-Flot-1 in 5-8F cells. C, Flot-1 expression was positively associated with that of Flot-2, as demonstrated 
by downregulated Flot-1 in 5-8F-shFlot-2 cells and upregulated Flot-1 in 6-10B-Flot-2 cells. All data were 
representative of three independent experiments. The western blot bands were quantified and analyzed by a 
two-tailed student t-test. * indicates P <  0.05.
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and metastasis37,38. Although the three isoforms of Akt, Akt1, Akt2 and Akt3, share considerable homol-
ogy, distinct regulatory functions of Akts have been identified in different types of cancers, which are 
summarized in detail in Romano G’s review39. Inhibition of Akt1/Foxo3a/p21/p27 was observed in breast 
cancer cells with Flot-1 knockdown, which was associated with an arrest of proliferation and tumori-
genicity9. Surprisingly, only Akt3, whose role in NPC has not yet been reported, acted as an effector of 
PI3K and was involved in the regulation of cell cycle control at G1/S checkpoint in NPC cells. Flot-2 
knockdown did not impair the activity of mTOR, which excluded the role of the PI3K/Akt/mTOR sig-
naling axis, an important signaling pathway in the progression of tumors36,40. The hyperactivity of Akt3 
has been observed in some cancers, including breast cancer41, melanoma42, ovarian cancer43, and hepa-
tocellular carcinoma44, and it is involved in the progression of the above mentioned tumors by regulating 
different downstream targets. This study confirmed the direct association between lipid rafts and PI3K/
Akt signaling reported in mantle cell lymphoma45 and breast cancer9 and indicated a possible Flot-2/
PI3K/Akt3 signaling pathway.

Flotillins tend to form hetero or homo-oligomers to stabilize each other6,46. Depletion of either Flot-1 
or Flot-2 expression can concomitantly decrease the expression of the other in both Flot-1 or Flot-2 
knockout mice and cultured cells. It seems that Flot-1 is more dependent on Flot-2 because Flot-1 deple-
tion typically causes little to no depletion of Flot-2, whereas Flot-2 knockdown not only reduces the 
expression of Flot-1 but also completely depletes the flotillin-specific membrane microdomains, a key 
platform for signal transduction6,12. Thus, Flot-2 knockout inhibits lung metastasis in a breast cancer 
mouse model12. Here, a similar mechanism may be adopted in NPC, as decreased Flot-1 expression 
was observed in 5-8F-shFlot-2 cells and increased Flot-1 expression was observed in 6-10B-Flot-2 cells. 
Further work is urgently needed to elucidate the underlying relationship of flotillins in NPC.

Conclusion
In conclusion, this study demonstrated that Flot-2 exerts a cancerous role in NPC and is involved in 
tumor progression and metastasis. Flot-2 exerts its role in NPC tumors through NF-κ B and PI3K/Akt3 
signaling. Therefore, we can speculate that upregulation of Flot-2 activates NF-κ B, which subsequently 
increases the expression of MMPs, degrades the extracellular matrix, and finally promotes the metas-
tasis of NPC cells. In addition, upregulation of Flot-2 activates PI3K/Akt3 and inhibits Foxo1 activity, 
leading to an acceleration of the cell cycle through downstream effectors of Foxo1 and subsequently to 
proliferation of NPC cells.

Materials and Methods
Cell lines and tissues. NPC cell lines (5-8F, 6-10B, CNE1, CNE2, HNE1, HNE2, HNE3, HK1, C666-
1, HONE1) were maintained by our laboratory. Cells were grown in RPMI 1640 (Invitrogen, Carlsbad, 
CA, USA) supplemented with 10% FBS in a humidified atmosphere with 5% CO2 at 37 °C. Thirty-eight 
NP tissues and 132 primary NPC tissues, including 45 non-metastatic and 87 metastatic NPC tissues, 
were used for analysis of Flot-2 protein expression by immunohistochemistry (IHC). All samples were 
obtained from patients before treatment at Hunan Cancer Hospital (Changsha, Hunan, China) with their 
informed consent. The study was carried out after approval by the Ethics Committee of Central South 
University. The methods were carried out in accordance with the approved guidelines.

