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Abstract

Motivation: High throughput and high content screening are extensively used to determine the effect of small
molecule compounds and other potential therapeutics upon particular targets as part of the early drug develop-
ment process. However, screening is typically used to find compounds that have a desired effect but not to iden-
tify potential undesirable side effects. This is because the size of the search space precludes measuring the po-
tential effect of all compounds on all targets. Active machine learning has been proposed as a solution to this
problem.

Results: In this article, we describe an improved imputation method, Impute by Committee, for completion of
matrices containing categorical values. We compare this method to existing approaches in the context of model-
ing the effects of many compounds on many targets using latent similarities between compounds and condi-
tions. We also compare these methods for the task of driving active learning in well-characterized settings for
synthetic and real datasets. Our new approach performed the best overall both in the accuracy of matrix comple-
tion itself and in the number of experiments needed to train an accurate predictive model compared to random
selection of experiments. We further improved upon the performance of our new method by developing an
adaptive switching strategy for active learning that iteratively chooses between different matrix completion
methods.

Availability and implementation: A Reproducible Research Archive containing all data and code is available at
http://murphylab.cbd.cmu.edu/software.

Contact: murphy@cmu.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Drug development is an expensive and lengthy process. Potential
drugs can be initially identified by screening on a specific biological
target, but these drugs often have unfavorable side effects due to the
complex network interactions within cells and tissues (Lounkine
et al., 2012). These are typically not discovered until later in the
drug development process because the throughput even of auto-
mated systems is not sufficient to screen all potential drugs for all
potential effects. The use of active machine learning has been pro-
posed as a potential solution to this combinatorial problem
(Murphy, 2011). Active learning is the subject of extensive previous
research (Balcan et al., 2009; Cohn et al., 1995) has been successful-
ly used for large scale problems in experimental sciences (Coley
et al., 2020; Hinkson et al., 2020; Reker, 2020).

In the context of drug screening, active learning has been shown
to reduce the amount of screening needed when considering a single

target (Warmuth et al., 2003). It can also provide dramatic reduc-
tions in the number of required experiments for the larger problem
of many drugs and many targets (Kangas et al., 2014; Naik et al.,
2013), and for cases in which the possible phenotypes are not
known in advance (Naik et al., 2016). The underlying computation-
al problem in this application is matrix completion, the prediction
of unmeasured elements in a matrix of drugs and targets. There are
two settings in which this may take place. In the first, numerical fea-
tures are available that are believed to be accurate descriptors of the
properties of both the drugs and the targets [the setting explored in
Kangas et al. (2014)]. There are a number of approaches for this set-
ting (Chiang et al., 2015; Huang et al., 2017; Wang and Elhamifar,
2018). The second, more difficult setting, is when such features are
not available. For example, in the setting explored by Naik et al.
(2016), the targets were different fluorescently-tagged clones of the
same cell line for which there was no way to measure similarity in
advance. In this case, imputation must be based upon similarities in
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the observations among drugs or targets. Within this setting, the
observations may either be numerical or categorical. For numerical
values, a number of methods have been described (Candes and Plan,
2010; Candes and Tao, 2010; Mazumder et al., 2010). For categor-
ical values, alternative methods are needed since there are no math-
ematical relationships between the categorical variables (Cao and
Xie, 2015; Davenport et al., 2014). For the drug-target (or condi-
tion-target) problem, Naik et al. (2013, 2016) introduced methods
based on grouping independent variables to predict consistent cat-
egorical phenotypes. This approach finds ‘Target-types’ that have a
similar response to conditions and ‘Condition-types’ that have simi-
lar effects on targets. For unmeasured experiments, predictions are
made by considering the measured experiments that have the same
‘Target-type’ or ‘Condition-type’. While these methods in combin-
ation with active learning were demonstrated to reduce the number
of experiments needed to achieve high accuracy, there is significant
room for improvement, especially when limited data have been
acquired. Chen et al. (2020) adapted the SOFT IMPUTE approach
(Mazumder et al., 2010) to the categorical framework and showed
improved active learning performance for both synthetic data and
the data acquired by Naik et al. (2016).

In the current work, we introduce an alternative ‘lazy learning’
method for categorical matrix completion, Impute by Committee
(IBC). Lazy learning refers to deferring the construction of a predict-
ive model until it is needed. In this case, rather than grouping drugs
or targets and constructing models to make predictions for each en-
tire group, our algorithm builds separate imputation models for
each unmeasured experiment using whatever existing experimental
measurements are relevant. We evaluate this approach and three
previously described algorithms both for the task of categorical ma-
trix completion and in the context of active learning of drug-target
models using both synthetic and real datasets. The results demon-
strate that overall IBC provides better performance for both the
completion and active learning tasks. We also describe an adaptive
switching strategy which estimates the properties of partially
observed matrices and uses them to pick an appropriate algorithm
for each round of experiments. This results in improved performan-
ces on both synthetic and real datasets over using a single algorithm.

