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Abstract: Modern Holter devices are very trendy tools used in medicine, research, or sport.
They monitor a variety of human physiological or pathophysiological signals. Nowadays, Holter
devices have been developing very fast. New innovative products come to the market every day.
They have become smaller, smarter, cheaper, have ultra-low power consumption, do not limit
everyday life, and allow comfortable measurements of humans to be accomplished in a familiar and
natural environment, without extreme fear from doctors. People can be informed about their health
and 24/7 monitoring can sometimes easily detect specific diseases, which are normally passed during
routine ambulance operation. However, there is a problem with the reliability, quality, and quantity
of the collected data. In normal life, there may be a loss of signal recording, abnormal growth of
artifacts, etc. At this point, there is a need for multiple sensors capturing single variables in parallel by
different sensing methods to complement these methods and diminish the level of artifacts. We can
also sense multiple different signals that are complementary and give us a coherent picture. In this
article, we describe actual interesting multi-sensor principles on the grounds of our own long-year
experiences and many experiments.

Keywords: multi-sensors; Holter; electrocardiography; electromyography; electrodermal activity;
inertial measurement unit; pulse-oximetry

1. Introduction

The human body is a good conductor, allowing easy recording of electrical signals generated by
the human body. That fact was applied by William Einthoven when he measured electric potentials of
the heart at the beginning of the 20th century. An easier way to measure the heart electric activity was
shown by Norman Jeffrey Holter in the second half of the 20th century. He started his trials with the
long-term recording of human physiological parameters on active people [1]. He fixed his experiment
on portable devices for recording heart activity–electrocardiographic (ECG) Holter [2]. The first Holters
were large, uncomfortable, and required a chest lead unit, including a radio broadcasting unit with an
antenna system [3]. Thanks to technical progress, nowadays, Holters are small portable devices [4]
with wireless signal transmission, integrated memory for data recording, and modern electrodes. They
are used for patient monitoring in the comfort of their own home where they are not scared by doctors.
The so-called white coat syndrome has disappeared.
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Holters are great for intercepting different heart or breath abnormalities [4–10],
fetal arrhythmias [11], or simple physiological human states [12–15]. Holters showing daily ECG
records are the perfect tools for long-term monitoring of the patient’s physiological state, able to
notice deviations, which are not frequently repeated. Many patients often come to the ambulance
saying they were sick the day before but feel fine at present, with ECG records showing no anomalies.
This frequently happens in the case of cardiac fibrillation, which can eventually create cerebral defeat.
Therefore, a classic ECG, which is just like a short flash in a patient’s history, is insufficient.

With the advent of telecommunication and internet technology, medicine could expand its
borders, creating a new field called telemedicine. First medical data were communicated by telegraph,
and people and doctors later started to use telephone and, in the 20th century, internet [16]. For today’s
communication and data transfer, low-power wide-area networks (LPWAN) are very promising [17–20].
Telemedicine is a very fast evolving and transforming sphere where Holter devices are used in home
care or for monitoring human physiological parameters by mobile healthcare assistants [5,21–23].
Human health is very important and early accurate diagnosis is essential to sustaining a high quality of
life. The hectic lifestyle of today’s world causes people to live in stress without enough rest, undermining
their self-care of health. Hence, enhancing and inventing new diagnostic methods, which record human
physiology and show diseases in the early stages, are necessary for the development of medicine
and more effective treatments for patients at long distance. Innovative methods could inform people
about their own physiological state nonstop, and if some health problems arise, doctors would be
directly informed of the person’s health state. Data measured by Holters sent immediately to the
doctor would allow the doctor to control their patient from different places [24,25]. In addition, in the
case of health problems, the doctor could instantly consult the health state with a specialist, or act
fast and send an ambulance, if necessary. In addition, telemedicine helps to disburden doctors from
little work, as the market is literally overwhelmed by numerous new medical products aimed at
everyday people. The conditions for data recording, however, can vary in different environments,
and are not comparable to predefined hospital conditions, and the records of the signals suffer from
lower quality. These disadvantages could be removed by utilization of advanced methods and the
newest technical devices implementing integrated chips together with the increasing computing power
of new microprocessors, and creating cutting-edge integrated medical devices. In the near future,
we can expect various new modern integrated medical devices for home examination and medicine
self-diagnostics considering the amounts of capital invested in this field.

