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Abstract: Long-term habitation in space leads to physiological alterations such as bone loss, muscle
atrophy, and cardiovascular deconditioning. Two predominant factors—namely space radiation
and microgravity—have a crucial impact on oxidative stress in living organisms. Oxidative stress is
also involved in the aging process, and plays important roles in the development of cardiovascular
diseases including hypertension, left ventricular hypertrophy, and myocardial infarction. Here,
we discuss the effects of space radiation, microgravity, and a combination of these two factors on
oxidative stress. Future research may facilitate safer living in space by reducing the adverse effects
of oxidative stress.
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1. Introduction

Five million years after the birth of humankind, we are living in the space age, with the
International Space Station continuously accommodating crew members orbiting around the Earth,
planning commercial flights to the Moon, and even discussing Mars exploration realistically [1–3].
These frontiers excite humanity. We can pursue it and are destined to do so. However, as the duration
of stay in space extends to months and years, it has gradually become evident that the space
environment affects our physiological functions. A few obvious alterations were identified in the earlier
days of space exploration: bone loss [4–6], muscle atrophy [5–7], and cardiovascular deconditioning,
of which orthostatic intolerance is one of the symptoms [6,8–10]. Analysis of the long-term effects
of spaceflight on human health requires several decades.

The Apollo program was a magnificent project that embodied science technology and exploration,
sending 24 astronauts from the Earth to the lunar orbit. While the program represented a significant
and unshakable milestone in human history, an alarming fact regarding health risks was reported
40 years later; this report indicated that the Apollo lunar astronauts show higher cardiovascular disease
mortality rate [11], caused by heart failure, myocardial infarction, stroke, brain aneurysm, or blood
clots than their counterparts who experienced the space environment only at low Earth orbit (LEO) and
who did not experience space travel [11]. The authors of this report, which include a researcher from
the National Aeronautics and Space Administration (NASA), assumed that the reason for the higher
mortality is space radiation, based on an experiment in mice. Meanwhile, a serious opposing opinion
on this report was expressed in terms of the method of data collection and analysis [12]. Therefore,
adequate care should be taken to consider the cardiovascular disease mortality rate in response to space
radiation. However, it is of great importance to scrutinize the possible effect of the space environment
on human health.
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One of the alterations caused by long-term space stay is the development of pro-oxidative
conditions, including elevated expression of oxidative enzymes (e.g., nicotinamide adenine
dinucleotide phosphate (NADP+) oxidase (NOX)) and decreased expression of anti-oxidative enzymes
(e.g., superoxide dismutase, SOD, and glutathione peroxidase, GPx). Pro-oxidative conditions are
observed in spaceflight and simulated space environments (radiation and microgravity) in various
types of organs and cells, including erythrocytes [13,14], endothelial cells [15], retina [16], skin [17],
brain [18,19], neuronal cells [20], liver [21,22], and skeletal muscles [23,24]. In several studies, the direct
detection of increased reactive oxygen species (ROS) or the detection of substances produced by
oxidative reactions were reported [13,16,18,20,21,23], implying that the production of oxidative
substances increases in the space environment. In this review, we first provide an overview of oxidative
stress; then, we discuss the generation of oxidative stress in response to radiation, microgravity,
and a combination of these two factors.

2. What Are Reactive Oxygen Species (ROS)?

ROS are oxidizing agents produced by both endogenous (mitochondria, peroxisomes,
lipoxygenases, NOX, and cytochrome P450) and exogenous (ultraviolet light, ionizing radiation,
chemotherapeutics, inflammatory cytokines, and environmental toxins) factors [25]. Superoxide anion
(O2

−) [26], hydrogen peroxide (H2O2), and hydroxyl radicals (OH·) are the major types of ROS—each
of which has preferential biological targets based on its chemical properties [27]. ROS have two
different actions. First, with their unstable and highly reactive chemical properties, ROS react
with lipids, proteins, and DNA [27], resulting in aging, disease, and cell death [25,28]. Second,
in contrast to the first destructive action, ROS are involved in cellular homeostatic functions such as
proliferation [29,30] via heat-shock transcription factor 1, nuclear factor-κB, p53, phosphoinositide
3-kinase, and mitogen-activated protein kinase pathways [25]. In contrast to the pro-oxidative process
and enzymes described above, SOD, peroxiredoxin, glutathione reductase, GPx, and catalase (CAT)
are anti-oxidative enzymes that reduce the levels of ROS.