2 Materials and methods

2.1 Problem definition
Following Naik et al. (2016), we use the term ‘condition’ as a gen-
eral term that not only includes drugs and small molecule com-
pounds but also manipulations like gene knockouts or knockdowns,
addition of hormones or growth factors, or changes in experimental
environment. Similarly, ‘targets’ is considered to include any bio-
logical entity, such as proteins, cells or tissues. We use a finite cat-
egorical set T that includes all targets under investigation,
T ¼ fti; i ¼ 1; 2; . . . ;mg, where m is the total number of targets
being considered; similarly, C is a finite categorical set
C ¼ fcj; j ¼ 1; 2; . . . ;ng, where n is the total number of conditions
being considered. We use the term ‘phenotype’ to describe the effect
for a drug on a particular target, and define the collection of all the
phenotypes possible from any combination of condition and target
as P ¼ fpi;jg, for conditionj and targeti. Thus condition and target
are independent variables, and phenotype is the dependent variable.
The experimental space is E ¼ T � C, E ¼ fei;jg. Here, ei;j refers to
the experiment on ti under cj. We define a function PðeÞ ¼ p which
maps an element in E to its phenotype.

The problem is to iteratively create an imputation model for
missing phenotypes and use them to choose experiments to perform
in order to improve the model. The premise of the imputation, as
with all matrix completion methods, is that latent similarities exist
in the matrix (i.e. within the experimental space). That is, we assume
that there are similarities between targets in T and between condi-
tions in C. This makes sense from a biological perspective: a given
drug may perturb multiple targets in a similar manner, and a family
of compounds may affect a given target in a similar way. As dis-
cussed in Section 1, we consider the case in which there are no

features available to permit a comparison of targets (or conditions)
to each other. Thus the phenotypes are the only basis for compari-
son; we say that two experiments are similar if they share the same
phenotype. In the learning process, a set of observed experiments,
O, is defined as a set of all observed experiments in the experimental
space formed by the independent variables. The similarity between
conditions themselves or targets themselves can be estimated if they
have co-observed experiments under the same target or condition.
That is, we consider two targets to be similar if the phenotypes of
the experiments of these two targets under the same condition are
the same. The more co-observed experiments have the same pheno-
type, the higher the similarity between these two targets. Similarly,
we estimate the similarity of two conditions from co-observed
experiments on the same target.

2.2 Imputation methods
Below we describe a novel categorical matrix completion algorithm,
IBC [briefly introduced in Sun and Murphy (2020)] and briefly sum-
marize three other previously described categorical matrix comple-
tion algorithms. Two rely on mapping the categorical matrix to a
real valued matrix and solving the real valued matrix by SOFT
IMPUTE (Chen et al., 2020; Mazumder et al., 2010) or nuclear
norm regularized log-likelihood function maximization algorithm
(NNRLLFM) (Cao and Xie, 2015; Davenport et al., 2014; Klopp
et al., 2015; Lafond et al., 2014). The other, like IBC, relies on
learning a partition of E based on similarities between conditions or
targets, and imputing the missing value with the partitioned clusters.

2.2.1 Imputation by committee

Here, we describe a committee voting imputation method for mak-
ing predictions of unobserved e in E. Previous work by Naik et al.
(2013) employs a condition-specific distribution for imputation in
the training step; our current model adopts instead a lazy learning
method that introduces no bias before making a prediction for an in-
dividual experiment. By lazy learning, a full use of the observed in-
formation is achieved and the model is allowed to be robust to the
noise in observed data.