In this article, we would like to summarize the actual state in modern Holters and describe the
perspective and innovative sensing principles usable in multi-sensor monitoring. Likewise, we would
like to outline short sections of selected experiments we accomplished using our own designed
devices during a longer period of time. These experiments aim to widen the knowledge in the
multisensory field.

2. Capability of Modern Multi-Sensor Holters

The advantages of multi-sensors and multi-channel sensing are in the possibility to measure the
same variable to achieve greater reliability in a more difficult environment. For example, it is possible to
measure the heart rate (HR) electrically from an ECG [26–31], optically using pulse-oximetry [26,32–34],
mechanically by vibration from seismocardiography (SCG) [7,30,34–39], or from minor variations in
electrodermal activity (EDA) [40,41].

2.1. Electrocardiography and Respiration

Most famous and historically, the ECG Holter is one of the first introduced wearable monitoring
devices. Today, the market offers single-channel or multi-channel Holters, with many complementary
sensors, with or without a hospital certificate. Their price varies from tens of euros [42] to several
thousands (EC-12H 12-Channel Holter ECG system by LabTech, Hungary or CardioMera ECG Holter
Monitor, Medusoft, Australia) [43–47] depending on the quality and properties offered.



Sensors 2020, 20, 2663 3 of 21

However, there are still challenges in this area. When considering a simple ECG record, with the
doctor, the patient is in a quiet environment and is supervised, the quality of the electrode contacts
is verified, the patient is in the prescribed position (mostly lying), and, for a brief moment of
signal recording, they usually hold their breath to reduce artifacts, and the doctor, if necessary,
receives immediate patient feedback. On the other hand, in real-life ECG recording using a standard
Holter, the doctor is not able to control the quality of the skin–electrode contact or the detailed position
of electrodes if they are not wrongly set. He/she is not familiar with the patient’s physical or mental
activity and, thus, cannot evaluate if the increased heart pulse is objective instead of tachycardia.
Moreover, human posture (patient bent in an unnatural position or traveling in a car and the fluctuating
ECG amplitude is related to vehicle shaking), as well as environment (increased breathlessness
may be caused by elevated temperature and humidity), have to be taken in account. Therefore,
the ECG recording in the home environment has to be supplemented by the recording of physical
parameters of the environment, and it is necessary to correlate all these effects to the final evaluation.
This requires increased work activity from the doctor, and it is necessary to extend his skills in
analyzing such modified ECGs. Hence, the development of auxiliary software, diagnostic applications,
implementation of databases, and neural networks, which simplify this specific and more complicated
diagnostics, must go hand in hand [48,49]. Long-term monitoring also produces an enormous
quantity of data, which requires efficient data coding and communication of measured signals to
the remote clinical back-end systems, and therefore, several modern communication protocols like
Constrained Application Protocol (CoAP), Message Queuing Telemetry Transport (MQTT), Message
Queuing Telemetry Transport for Sensor Networks (MQTT-SN), and Advanced Message Queuing
Protocol (AMQP) have been introduced [50], and there is an urgent need for evolution in automatized
screening [51–53].

For research purposes, our laboratory has developed an ECG Holter platform (Figure 1) [54].
In order to incorporate a wide range of different scientific tasks, the Holter was designed to be as versatile
as possible. The heart of this platform is based on an analog front-end ADS1292R (Texas Instruments,
Texas, USA) and ATxmega 128A3 (Microchip Technology, Arizona, USA) microcontroller. The analog
front-end also includes circuits for impedance respiration measurement. The overall device battery
consumption starts at 3 mA, which is required for portable electronics. The ECG Holter is complemented
by inertial measurement units (IMU): Accelerometer with magnetometer LSM303D STMicroelectronics,
gyroscope L3GD20 STMicroelectronics, barometer with temperature sensor BMP180 Bosh and notch
filter. The gain, range, and sample frequencies for all units can be set in a wide range using a
configuration file or Bluetooth control. Data are stored to a built-in 16 GB SD card in Comma-separated
values (CSV) format, with the possibility of conversion to European Data Format Plus (EDF+) format.
Measured data can be transferred offline via a USB connector or online via a Bluetooth Low Energy 4.0
(BLE) interface.