ROS in the Cardiovascular System

As described by Sugamura and Keaney [31], biological processes in the mitochondrial respiratory
chain and subsequent enzymatic processes cause ROS generation in the cardiovascular system.
The enzymes involved in these processes are NOX, xanthine oxidase (XO), lipoxygenase, nitric oxide
synthase (NOS), and myeloperoxidase (Figure 1). Subtypes of NOX proteins are widely expressed in
the cardiovascular system—specifically NOX1 (vascular smooth muscle cells), NOX2 (endothelium,
vascular smooth muscle cells, adventitia, and cardiomyocytes), NOX4 (endothelium, vascular smooth
muscle cells, cardiomyocytes, and cardiac stem cells), and NOX5 (vascular smooth muscle cells) [32].
NOX is involved in the development of cardiovascular diseases such as hypertension, left ventricular
hypertrophy, and myocardial infarction [32]. Besides, NOX is also involved in cardiovascular
physiology including angiogenesis [33] and blood pressure regulation [34].

Endothelial dysfunction is a hallmark of cardiovascular diseases [35]. An increase in oxidative
stress leads to monomerization of the endothelial isoform of NOS (eNOS), which in turn causes
further production of superoxide anion rather than nitric oxide [36]. Insufficiency of the nitric oxide
production contributes to endothelial dysfunction and the resultant cardiovascular disorders, including
hypertension [37].
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Figure 1. Generation of reactive oxygen species. Superoxide anion is produced by xanthine oxidase 
(XO), mitochondria, and NADP+ oxidase (NOX). Superoxide anion is converted to hydrogen peroxide 
(H2O2) by superoxide dismutase 1 (SOD1), and then to H2O and O2 by catalase (CAT) and glutathione 
peroxidase (GPx). 

3. ROS Generation in Response to Radiation 

Exposure to hazardous radiation from galactic cosmic rays and solar particle events such as solar 
flares significantly decreases at the altitude of LEO and below due to shielding by the Earth’s 
atmosphere and magnetosphere [38]. Therefore, the cause of higher cardiovascular risk in the Apollo 
lunar astronauts is inferred to be severe deep space radiation [11]. Indeed, space radiation causes 
adverse effects such as DNA damage [39,40] and cell senescence [41]. The adverse effects of radiation 
are firstly due to direct damage to cellular structures such as DNA, which are exposed to radiation. 
Secondly, radiation decomposes water molecules to ROS such as O2−, OH∙, and H2O2 [42]. Thirdly, 
high-charge and high-energy (HZE) ion particle radiation—which is a component of galactic cosmic 
rays—generates secondary radiation around its initial location [43]. Lastly, ROS may spread to 
nearby cells and cause long-term damage [44]. It is reported that long-term space stay affects neuronal 
function [45–47], possibly due to the effects of space radiation on the nervous system [48,49]. 

Cardiovascular ROS Generation in Response to Radiation 

In the cardiovascular system, radiation causes ischemic heart disease [50], cardiomyopathy, and 
stroke [51,52]. Supporting this fact is the observation that exposure to HZE radiation facilitates the 
activation of XO (Figure 1) and a resultant increase of ROS in vascular endothelial cells in rats [53]. 
Furthermore, XO activity was elevated, and aortic stiffness was higher, even 4 and 6 months after a 
single radiation exposure, respectively. Increased XO expression in response to HZE radiation was 
confirmed in mouse endothelial cells as well [11]. In terms of the long-term effects of HZE radiation, 
elevated ROS and mitochondrial superoxide were observed in intestinal epithelial cells, along with 
increased NOX expression and decreased SOD and CAT expressions, 1 year after exposure [54]. 