We use the term ‘condition vector’ to refer to the series of experi-
ments under one particular condition, that is, ĉj ¼ fe1;j; . . . ; em;jg.
Similarly, we define ‘target vector’ as the series of experiments for
one particular target, v̂i ¼ fei;1; . . . ; ei;ng. Here, we define the con-
flict f and consistency q between two vectors v̂1 , v̂2 as:

fðv̂1 ; v̂2 Þ ¼
X

i

Iðv̂1;i 2 OÞIðv̂2;i 2 OÞIðPð ^v1;iÞ 6¼ Pðv̂2;i ÞÞ; (1)

qðv̂1 ; v̂2 Þ ¼
X

i

Iðv̂1;i 2 OÞIðv̂2;i 2 OÞIðPðv̂1;i Þ ¼ Pðv̂2;i ÞÞ: (2)

Here, Ið�Þ is the indicate function.
As discussed in the Section 2.1, conditions and targets in our prob-
lem setting are assumed to have some relationships to each other.
Therefore, imputing the unobserved e can be realized from these
relationships. The algorithms are shown in Algorithms 1 and 2
and illustrated in Figure 1. First, we consider imputation from con-
ditions by calling imputeallð ^conditionsÞ, with a return set
predictionsfromcondition. Here, ^conditions is the set of condition
vectors. For a given vector v̂, we define the collection of vectors
with n conflicts to be v̂ as committee Cv̂ ðnÞ. Imputation for a given
vector is done by constructing a committee with similar vectors
and then the prediction for each unobserved element in the given
vector is chosen by voting among the observed elements in the cor-
responding position (elements with the same index) of the member
vectors m̂ in the committee. We define a function to evaluate the
similarity of two given vectors that penalizes predictions that are
derived from conflicts

scoreðv̂1 ; v̂2 Þ ¼ qðv̂1 ; v̂2 Þ � pnl � /� fðv̂1 ; v̂2 Þ; (3)

where / is the fraction of experimental space that has been
observed. As this penalty increases, we expect the behavior to
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approach the Greedy Merge (GM) algorithm (see below). We
explored values of this penalty from 0.5 to 5 and observed only
small changes (typically differences of only 1 or 2 rounds required to
achieve 90% accuracy). We therefore set it to 1 for all studies
reported here.

Symmetrically, imputation can also be done by predicting
the unobserved experiments from the targets by calling
imputeallð ^targetsÞ, with a return set predictionsfromtarget. Here,

^targets is the set of target vectors. Both imputations are com-
bined with equal weight. That is, we merge the set
predictionsfromcondition and the set predictionsfromtarget; the
predictive candidate phenotypes for some experiments may ap-
pear in both imputation sets, the predictive score for these phe-
notypes is the sum of the corresponding scores from the two
sets. For convenience, we define Pse as the set of all candidate
phenotypes of e. For each unobserved e, the predictive decision
is realized by:

PðeÞ ¼ argmax
p2Pse

scoreeðpÞ; (4)

where scoreeðpÞ is the corresponding predictive score of the candi-
date phenotype p for e.

2.2.2 Soft IMPUTE-based method

This algorithm (SIB) was first proposed by Chen et al. (2020). The idea is
to encode the E, a categorical matrix with K phenotypes, into K ‘affili-
ation’ matrices using a ‘one-versus-rest’ fashion (Aly, 2005). The values in
each ‘affiliation’ matrix are 1 for observed ‘on’ elements, 0 for observed
‘off’ elements and 0.5 for unobserved elements, defined in equation (3) in
Chen et al. (2020). The ‘affiliation’ matrix completion is realized by the
SOFT IMPUTE algorithm implemented with an iterative and singular
value thresholding fashion (Cai et al., 2010).

2.2.3 NNRLLFM-based method

The NNRLLFM was first proposed by Davenport et al. (2014) for
binary categorical matrix completion. The scope of this algorithm
was extended to matrices with more than two categories (Cao and
Xie, 2015; Klopp et al., 2015; Lafond et al., 2014). NNRLLFM
relies on mapping a real value matrix X to a corresponding partial
observed categorical matrix M with K link functions, fk,
k ¼ 1; . . . ;K, which returns the probability of the element Mi;j being
the kth category, pk. Here, M�;� refers to one of the unobserved ele-
ments in M. Formally, it can be written as

pk ¼ fkðXi;jÞ: (5)

The completion of M is achieved by solving the constraint opti-
mization problem shown in (6)

M̂ ¼ argmaxX

X
ði;jÞ2X

XK

k¼1

IðMi;j ¼ kÞ logðfkðXi;jÞÞ; (6)

s.t. kXk� � a
ffiffiffiffiffiffiffiffiffiffiffiffi
rd1d2

p
and kXk1 � a.