In Figure 2, we performed a short validation measurement where we compared our ECG Holter
with a laboratory instrument. The aim was to verify the detailed parameters of the used Holter,
including how the signal is affected when different electrode placing is used, if commercially used
automated software correctly evaluates our output signals, and, of course, the progress in the process
of hospital certification. We were also interested in the overall behavior and reliability of the innovative
impedance respiration sensing [54], how it will stand compared to indirect measurement through
pressure sensors, and the resistance of the circuit rib cage - chest belts [55–57] in different life situations.
The ECG Holter signal was post-processed using a digital band-pass filter in range of 1–100 Hz with
an auto-adjustable transition width. The respiration was filtered using the same filter in the range
of 0.05–3 Hz. We observed that the results were comparable, and even in some situations such as
low physical load or conversation, the impedance monitoring performed better. This can also be
supported by the fact that the respiration impedance sensing technique has started to be widely used
today [58–60].
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2.2. Inertial Measurement Units and Seismocardiography

Inertial measurement units (IMU) are mostly used to record the movement, position, and posture
of the human body [61–66] or for classification of human daily activities [67]. The first versions were
used as simple pedometers, but at present, the range of applications is fast expanding. The main reason
is their very low cost and easy implementation. Currently, they are inserted into almost all wearable
instruments [7,36,68] and can also be used for indoor navigation.

In today’s highly industrialized time, the overall physical activity of the population falls below the
recommended levels. As a result, obesity and diabetes are spreading all over the world. Obesity is often
labelled as the epidemic of the 21st century. Monitoring childhood obesity, where accelerometers offer
an objective measure of habitual activity independent of self-reporting [69,70], or homecare monitoring
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of elderly persons, where the system records their activities, events, and potentially important medical
symptoms [71,72], is very well known.

As mentioned earlier, it is very important to correlate the ECG, heart rate variability (HRV) signal,
and physical activity (IMU). This minimizes the number of false alarms and gives a more complete
overview of the ECG record and its abnormalities.

The next application that seems to be interesting is seismocardiography (SCG). SCG measures small
thorax movement and vibrations that contain information related to the cardiovascular and respiratory
system [7,35–38]. The thorax accelerometer signal contains a low-frequency component corresponding
to the motion of the chest wall due to respiration and a higher-frequency component corresponding
to the heartbeat. Actual research teams are either trying to develop extracting algorithms of these
signals [73] or are focused on increasing the quality of daily-life ECG monitoring using quantitative
analysis of motion artifacts [74,75]. In different studies, the quality of the obtained SCG is enhanced
using a novel adaptive recursive least-squares filter [76], time–frequency distribution analysis [77],
or even using two cooperating accelerometers [78]. Very interesting are the studies where relations
between ECG and SCG waveforms are analyzed [79], and then the simultaneous acquisition of ECG
and SCG signals followed by mechanisms for the automatic delineation of relevant feature points
can distinguish between normal and abnormal morphology [80], detect critical cardiac behaviors,
and build early warning systems [81].

Figure 3a shows an example of signals obtained using our Holter with its IMU fixed to the
thorax [68]. Except the overall movement and position of a human, a detailed look of the heart and
respiration activity (mechanical heart activity) can be captured. Using a simple 20 Hz high-pass
filtering, HR can be obtained even during demanding exercise when the ECG signal is unreadable due
to heart bouncing (Figure 3b). Detailed accelerometer signals can be used, e.g., for cough and swallow
analysis [82].
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2.3. Muscle Activity

Electromyography (EMG) is used in motion analysis, physiotherapy, clinical research, and sport
training [83–88]. EMG signals can often be used in automation for prosthetic devices such as prosthetic
hands or lower limbs [89]. However, sensing in this area has certain specifics. Myoelectric prostheses
expect comfortable and reliable electrodes without interfering with the user’s daily life. They must be
ventilated, flexible, and foldable. Polymers, like polysiloxane [90], conductive fabric [91], or textile
electrodes made by screen printing technology [92] meet the requirements.