4. ROS Generation in Response to Microgravity 

The predominant mechanism of ROS generation in microgravity conditions seems to be the 
upregulation of oxidative enzymes and downregulation of anti-oxidative enzymes. For example, 
simulated microgravity has been reported to induce a decrease in the antioxidant enzymes SOD, GPx, 
and CAT and an increase in the amount of ROS in rat neuronal PC12 cells 96 h after the onset [20]. A 

Figure 1. Generation of reactive oxygen species. Superoxide anion is produced by xanthine
oxidase (XO), mitochondria, and NADP+ oxidase (NOX). Superoxide anion is converted to hydrogen
peroxide (H2O2) by superoxide dismutase 1 (SOD1), and then to H2O and O2 by catalase (CAT) and
glutathione peroxidase (GPx).

3. ROS Generation in Response to Radiation

Exposure to hazardous radiation from galactic cosmic rays and solar particle events such as
solar flares significantly decreases at the altitude of LEO and below due to shielding by the Earth’s
atmosphere and magnetosphere [38]. Therefore, the cause of higher cardiovascular risk in the Apollo
lunar astronauts is inferred to be severe deep space radiation [11]. Indeed, space radiation causes
adverse effects such as DNA damage [39,40] and cell senescence [41]. The adverse effects of radiation
are firstly due to direct damage to cellular structures such as DNA, which are exposed to radiation.
Secondly, radiation decomposes water molecules to ROS such as O2

−, OH·, and H2O2 [42]. Thirdly,
high-charge and high-energy (HZE) ion particle radiation—which is a component of galactic cosmic
rays—generates secondary radiation around its initial location [43]. Lastly, ROS may spread to nearby
cells and cause long-term damage [44]. It is reported that long-term space stay affects neuronal
function [45–47], possibly due to the effects of space radiation on the nervous system [48,49].

Cardiovascular ROS Generation in Response to Radiation

In the cardiovascular system, radiation causes ischemic heart disease [50], cardiomyopathy,
and stroke [51,52]. Supporting this fact is the observation that exposure to HZE radiation facilitates
the activation of XO (Figure 1) and a resultant increase of ROS in vascular endothelial cells in rats [53].
Furthermore, XO activity was elevated, and aortic stiffness was higher, even 4 and 6 months after
a single radiation exposure, respectively. Increased XO expression in response to HZE radiation was
confirmed in mouse endothelial cells as well [11]. In terms of the long-term effects of HZE radiation,
elevated ROS and mitochondrial superoxide were observed in intestinal epithelial cells, along with
increased NOX expression and decreased SOD and CAT expressions, 1 year after exposure [54].

4. ROS Generation in Response to Microgravity

The predominant mechanism of ROS generation in microgravity conditions seems to be
the upregulation of oxidative enzymes and downregulation of anti-oxidative enzymes. For example,
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simulated microgravity has been reported to induce a decrease in the antioxidant enzymes SOD, GPx,
and CAT and an increase in the amount of ROS in rat neuronal PC12 cells 96 h after the onset [20].
A similar increase in ROS production was observed in another neuronal cell line, SH-SY5Y [55].
Decreased expression of the anti-oxidative enzyme CAT in the soleus muscle was reported in mice
habituated in space for 30 days [56]. Wise et al. reported increased ROS and decreased glutathione
levels in response to simulated microgravity using hind limb unloading in the brainstem and frontal
cortex of mice [19]. Lipid peroxidation was observed over a wide range of areas in the brain, including
the brainstem, cerebellum, frontal cortex, hippocampus, and striatum. In erythrocytes, increased lipid
peroxidation was observed after spaceflight [13].

Bed rest in a 6◦-head-down tilt posture is often used to simulate the effect of microgravity using
human subjects. The unloading condition derived from bedrest induces pro-oxidative conditions,
namely decreased expression of the genes related to antioxidation, such as cytochrome c, nicotinamide
nucleotide transhydrogenase, and glutathione S-transferase κ1 [57]. Using a hindlimb unloading (HLU)
rodent model is another experimental method frequently used to simulate the effect of microgravity.
Increased ROS generation along with a decrease in the anti-oxidative protein SOD was observed in rat
hippocampus in response to HLU [58].