Here, Ið�Þ refers to the indication function, kXk� is the nuclear norm of
matrix X, kXk1 refers to the infinity norm of matrix X, d1 and d2 refer
to the size of matrix X and r refers to the rank of matrix X.
Inspired by Chen et al. (2020), we follow the setting of encoding the E
into K ‘affiliation’ matrices and recovering them by NNRLLFM. The val-
ues in each ‘affiliation’ matrix are 1 for observed ‘on’ elements, �1 for
both observed ‘off’ elements and unobserved elements. The link functions
we choose are

f1 ¼
1

1� e�x

f�1 ¼
e�x

1� e�x

:

8>><
>>:

(7)

Fig. 1. Illustration of the Imputation by Committee algorithm. The experimental

space is represented as a categorical matrix. Unobserved phenotypes are predicted

from similar targets and conditions. Specifically, to predict the phenotype of an ex-

periment (a combination of target and condition), we create a cluster (committee) of

targets that are similar to the target, and a cluster (committee) of conditions that are

similar to the condition. The predicted phenotype is selected by voting from the cor-

responding observed phenotype in the committees

Algorithm 1. impute_all(vectorset)

1: predictions 1
2: for v̂ in vectorset do #

vectorset can be the set of target vectors or condition vec-

tors in E

3: nconflict  0

4: U ¼ feje 2 v̂; e 62 Og
5: while O 6¼1 do

6: CðnconflictÞ  fm̂1 ; m̂2 ; . . .g
7: predeF infer(e; v̂; CðnconflictÞ)
8: if prede 6¼1 then

9: remove e out of U

10: predictions [ prede

11: end if

12: nconflict  nconflict þ 1

13: end while

14: end for

15: return predictions

Algorithm 2. infer(e,v̂; C)

1: prede  1
2: for m̂ in C do

3: if m� 2 O then #

here, m� is the element in m̂ with the same index as e in v̂

4: if (ðPðm�Þ, anyscore) 62 prede then #

P(*) is the function mapping e to its phenotype

5: prede [ fðPðm�Þ, score(v̂; m̂))g #

‘anyscore’ can be any value, we only care about Pðm�Þ
6: else

7: replace (Pðm�Þ, anyscore) with (Pðm�Þ, anyscore þ
score(v̂; m̂))

8: end if

9: end if

10: end for

11: return prede
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2.2.4 Greedy merge

GM is a structure learning algorithm first proposed by Naik et al.
(2013). The algorithm iteratively merges the conditions or targets
with no conflict on observed elements to construct distributions, a
partition of the E. Imputation is made by predicting the phenotype
of unobserved elements to be the phenotype of observed elements in
the distribution under the same condition or on the same target.
Since some elements may not be imputed if there is no observed
element under the same condition or on the same target, the method
will assign these the majority phenotype and when used for active
learning, query such elements as a priority.

2.3 Active learning
For choosing experiments, we used three different variants of uncer-
tainty sampling: least confident, margin and entropy querying
(Settles, 2009). Each predicted phenotype was accompanied by a
confidence score. We defined two criteria for ranking the confidence
of the prediction; one directly using the predictive confidence
score of the unobserved e, and the second using the information
entropy of each experiment’s prediction. Given a score for
phenotype pi for an unobserved e, this is calculated using

probe;pi
¼ scoreeðpiÞ þ ð1� scoreeðpe�ÞÞP

p2Pse
ðscoreeðpÞ þ ð1� scoreeðpe�ÞÞÞ

; (8)

where pe� ¼ argminp2Pse
scoreeðpÞ

EntropyðeÞ ¼
X

p2Pse

�probp � log 2probp: (9)

For the IBC method, we adopted a hybrid query strategy. That
is, half of the batch was selected using the least predictive confidence
score and the rest is selected by the highest entropy.

For the GM method, we used the least-confident query strategy
described in Naik et al. (2013). Note that, when used for active
learning, the algorithm will first query unpredicted elements, and
then query elements for which the imputation was made by the dis-
tribution with the fewest observed elements. For the SIB method, a
margin sampling query strategy was adopted, as shown in equation
(5) in Chen et al. (2020); this selects the unobserved elements with
the smallest difference between the first- and second-largest affili-
ation values. For the NNRLLFM-based method, a least-confident
query strategy was adopted that selects the unobserved element in
the E with the lowest major affiliation value (major refers to the
largest affiliation value for one element among all of its affiliation
values).

2.4 Datasets
2.4.1 Synthetic datasets

As described previously (Kangas et al., 2014), we constructed syn-
thetic datasets in which experimental spaces consisting of 100 condi-
tions C and 100 targets T are parameterized by a uniqueness u and
responsiveness r to describe the distribution of C and T in E. Each
target has an unperturbed phenotype; for convenience, we define c1

as the unperturbed state. The uniqueness (0 < u <¼ 1) of the tar-
gets is defined to be the inverse of the number of targets that have
the same phenotype for all conditions, and similarly for the condi-
tions. We set the uniqueness of targets and conditions to be the
same. The responsiveness (0 < r <¼ 1) of targets is defined as the
fraction of targets that change their phenotype from the unperturbed
state to another phenotype across all conditions C. To make the sim-
ulations more realistic (i.e. comparable to experimental measure-
ments), we optionally added varying amounts of noise. That is, after
creating E controlled by a given u and r, 10% or 20% of the total
entries in E were selected and their phenotypes changed from their
original phenotype to another random one. For tests with random
sampling of the experimental space, the same synthetic dataset was
used for all methods.