In measuring muscle activity, the application of accelerometers seems to be very interesting,
and the relevant field of science is called mechanomyography (MMG) [93]. MMG refers to the
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surface measuring of small vibrations of loaded muscles (amyostasia) or even a single motor unit [94].
Although there exist alternative methods of sensing muscle vibration, like piezoelectric resonance-based
sensors [95] or laser Doppler [96], accelerometer sensing of MMG is still the most common. MMG can
be a useful alternative to the electromyogram (EMG). It has a higher signal-to-noise ratio (SNR) than
surface EMG and it can monitor the activity of even deeper muscles. This technique is, therefore,
often utilized for evaluation of the muscular fatigue [97–101] or of the mechanical delay of muscle
contraction [102,103]. The combination of MMG and EMG was already investigated for rehabilitation,
control of prostheses, and in robotics. If MMG is added as a second detector to EMG monitoring,
the total error of devices and prostheses can decrease up to 50% [89].

Electrical impedance myography (EIM), which measures the impedance of the electrical potential
generated by muscles and neuron cells, can also be classified among innovative myographic methods.
It can be used for observing muscle health and conditions. For example, there is a report for usage in
the diagnosis of neuromuscular disorders [104], or for capturing changes in muscle composition [105].
In the study by Ma et al. [106], a wearable motion capture and measurement system combining an
EMG, MMG, and ultrasound probe for understanding locomotion was developed.

When looking at our results, we demonstrated the capability of the combination of EMG
(electromyography), MMG (mechanomyography), and EIM (electrical impedance myography) for
examining muscle activity [107]. These variables can be measured simultaneously only by redesigning
the electrode contacts and software setting of previously introduced Holter parameters. Instead of
using cable contacts, we mounted the Ag/AgCl electrodes with clips directly to the bottom part of the
housing in a distance of 2 cm (Figure 4). Compared to ECG measurements, we increased the sampling
frequency of biopotential and impedance measurements from 1000 to 2000 Hz and for vibration
measurement from 100 to 400 Hz. When measuring vibrations, the range was also increased from ±2 to
±4 g. Obtained signals were again software-filtered. The EMG signal used a digital band-pass filter in
the range of 1–500 Hz, EIM, and MMG using a 0.1 Hz high-pass filter. Measurement was performed on
the biceps brachii muscle. In Figure 5, the total time response of all signals is presented. The exercise
comprised six series (each five lifts) of gradually increasing isotonic load (20–70% maximum voluntary
contractions (MVC)), followed by 30 s of isometric exercise with 50% MVC (maximum voluntary
contractions). Detailed analysis (Figure 6) shows that there is visible delay between the muscle
activation (EMG start) and movement (MMG shift). These phases represent the transition of isotonic
movement to isometric. This delay is interesting from the perspective of the evaluation of reflexes
and reactions. For robotic and prostheses control, it is helpful that EIM is sensitive only in the case of
isotonic signals and not isometric signals (Figures 5 and 6). Figure 7 interprets the typical power signal
density (PSD) of an isometric load. The comparison shows the amplitude and mean frequency (MNF)
shift due to the fatigue factor.
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The capability of muscle activity Holters can grow rapidly when connected together in a
synchronous network, demonstrated, for example, in the case of EMG Holters by Delsys Incorporated
(MA, USA) in their Trigno platform or by BTS Bioengineering Corp. (MA, USA) in their FREEEMG
series [108–112]. As interesting research study for the precise control of prosthetic devices, the surface
potential mapping [113] or stretchable EMG patch sensor integrated with the miniaturized wireless
system modules, should also be mentioned [90].
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2.4. Electrodermal Activity (EDA)