Cardiovascular ROS Generation in Response to Microgravity

Another study demonstrated that 3-week HLU caused an increase in superoxide anion levels
in the basilar and carotid arteries of rats via the local renin–angiotensin system [59]. In this study,
upregulated expression of eNOS was observed in the carotid artery. The effect of microgravity
on the cardiovascular system seems to be different depending on the region. Although 4-week
hindlimb unloading led to an increase in superoxide levels along with an elevation in the levels of the
pro-oxidative enzymes NOX2 and NOX4 and a decrease in the levels of the anti-oxidative enzymes
Mn-SOD and GPx-1 in cerebral arteries, this effect was not observed in mesenteric arteries [60,61].
In human umbilical vein endothelial cells, the expression of pro-oxidative thioredoxin-interacting
protein was increased in response to 10-day spaceflight [15].

5. Combination of Radiation and Microgravity

The effect of a combination of radiation and microgravity on ROS generation seems to be
synergistic. Mao et al. studied the effect of low-dose radiation (LDR) and microgravity on oxidative
damage in mouse brain, using HLU to simulate microgravity [18]. Surprisingly, exposure to
a combination of LDR and HLU—but not LDR or HLU alone—for 7 days caused lipid oxidation
in the brain cortex. After 9 months of exposure, lipid peroxidation was observed in the LDR and
HLU conditions alone, but was more evident in the LDR + HLU condition. A stronger effect from
the combination than from LDR alone was similarly observed in the hippocampus. Therefore, radiation
and microgravity have been suggested to have a synergistic effect on lipid oxidation. A synergistic
effect was implied in NOX2 expression as well. In contrast, Mao et al. showed reduced SOD activity in
simulated microgravity [18]. This effect seems to be specific to the microgravity condition.

ROS production in mouse embryonic stem cells in the presence of H2O2 that mimics the effect
of radiation exposure increased in response to simulated microgravity [62]. The production of ROS
from any of the ROS sources (e.g., mitochondria, XO, endothelial NOS, and NOX) can facilitate ROS
production from the other sources [63]. This may be the underlying mechanism behind the synergistic
effect of radiation and microgravity on the ROS production described above.

6. Conclusions

The space environment is predominantly characterized by space radiation and microgravity.
These two factors are prominently involved in ROS generation in biological systems. As we discussed
here, ROS production is facilitated in specific organs and tissues, including neuronal and cardiovascular
systems. However, Stein et al. reported that oxidative stress decreases during spaceflight



Int. J. Mol. Sci. 2017, 18, 1426 5 of 9

and then increases after returning to Earth, based on the measurement of a biomarker of lipid
oxidation—8-iso-prostaglandin F2α—in urine [64,65]. The discrepancy between organ/tissue/cellular
level increase and individual level decrease of oxidative stress during space flight may be attributable
to several factors. Firstly, food intake decreases [66,67] and anabolic response is impaired [68]
in spaceflight, which may decrease the production of ROS in mitochondria. Secondly, the extent
of oxidative stress can be different among tissue types. While several tissues described above show
pro-oxidative conditions, some tissue types such as fibroblasts [13] and macrophages [69] show
anti-oxidative conditions. Thirdly, the detection sensitivity for oxidative stress from samples such
as blood or urine can vary depending on the method. A combination of biomarkers is suggested to
provide a more accurate assessment of oxidative stress [70].

In this review, we mainly discussed the alteration of the expression level of ROS-related
proteins. However, response to gravity is a mechanobiological process. While the role of the hippo
pathway—which is involved in mechanosensitive control of organ size [71]—in gravity sensing
has been reported [72,73], much remains to be elucidated to understand the mechanotransduction
of gravity.

Men age faster in space. Physiological changes in microgravity and the aging process share
common features, such as muscle and bone atrophy, balance and coordination problems (after returning
to 1 g environment), decreased functional capacity of the cardiovascular system, mild hypothyroidism,
increased stress hormones, decreased sex steroids, impaired anabolic response to food intake,
and systemic inflammatory response [68,74]. According to NASA researchers Vernikos and Schneider,
the processes of muscle and bone atrophy and loss of functional capacity of the cardiovascular system
occur about ten times faster in space than on Earth [74]. In contrast, oxidative stress—which we
discussed here in the context of a process derived from space radiation and microgravity—is thought
to be crucial for the aging process [75]. Understanding oxidative stress in the space environment may
help us understand the aging process and contribute to solving the problem of aging. Future research
in this field will open the door to a safe passage to Mars and beyond.
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