2.4.2 Enzyme activity screening dataset

This dataset contains the experimental results of compound target
interaction assays from Drug Target Commons (DTC) platform
(Tang et al., 2018). Specifically, considering the assays with the ‘bio-
chemical’ assay format, ‘functional’ assay type, ‘enzyme activity’
assay sub-type, the ‘inhibition’ endpoint mode of action and the end-
point standard units of percentage, ‘%’, we first selected 389 com-
pounds and 259 targets that had the most assay records (the assay
records are available in Supplementary File S1). We further filtered
out targets that had recorded assays for fewer than 40% of candi-
date compounds, yielding 259 targets. We finally filtered out the
compounds that had recorded assays with fewer than 60% of the
remaining targets. This yielded 210 targets and 195 compounds, giv-
ing 40 950 possible entries in E. Of these 39 734 (97.03%) had assay
records. We used the endpoint standard value (EPSV) recorded in
the DTC dataset to define categorical phenotypes (using the average
EPSV for compound target combinations that had multiple assay
records). We assigned combinations with the enzyme activity EPSV
<25% as the phenotype 1, 25% � EPSV < 75% as phenotype 2,
75% � EPSV < 125% as phenotype 3 and 125% � EPSV as
phenotype 4. Among all 39 734 measured assays in E, there are
1941 assays with phenotype 1, 5960 assays with phenotype 2,
31 594 assays with phenotype 3 and 239 assays with phenotype 4.

2.4.3 Protein subcellular patterns screening dataset

To test the candidate algorithms on data from another real experi-
mental setting, we also used the dataset created by Naik et al.
(2016). Each experiment in that study consisted of imaging an NIH-
3T3 cell line expressing a particular fluorescently-tagged protein
after treatment with a particular drug. The full experimental setting
consisted of 48 cell lines and 48 compounds but we reduced it to 47
cell lines and 46 compounds by removing highly variable experi-
ments. Both cell lines and compounds were silently duplicated (by
assigning two indices to each cell line or drug such that the machine
learner did not know that they were duplicated) to create a 94 � 92
matrix (the duplications guarantee that there are similarities in E to
learn). In the original study, image features that describe the fluores-
cence pattern of the tagged proteins were calculated, and these were
converted into statistically distinguishable phenotypes. To simulate
active learning on this dataset, we returned to the learner the aver-
age feature values reported for a given cell line and drug provided in
the Supplementary information of the original study (https://doi.org/
10.7554/eLife.10047.014).

The phenotypes of the experiments in E were determined by a
form of agglomerative hierarchical clustering. Every round n, we
trained a hierarchical clustering classifier using the features of all
observed images in On and a distance threshold of 10 to decide how
many clusters to allow in a given round. The phenotypes were learn-
ed using only images of observed experiments because we do not
have access to the image features of unmeasured experiments in a
real scenario. Once the clustering metric was determined, we trained
a 5-nearest neighbor classifier, as PnðeÞ, to assign all unobserved e in
E into those clusters. This was used as the ground truth for evaluat-
ing models; thus the ground truth phenotype changed from round to
round to correspond to the set of phenotypes that the model had
seen so far (it obviously could not predict a phenotype it had not yet
observed) and the model was re-trained using the phenotypes learn-
ed in each round. The workflows of the three types of experiments
are shown in Figure 2.

3 Results

3.1 Synthetic data experiment
We first assessed the performances of the four methods on matrix
completion for synthetic datasets (as described in Section 2). These
were created across 16 combinations of u and r with 32 phenotypes.
For each combination of u and r, we generated three independent E
with different random seeds and did this with and without different
amounts of simulated experimental noise. For each generated E, we
performed the whole loop of matrix completion (with batch size of
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1%) twice by starting with two different randomly chosen sets of
initial observations. Thus, for each combination of u and r, there are
six replicate experiments, and the results reported in the following
are average results of the six repeats. The results are assessed by the
accuracy, class-weighted F1 score and unweighted F1 score for the
entire space. In Figure 3, the average accuracies of low and high u,
with 20%, 40%, 60% and 80% of the observations, are shown (the
numerical values of the accuracy, class-weighted F1 score and
unweighted F1 score, along with averages for each method, can be
found in Supplementary Files S2–S4). NNRLLFM performance was
at or near the worst for all tests when given only 20% of the data
and when given 40% for low u. There are no cases for which it per-
forms the best. The SIB method performs poorly for most cases with
high u. It is competitive for other cases but the only cases for which
is performs slightly better than the other methods are those with
large amounts of training data. GM performs the best of all methods
for high u and low amounts of training data. It is competitive for
other cases. IBC performs the best for almost all cases with low u,
regardless of the amount of training data. It is second to GM in
most of the high u cases.