Further, there is growing interest and promise for wearable devices for electrodermal activity
(EDA) recording, often also known as the electrodermal response (EDR) or psychogalvanic reflex
(PGR) [114]. Laboratory devices commonly measure electrodermal activity between the down part of
two fingers of the non-dominant hand. Such devices are ideal for psychological research, lie and stress
detectors, etc. For daily life, more suitable EDA meters are in the form of watches, wristbands [115–118],
or even smart eyewear [119] and bras [120], which are more practical and comfortable. The imperfection
is in decreased sensitivity, while the nervous reactions and change in skin conductivity are more
significant in the palm areas, where the stratum lucidum and potential barrier are presented [121–123].
Another problem is that the signal can be, due to a high movement artifact, obtained only in the calm
state, so again, cooperation with IMU or at least the accelerometer is required.

We tried to avoid these problems by constructing an EDA Holter in the form of a practical ring [124]
(Figure 8), which does not sense the EDA between the fingers like a conventional device, but locally
on a small place in an area of 1 × 1 cm (Figure 9a). Such an EDA ring is more suitable for daily wear
and the signal artifacts are lower. The Holter generator generates a sinus signal with an amplitude of
1.6–3 V and frequency of 1 kHz to a gold-plated interdigitated array of electrodes (IDAE). Their size
is 200/200 m, so the electric field enters only into the neuroactive areas (stratum lucidum–potential
barrier) and the impedance changes are quicker and more bound to the psychogalvanic response.
Total dimensions of the EDA Holter are 20 × 20 × 5 mm and the device is connected to a smartphone
with Bluetooth 2.0. The data are stored in CSV format. To minimize polarization effects in the skin,
also called electrodermal phenomena, we used software filtering of this drift based on periodical
recalibration with an exponential function. An exponential approximation was performed every
minute, and this exponential was subtracted from the measured data (Figure 9b). This experiment
also led to a very important result: The microelectrode probes are able to monitor the electrodermal
response, as well as the heart pulses, simultaneously. They are present as small variations in the EDA
signal related to blood pulsating in the bloodstream–plethysmography.
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2.5. Pulse-Oximetry–Photoplethysmogram

The next sensor principle we describe in this article is pulse-oximetric, which is closely related
to the photoplethysmogram (PPG). Classical sensors are commonly used in hospitals to monitor
heart rate (HR) and blood oxygen level (spO2) mostly using the transmittance principle on fingers or
earlobes [125–127], but there are also less traditional variants like PPG sensors placed in the human
trachea during anesthesia [128]. In homecare, they are usually known to be implemented in all types of
smart watches [129–133], and they work on a little more complicated but suitable reflectance principle
for nonstop wearing [134–137]. They use mostly red, infrared, or green light to monitor HR, and their
combination is used to determine spO2 levels. In fact, this method is arguably the most used for
measuring HR. To remove false values and increase reliability, PPGs are sometimes enhanced by
accelerometers [138] or multiplied [139,140] so they can be deployed for detailed heart rate variability
(HRV) analysis [141], fibrillation classification [142], arterial status (ageing) monitoring [140], or in
demanding applications like automotive applications where the PPG signal is measured from the palm
of the hands [143].

Our team have developed a pulse-oximetric Holter (Figure 10a), based on the reflective principle,
and enhanced it using two synchronized pulse-oximeters at a predetermined distance of 2 cm, so it
is possible to also measure the local blood flow rate. Our measuring system (Figure 10b) consists
of two pairs of light-emitting diodes (LED). The used RED LED is a Vishay VLMR51Z1AA and IR
LED VSMY2943RG. The wavelengths of the LEDs are chosen matching the optical properties of blood.
Oxygenated hemoglobin has a maximum light absorption of 940 nm and, on the other side, reduced
hemoglobin has this maximum of 660 nm. Thanks to this difference, we are able to determine the ratio
of oxygenated and reduced hemoglobin. This ratio determines the level of spO2 directly. Both pairs
of LEDs are coupled with Vishay BWP34 photodiodes, which have comparable sensitivity to both
of the used wavelengths of the emitted lights. The signal from the photodiodes is hardware-filtered
using a band-pass filter of 0.5–5 Hz. All of the measurement processes are controlled by a Holter,
which is based on a JN5148 microcontroller with an integrated ZigBee communication module and on
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a 24-bit analog-to-digital converter with software-adjustable sample rate and gain. PC communication
is provided by one receiver module (USB dongle), which can simultaneously communicate with 4 to 6
of such Holters [144].