Immunohistochemistry (IHC). Tissue slides were immunoreacted with anti-Flot-2 mouse monoclonal 
antibody (1:50, Santa Cruz Biotechnology, USA) and detected by IHC using the SAB (streptavidin-biotin) 
system (DAKO, Carpinteria, CA). Sections were independently evaluated and scored by two pathologists 
who were blinded to the clinical data. Evaluation of staining was assessed using the Intensity Reactivity 
Score (IRS), according to the literature47.

Forced expression of Flot-2 in 6-10B cells and knockdown of Flot-2 or Akt3 in 5-8F cells. The 
open reading frame (ORF) sequence of Flot-2 was amplified from 5-8F cell cDNA using the forward 
primer 5'-AAACGGGTGCTGGAGGGAGGGC-3' and the reverse primer 5'-CTGGGGGTGGCG 
GGATAGGCTG-3' and subcloned into the pcDNA3.1(+ ) vector. Two RNAi sequences targeting Flot-2, 
5'-ATGACAAAGTGGACTATCT-3' and 5'-AAGGCAGAAGCCTACCAGAAA-3' (named shFlot-2-1 and 
shFlot-2-2, respectively), were cloned into the pSUPER.retro vector system as previously described48 and 
confirmed by DNA sequencing. 6-10B cells or 5-8F cells were transfected with 2 μ g of corresponding 
vectors by Lipofectamine 2000TM reagent (Invitrogen) according to the manufacturer’s protocols. After 
two weeks of selection with G418 (6-10B) or puromycin (5-8F), drug-resistant clones were obtained and 
the expression of Flot-2 was confirmed by RT-PCR and Western blotting. Then, the acquired cells were 
named 6-10B-Flot-2, 5-8F-shFlot-2-1 and 5-8F-shFlot-2-2. The control cells were obtained in a similar 
way. Knockdown of Akt3 was performed according to previously published protocol49.

Semiquantitative or quantitative reverse transcription-PCR (RT-PCR or qPCR). RT-PCR and  
qPCR reactions were performed as described previously. Glyceraldehyde-3-phosphate dehydrogenase  
(GAPDH) was used as an internal control. Flot-2 was amplified using the forward primer 5'-GGCTTG 
TGAGCAGTTTCTGG-3' and the reverse primer 5'-TCGAAGGCTCGCTTAGAGTC-3'. GAPDH 
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was amplified using the forward primer 5'-ACCACAGTCCATGCCATCAC-3’ and the reverse primer 
5'-TCCACCACCCTGTTGCTGT-3'. The primers for qPCR were provided in Supplementary Table 2.

Western blot analysis. Western blotting was carried out as previously described with a minor mod-
ification. The antibodies used in the study are as follows: rabbit polyclonal anti-MMP2, anti-MMP7, 
anti-MMP9, anti-Bcl-xl, anti-Bcl-2, anti-Bax, anti-E-cadherin, anti-PI3K, anti-p53, anti-GSK3β , 
anti-Flot-1, anti-Akt3 (Proteintech, Wuhan, China), anti-phospho-Akt3 (S472) (Abgent, Suzhou, 
China), anti-phospho-p65 (S536), p50, anti-Iκ B, anti-Foxo1, anti-phospho-Foxo1 (S256), anti-p38, 
anti-p27, anti-p21, anti-CCNA1, anti-CCNE2 (Sangon Antibody R&D Center, Shanghai, China), 
anti-phospho-mTOR (S2448) (ImmunoWay, Newark, DE, USA), mouse monoclonal anti-Flot-2, 
anti-α -tubulin (Santa Cruz Biotechnology, Santa Cruz, CA, USA), and anti-β -actin (Sigma, USA). Akt 
Inhibitor VIII, a specific Akt inhibitor, was purchased from Merck Millipore (Merck KGaA, Darmstadt, 
Germany). Quantification of signal intensity (IOD, integral optical density) was performed with Gel-Pro 
Analyzer software(Version 4.0). Expression change was indicated by IOD ratio of targeted protein before 
and after treatments. And the intensity was normalized by β -Actin signal. All detections were repeated 
for three independent times.