Overall, no single method performs the best for all cases, but the
clustering-based methods, GM and IBC, are the best overall per-
formers. When we consider averages for all combinations of u and r,
IBC performs with an average accuracy of 79.3% followed by GM
with an average accuracy of 76.3%. SIB is next with the average ac-
curacy of 72.9%, and NNRLLFM is last with the average accuracy
of 68.5%. Thus IBC outperforms all of the previously described
methods.

We next considered the ability of these methods to guide active
learning. For each round of active learning, we used the trained
models as the basis for selecting experiments using uncertainty sam-
pling in batches of 1% of E. Synthetic datasets were constructed as
for Figure 3. For our tests of the SIB method, we configured SOFT
IMPUTE to use a maximum number of iterations of 100 and a soft
singular value threshold of s

50, where s is the largest singular value in
each iteration. We also dynamically adjusted the number of affili-
ation matrices. Chen et al. (2020) used k affiliation matrices, where
k was set to the number of phenotypes in the entire dataset. In an ac-
tive learning setting in which not all data are available, the number
of possible phenotypes is typically not known. We therefore used
only k0 affiliation matrices in our implementation of their method,
where k0 is the number of phenotypes observed up to that round
(this approach was also used for our implementation of the
NNRLLFM-based method). These implementation differences may
account for the slight differences in results we obtained compared to
those reported in Chen et al. (2020). Results of accuracy for six
repeats are shown for low and high u in Figure 4 (the numerical val-
ues of accuracy, class-weighted F1 score and unweighted F1 score
can be found in Supplementary Files S5–S7). The IBC method and
the SIB method both performed well. For all non-noise cases and
noisy cases except for some low-responsiveness cases, the IBC model

Fig. 4. Performance of matrix completion models for active learning with synthetic

datasets. Each symbol shows the full space accuracy averaged over six replicates

with different random seeds and initial samples (the average standard deviations for

each method across all rounds were all <2%; Supplementary Table S1). Each panel

shows a given combination of noise and u, with subpanels for different values of r.

Within each subpanel, results are shown for completion given 20%, 40%, 60% and

80% of all observations selected by active learning (from left to right). Results for

the NNRLLFM-based method are shown in blue, GM in orange, SIB method in

green and IBC in brown. Shown in red are results for the adaptive switching strategy

(see text). The improvement in accuracy of the switching strategy over IBC is shown

with brown diamonds and its improvement over SIB is shown with green diamonds.

Some improvement is seen for the switching method compared to SIB, but little is

seen compared to IBC alone. Note that the green diamond being above the brown

diamond indicates that IBC alone outperforms SIB alone. The numerical values can

be found in Supplementary File S5

Fig. 2. Workflows of the active learning processes

Fig. 3. Performance of categorical matrix completion methods for different synthetic

datasets. Each symbol shows the full space accuracy averaged over six replicates

with different random seeds and initial samples (the average standard deviations for

each method across all rounds were <2%; see Supplementary Table S1). Each panel

shows a given combination of noise and u, with subpanels for different values of re-

sponsiveness. Within each subpanel, results are shown for completion given a ran-

domly chosen 20%, 40%, 60% and 80% of all observations (from left to right).

Results for the NNRLLFM-based method are shown in blue, GM in orange, SIB

method in green and IBC in brown
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performs better than all other methods. Also, the SIB method per-
formed better at the beginning stage of some noisy, low-responsive-
ness cases. As seen in Supplementary File S5, the average accuracy
for IBC is again the best at 83.2%, SIB is next at 76.6%, followed
by NNRLLFM and GM at 66.6% and 66.2%, respectively.