Sensors 2020, 20, x FOR PEER REVIEW 10 of 21 

 

module and on a 24-bit analog-to-digital converter with software-adjustable sample rate and gain. 
PC communication is provided by one receiver module (USB dongle), which can simultaneously 
communicate with 4 to 6 of such Holters [144]. 

  

(a) 

 

(b) 

Figure 10. (a) Pulse-oximetry Holter, (b) paired pulse-oximetry sensors. 

In the last years, a huge effort has been made to use PPG for cuffless blood pressure (BP) 
determination. There are known algorithms where systolic and diastolic BP are calculated from the 
shape of the PPG curve [145]. Thanks to modern neural learning methods [146,147], the accuracy of 
the results is continuously increasing [148–150]. 

For accurate estimation of BP, the combination of PPG with other physiological parameters such 
as ECG, SCG, ballistocardiogram (BCG), impedance cardiogram (ICG), etc. seems to be very 
promising [151]. Blood flow rate partially correlates with blood pressure [152,153]. In practice, plenty 
of devices are now coming that measure the approximate blood pressure by the phase shift between 
the ECG and the PPG curve [154–157]. The principle is simple. It is assumed that the ECG signal 
spreads across the body at the speed of light, so it is recorded immediately, and the PPG signal reacts 
to the blood flow itself, making it “a little” slower. These devices are mostly in the form of smart 
watches, where there is an optical PPG sensor with one ECG electrode (one bottom electrode can also 
be added for noise reduction) on the bottom, and a second ECG electrode on the top of watches. Such 
a smart watch on the market, for example, is Glutrac, where they even try to determine the blood 
glucose from an advanced PPG [158]. A sensing method like this, of course, needs planned human 
cooperation, as they must hold the top electrode with their second hand in the I bipolar Einthoven 
lead for about 10–60 s. The devices fusing PPG and ECG with deep neural networks seem to be very 
promising for the future, combining together PPG shape recognition and PTT to increase the accuracy 
of results [159,160]. What is also interesting seems to be a device combining an ECG, PPG, and SCG 
placed on the human chest [161]. In this principle, we estimate that the blood pressure resolution will 
be decreased by the low separation distance between the PPG sensing location and the heart. 
Smartwatch CareUp [162] uses two pulse oximeters for obtaining BP: One placed on the back and the 
second on the front of the watch. BP is calculated from the time delay between them. The Omron 
company is trying to miniaturize the classical blood pressure cuff into smart watch bands [163]. 

However, returning back to our device that uses only an optical PPG principle, it has to be 
clarified why it is relevant to continue in this sensing principle. Our main goal is to synchronize ECG 
Holters on the chest with a smart watch enhanced by our double PPG sensor. Thanks to this concept, 
we will obtain not only the overall blood speed but also the local speed and, using the appropriate 
algorithm, we can suppress artifacts like vascular elasticity, hydration, drug effects, etc. and increase 
accuracy. Figure 11 shows a part of our results, where we see shifted PPG signals (output signals of 
photodiode, only RED diode active) from the middle finger and wrist, which corresponds to blood 
speeds of 2.1 and 10.1 cm/s. The heart rate was about 70 BPM in both cases. 

Figure 10. (a) Pulse-oximetry Holter, (b) paired pulse-oximetry sensors.

In the last years, a huge effort has been made to use PPG for cuffless blood pressure (BP)
determination. There are known algorithms where systolic and diastolic BP are calculated from the
shape of the PPG curve [145]. Thanks to modern neural learning methods [146,147], the accuracy of
the results is continuously increasing [148–150].