Co-immunoprecipitation (Co-IP). pEF1/myc-His-Flot-1 and pFLAG-CMV-Flot-2 expression vectors 
were constructed by cloning the Flot-1 ORF and Flot-2 ORF into pEF1/myc-His vector (Invitrogen, USA) 
and pFLAG-CMV vector (Sigma, USA), respectively. The pEF1/myc-His-Flot-1 and pFLAG-CMV-Flot-2 
vectors were transfected into 293T cells in different combinations. Forty-eight hours later, cells lysates 
were prepared and pre-incubated with agarose IgA/IgG beads for 2 h at 4 °C. Then, beads were removed 
and fresh agarose IgA/IgG beads with anti-His or anti-Flag were incubated with the lysates overnight at 
4 °C. After washing, denaturation, and SDS-PAGE, the proteins were visualized by immunoblotting. The 
endogenous interactions in 5-8F cells were analyzed in a similar way with anti-Flot-1. The experiment 
was repeated for three independent times.

Colony formation assay and soft agar assay. Colony formation assays were performed in accord-
ance with a published manual50 , and soft agar assays were performed under standard assay conditions51. 
Each assay was performed in triplicate independently. The data are expressed as the means± SD of the 
number of colonies. The experiments were repeated for three independent times.

In vitro cell proliferation assay. MTT assays were performed to assess the effect of Flot-2 on cell 
proliferation according to a published protocol52. The experiment was repeated for three independent 
times.

Fluorescence-activated cell sorting (FACS). FACS analysis was carried out as described previ-
ously53. The experiment was repeated for three independent times.

In vitro Matrigel invasion assay. This assay was based on the principle of the Boyden chamber. Cells 
(5 ×  104) were suspended in serum-free medium and loaded into the upper compartment of invasion 
chambers coated with Matrigel (BD Biosciences). The lower compartments were filled with medium. 
After 48 h, invasive cells were fixed, stained, and counted in five predetermined fields under a micro-
scope. The data are expressed as the average number of cells migrating through the filters. The experi-
ment were repeated for three independent times.

Migration assay and in vitro scratch wound healing assay. The procedures for the migration 
assay were similar to those described for the Matrigel invasion assay except that no Matrigel was used 
and the incubation time was 16 h. Scratch wound healing assays were conducted according to our pub-
lished protocol53. The experiments were repeated for three independent times.

Detection of distant metastases in nude mice. Cells (2 ×  106) from each cell line were injected 
intraperitoneally into groups of five 5-week-old BALB/C−nu/nu mice (SLAC Laboratory Animal Co., 
Shanghai, China). Mice were sacrificed 5 weeks later. All mice were carefully checked by routine biopsy. 
The lungs and mediastinal lymph nodes were removed and examined by H&E staining. All animal proce-
dures were approved by the Animal Care and Use Committee of Central South University and performed 
in accordance with institutional policies.

Cytoskeleton observation. Cells were first stained with phalloidin-TRITC (50 μ g/ml, Sigma, USA). 
The cellular morphological changes were observed under a light microscope (TE2000U, Nikon, Japan) 
and cytoskeleton visualization was recorded with a laser scanning confocal fluorescence microscope 
(Carl Zeiss Inc., Germany).

Statistical analysis. A Kruskal-Wallis H test was performed to compare the difference in Flot-2 
expression among NP (a), non-metastatic (b) and metastatic NPC (c) groups, and the Nemenyi test was 
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then further used to perform pairwise comparisons among a, b and c groups. Differences between mean 
values were assessed by a two-tailed student t-test. For all analyses, SPSS 13.0 statistical software (SPSS, 
Chicago, IL) was used. A value of P <  0.05 was regarded as statistically significant.
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