The fact that the models’ performances were related to r and the frac-
tion of observations available suggested that an adaptive strategy could be
used to decide which completion method to use. We therefore performed
studies similar to those in Figure 3 for u from 10% to 90% (in steps of
10%), r from 20% to 100% (in steps of 20%), added noise from 0% to
25% (in steps of 5%), number of phenotypes of 4, 8, 12, 24, 36, 48 and
fraction observed from 1% to 100% (in steps of 1%) to collect the pre-
dictive accuracies of the IBC methods and the SIB methods upon varied
matrices. Then, we generated polynomial features (max degree of 4) for
the independent values (u, r, number of phenotypes, noise and observa-
tion fraction) using the PolynomialFeatures function from the scikit-learn
preprocessing package. We divided the data into a training set and test set
at a ratio of 4:1. Using the training set, we performed a linear regression
between the extended polynomial features and the matrix completion ac-
curacy for the IBC method and the SIB method, respectively. The linear
regression accuracies on the test set for the IBC method and the SIB
method were both 94.1%. With these pre-trained linear regression mod-
els, we carried out a denser grid search of u from 10% to 90% (step size
of 10%), r from 10% to 90% (step size of 10%), noise from 0% to 25%
(step size of 5%), number of phenotypes from 2 to 48 (step size of 2) and
observation fraction from 1% to 100% (step size of 1%) to predict the
matrix completion accuracies under the given matrix features and the ob-
servation fraction. After that, we learned a decision tree to use the r and
observation fraction (independent values) to predict the optimal method
(the method with the higher matrix completion accuracies between the
IBC method and SIB method). The tree is shown in Figure 5. Using this
decision tree, we implemented an adaptive switching strategy for categor-
ical matrix completion that estimates the r of the partially observed ma-
trix and uses it and the observation fraction to choose the method for
matrix completion. The performances of this approach on synthetic data
are also shown in Figure 4. The adaptive switching strategy has an aver-
age accuracy of 82.0% (Supplementary File S5), better than SIB alone
and almost equal to IBC alone.

3.2 Enzyme activity prediction experiment
Having characterized the methods using synthetic datasets, we next
compared them on a real experimental dataset for prediction of en-
zyme activity. For this experiment, we performed five repeats of the
entire learning loop with different randomly selected starting sam-
ples and report the average results here. The performances assessed
by the accuracy of the four matrix completions methods in active
learning are shown in Figure 6 (the performances assessed by class-
weighted F1 score and unweighted F1 score can be found in
Supplementary Figs S1 and S2). The SIB model performs the best,
with the IBC model performing second best. The better performance
of the SIB method is consistent with the synthetic dataset results,
since for this dataset the r of E is low (with only four phenotypes

and with the frequency of the majority phenotype being more than
80%) which corresponds to cases in which the SIB model performed
relatively better. However, the adaptive switching strategy, which
starts with the IBC method and switches to the SIB method after
observing 13.5% of E, catches up to the performance of the optimal
method quickly.

We also performed tests using each of the models to make pre-
dictions but using randomly selected experiments [Supplementary
Fig. S3 (accuracy), Supplementary Fig. S4 (class-weighted F1 score)
and Supplementary Fig. S5 (unweighted F1 score)]. IBC and SIB per-
form better when used with active learning than with random selec-
tion. However, the other two models show little difference between
active and random learning. This may be expected for the
NNRLLFM-based method but perhaps not for the GM algorithm
given its good performance on synthetic datasets. However, it can
be explained by the fact that the active GM algorithm is configured
to always query instances that do not perfectly match any of the
other rows or columns (as described in the Section 2) but in this
dataset, most of the rows and columns cannot be matched perfectly.
This disadvantage can also be seen in noisy synthetic datasets in
Figure 4. The best area under the learning curve (an estimate of the
overall performance, equal in this case to the average accuracy
across all rounds) was 96.2% for SIB. The switch strategy performs
next best at 94.7%, followed by IBC at 93.4%. GM and
NNRLLFM are last at 83.4% and 82.8%, respectively.

3.3 Subcellular pattern prediction experiment
As a further test of performance of the different models on real ex-
perimental datasets, we compared them on a high throughput
screening image dataset consisting of the average features of fluores-
cent microscopy images for GFP-tagged cells treated with various
drugs. After each round of data collection, we first compared the
predictions of the model made for unobserved experiments with the
ground truth of the E we generated for that round (this is necessary
because we cannot penalize a learner for not predicting a phenotype
that has not yet been observed in any experiment). As with the en-
zyme activity dataset, the entire experiment was repeated five times.
Learning curves of the accuracy are shown in Figure 7 (learning
curves assessed by class-weighted and unweighted F1 score can be
found in Supplementary Figs S6 and S7). It is important to note,
however, that our tests were done with only the average feature val-
ues for each combination of target and condition (see Section 2),
and therefore the learning rates are not directly comparable to those
reported previously. The results are also not directly comparable to
those of Chen et al. (2020) because those results used the phenotypes
learned in each round by the original study rather than learning the