For accurate estimation of BP, the combination of PPG with other physiological parameters
such as ECG, SCG, ballistocardiogram (BCG), impedance cardiogram (ICG), etc. seems to be very
promising [151]. Blood flow rate partially correlates with blood pressure [152,153]. In practice, plenty of
devices are now coming that measure the approximate blood pressure by the phase shift between the
ECG and the PPG curve [154–157]. The principle is simple. It is assumed that the ECG signal spreads
across the body at the speed of light, so it is recorded immediately, and the PPG signal reacts to the
blood flow itself, making it “a little” slower. These devices are mostly in the form of smart watches,
where there is an optical PPG sensor with one ECG electrode (one bottom electrode can also be added
for noise reduction) on the bottom, and a second ECG electrode on the top of watches. Such a smart
watch on the market, for example, is Glutrac, where they even try to determine the blood glucose from
an advanced PPG [158]. A sensing method like this, of course, needs planned human cooperation,
as they must hold the top electrode with their second hand in the I bipolar Einthoven lead for about
10–60 s. The devices fusing PPG and ECG with deep neural networks seem to be very promising for the
future, combining together PPG shape recognition and PTT to increase the accuracy of results [159,160].
What is also interesting seems to be a device combining an ECG, PPG, and SCG placed on the human
chest [161]. In this principle, we estimate that the blood pressure resolution will be decreased by the
low separation distance between the PPG sensing location and the heart. Smartwatch CareUp [162]
uses two pulse oximeters for obtaining BP: One placed on the back and the second on the front of
the watch. BP is calculated from the time delay between them. The Omron company is trying to
miniaturize the classical blood pressure cuff into smart watch bands [163].

However, returning back to our device that uses only an optical PPG principle, it has to be clarified
why it is relevant to continue in this sensing principle. Our main goal is to synchronize ECG Holters
on the chest with a smart watch enhanced by our double PPG sensor. Thanks to this concept, we will
obtain not only the overall blood speed but also the local speed and, using the appropriate algorithm,
we can suppress artifacts like vascular elasticity, hydration, drug effects, etc. and increase accuracy.
Figure 11 shows a part of our results, where we see shifted PPG signals (output signals of photodiode,
only RED diode active) from the middle finger and wrist, which corresponds to blood speeds of 2.1
and 10.1 cm/s. The heart rate was about 70 BPM in both cases.
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2.6. Technolgies of Wearable Devices and Smart Clothing

All wearable technologies have a few common pitfalls that they must improve. These include
battery life, miniaturization associated with non-invasiveness, and, last but not least, price.
Cost-effectiveness is one of the most important goals for the adoption and implementation of wearable
technologies. The more sophisticated the system, the higher their price, and therefore, only if they are
available and reasonably priced, they can really have the potential to improve health care. However,
the smaller the device developed while maintaining the functionality, the greater the price, and the
same applies to batteries. The biggest problem is that there is always a demand for longer-lasting but
smaller batteries at the same time. It seems that the solution is not in the batteries themselves but
in various settings and optimizations of data transfer, components, or software for the best possible
battery management. In the coming years, batteries may have twice the density, but due to the chemical
laws of energy storage, they have no potential to improve over time, as we can see from semiconductors.
The solution to this key problem of wearable sensor devices is, therefore, in the development and
selection of the right sensors and components with low consumption, as well as the use of low-energy
technologies for data transmission such as the LoRa, Sigfox, or NB-IOT network. It is these networks
that have low bandwidth and can transmit data over long distances. There exist many studies and
reviews about smart wearables, and recent advances and future challenges [164] about the creation
of cooperative systems based on wearable devices are directed to the field research context [165] or
the energy challenges for wearable sensing technologies [166]. In addition, studies about battery-free
wearables are very usable, as demonstrated by Orfanidis et al. [167], where the authors demonstrated
how LPWAN wearables can operate by using energy-harvesting, which illustrates that the LoRa radio
is able to operate by a combination of solar and mechanical energy on a smart shoe prototype outdoors.