Fig. 6. Learning curves for active learning using different categorical matrix comple-

tion models on the enzyme activity screening dataset. Active learning was done in

batches of 400 experiments (�1% of the full E). The average standard deviations

for each method for all rounds were <1.7%. The blue curve refers to the

NNRLLFM-based method, the orange curve refers to the GM method, the green

curve refers to the SIB method, the brown curve refers to the IBC method and the

red curve refers to the adaptive switching strategy

Fig. 5. The decision tree for the adaptive switching setting. Here, OR refers to the

observation fraction, R refers responsiveness and E refers to entropy of each node

(node purity)
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phenotypes anew only from the data observed up to that round
(thus taking advantage of information from experiments that were
not observed). To make our performance comparisons fair, we eval-
uated all algorithms while modeling only observed phenotypes.

In this dataset, targets and drugs are each duplicated. Thus u is
�25%. As seem with synthetic datasets with low u, IBC performs
better than the other three model designs on this real dataset. After
42 and 54 rounds, the IBC-based model can learn a predictive model
with 90% and 100% accuracy, respectively. The GM model also
shows good performance on training to 100% accuracy, using only
51 rounds. However, its performance lags the IBC model for the first
49 rounds. The other single methods performed significantly worse.
As expected, the adaptive switching strategy performs identically to
the IBC method because it starts with IBC and decides at each round
to continue with it (there are slight differences early on due to differ-
ences in random initialization). As measured by the area under the
learning curve, IBC and the switching strategy are the best, both of
them achieving 82.3%. GM performs next best at 77.8%, followed
by SIB at 75.6% and NNRLLFM at 65.6%.

Supplementary Figure S8 shows the differences in accuracy by
active and random learning for each model (the results assessed by
class-weighted and unweighted F1 score can be found in
Supplementary Figs S9 and S10, respectively). Clearly, the IBC ac-
tive model show better performance throughout sampling. The ac-
tive GM model performs worse than the random GM model but the
accuracy increases rapidly after 40% of E has been measured.

As discussed above, every e 2 E has four replicates; we refer to a
unique e and its replicates as a quad. Thus, there are a total of 47 �
46 quads in E. The learning rate in this setting should clearly depend
on how well the learning avoids sampling multiple times in each
quad (Naik et al., 2016). That is, a good learner should be able to
find out which experiments are replicated with a minimum number
of trials; ideally, it would sample every unique unobserved e once.
Supplementary Figure S11 shows the discovery rate of quads. The
IBC model discovers all unique experiments using only 46 rounds
which is the least among all model designs. Moreover, IBC measures
most of quads only once at the early stage of the whole learning pro-
cess unlike other model designs. This reveals the basis for the super-
ior performance of the IBC model: it wastes less effort on measuring
replicate experiments.

4 Conclusion

In this article, we have introduced and characterized an improved
imputation method suitable for learning latent similarities for cat-
egorical matrix completion. It shows superior performance over pre-
vious methods both for matrix completion given a certain amount

of data and when used for active learning. This performance im-
provement was observed on many cases of simulated datasets and
on one real experimental data. However, for one experimental data-
set, an earlier method, based on SOFT IMPUTE, was observed to
perform somewhat better. Therefore, we also have developed and
characterized an adaptive switching active learning approach. The
adaptive switcher is trained to predict which matrix completion
method will perform better given current data, and then switches
method as necessary as the active learning proceeds. The adaptive
switching strategy trades off slightly poorer results compared to
using our new IBC method for most completion problems in order
to avoid weaker results on other problems. Thus, it would be
expected to give the best overall performance for a novel experimen-
tal setting.

As discussed in Section 1, active learning for drug discovery has
been successfully driven either by models that use features to de-
scribe drugs and targets (Kangas et al., 2014; Lang et al., 2016;
Reker et al., 2017) or by models of the categorical type described
here (Naik et al., 2016). We suggest that the feature-driven ap-
proach be used when well-characterized compounds and targets are
being considered, but that the categorical approach may be prefer-
able (at least initially) when exploring novel chemical or target
spaces. The categorical approaches are also expected to be necessary
when considering experimental variables for which appropriate fea-
tures are not available, such as for patients in pharmaco-genomic
studies when a specific set of relevant genes to measure patient simi-
larity is not known in advance. In any case, we expect that improved
active learning algorithms for both scenarios will play an increasing-
ly important role in data-driven drug discovery in the future.
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