The current trend is the connection of Holters with clothing containing conductive or piezoelectric
textiles and threads. All this can be categorized as smart clothes. New Holters can be worn on the body
in a variety of ways such as a chest strap or belt. As they may be visible under light clothing or under
shirts with a low neckline, current researchers, including our team, are trying to create and implement
invisible Holters directly into smart clothes for unlimited wearing [168,169]. The market already
provides several examples. The sports bra from Movesense contains textile electrodes and a detachable
Holter containing HR, IMU, and Bluetooth [170]. Alternatively, the MyHeart Instrumented Shirt [171]
is equipped with sensors from conducting and piezo-resistive materials on a textile structure integrated
in fabric, which is able to monitor ECG, on-arm EMG, respiration rate, skin temperature, and body
movements. Blood pressure and oxygen saturation can also be obtained on demand. Some research
institutes are trying to measure body composition and hydration. In this research, a self-powered smart
patch for sweat conductivity monitoring [172] or this wearable potentiostat [173] can also be helpful.
Interesting also is the ECG-derived respiration, which is a method for determining the respiratory
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information from ECG. In our research [174], we optimized it for miniaturized Holters with a low
inter-electrode separation distance (few centimeters), often available in the form of patches [75,175,176].
We found that for measuring ECG and derived respiration, it is best to use the position under the pectoral
muscle and, if possible, with electrodes orientated parallel to the heart axis. The suggested electrode
setup is suitable for common daily activities, if no high physical activity is present. The possibilities
seem almost unlimited.

All new technologies also bring various challenges with them and problematic features that
need to be addressed or improved. The basic problem of all sensor systems recording physiological
data of the human body is the privacy and security of data. Wearable devices thus record, process,
and store sensitive user data. Users are generally unaware of the real risks of losing privacy and
often underestimate this form of security. The basic form of increased security is data encryption
during recording and storage in the internal memory of measuring devices. Encryption is usually
integrated in the processor/on the chip, what most of the reliable developers of such systems currently
do. For example, the choice of on-chip encryption can affect processor selection and, thus, battery
consumption. After measurement and storage, the encrypted data are moved, e.g., to a server where
other protection elements can be used [177–179].

An inseparable part of the research of portable devices is also the connection of their production with
the selection of materials and technologies so that they are practical, cleanable, and fashionable [180].

3. Conclusions

Nowadays, due to huge technical developments, telemedicine applications have ascended.
New sensors, software diagnostics, database systems, and innovative sensing principles have been
developing fast. Development of information technologies gives us a great opportunity to improve
health systems and facilitate doctor’s work.

Another advantage lies in the measurement of human body activity in home conditions,
where people are calmer, more at rest, and not frightened by doctors. In these conditions, the results
could be more appropriate. In addition, many people can suffer from diseases, when their heart
demonstrates irregular activities often unnoticeable during ECG measurement in the ambulance;
therefore, longer 24/7 recording with a Holter device is needed to catch the discrepancies.

Currently, in our laboratory, we are trying to apply these findings to modern smart clothes.
We place the Holter on the chest, sew a suitably positioned electrode (using an optimized position of the
electrodes for ECG recording), and place the improved pulse oximeter in the wrist or shoulder bracelet.
If this is all combined, we could ultimately create a modern and robust device for a comprehensive
record of human physiology. An integrated part of our research is the development of applications,
access points, screening, diagnostic algorithms, and development of neural networks, in the form of
powerful computers, as well as integrated directly inside Holters.

Taken together, in this work, we outlined some substantial options. Yet, there is a huge variety of
other methodologies and applications, and their number will continue to grow with time. Likewise,
Holter principles will be implanted in further devices of everyday use (e.g., our e-health mouse
patent). We believe that we have shown a very broad application of multi-sensor Holters and
that they have a bright future in diagnosis and treatment. We used our Holters introduced here,
for example, in psychological research, for cognitive monitoring of the relationship of anxiety and
allergies, in the investigation of ADHD attention in young children, in monitoring the impact of the
working environment on performance, in apnea research, in determining the anaerobic threshold of
rowers, or in research on the impact of architecture and design on human physiology [181].
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