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Abstract

The sulfonylurea 1 transient receptor potential melastatin 4 (Sur1-Trpm4) receptor is selec-

tively expressed after intracerebral hemorrhage (ICH). This upregulation contributes to

increases in intracellular sodium. Water follows sodium through aquaporin channels, lead-

ing to cytotoxic edema. Even after edema is thought to have resolved, ionic dyshomeostasis

persists, as does blood-brain barrier (BBB) damage. Glibenclamide, a hypoglycemic agent

that inhibits Sur1-Trpm4, has been shown to reduce BBB damage and edema following infu-

sion of autologous blood into the brain (ICH) as well as after other brain injuries. In order to

further assess efficacy, we used the collagenase ICH model in rats to test whether glibencla-

mide reduces edema, attenuates ion dyshomeostasis, improves BBB damage, and reduces

lesion volume. We tested a widely-used glibenclamide dose shown effective in other studies

(10 μg/kg loading dose followed by 200 ng/hr for up to 7 days). Early initiation of glibencla-

mide did not significantly impact edema (72 hours), BBB permeability (72 hours), or lesion

volume after ICH (28 days). Recovery from neurological impairments was also not improved

by glibenclamide. These results suggest that glibenclamide will not improve outcome in

ICH. However, the treatment appeared to be safe as there was no effect on bleeding or

other physiological variables.

Introduction

Intracerebral hemorrhage (ICH) is a devastating stroke with a 40% mortality rate [1]. In the

hours after an ICH, ionic homeostasis becomes disrupted, and this dyshomeostasis can persist

for weeks [2–4]. Sodium (Na) and chloride (Cl) concentration increase whereas potassium (K)

concentration declines. These ionic perturbations are greatest near the hematoma, but extend

well into the perihematoma zone [4]. Perhaps because of this, and other factors, there is con-

siderable cellular injury (e.g., loss of dendrites [5]) and death in the perihematoma region [6].

Likely these ionic perturbations also directly impair neural function, and could lead to sei-

zures, commonly seen in preclinical work and in patients [7,8]. Further indirect support

comes from our research that shows that rehabilitation normalizes Cl levels in the peri-
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hematoma zone after experimental ICH [3], which might underlie how rehabilitation

improves behavioral recovery. These data also suggest that pharmacological therapies to

restore ion homeostasis may improve outcome after ICH.

Sulfonylurea receptor 1 (Sur 1) is constitutively expressed, but the transient receptor poten-

tial melastatin 4 (Trpm4) is not normally present in brain tissue. Sur 1 and Trpm4 are both

upregulated and co-expressed as the heteromeric Sur1-Trpm4 channel after brain injury, such

as ICH, ischemic stroke, and traumatic brain injury [9,10]. These channels allow for Na entry

into cells, thereby contributing to cytotoxic edema [11] and likely persistent ionic dyshomeos-

tasis. Glibenclamide, a Sur1 receptor antagonist, is being explored as a treatment to reduce

edema after brain injuries, such as ischemic stroke, traumatic brain injury, and subarachnoid

hemorrhage [12–15]. Higher doses of glibenclamide are used as a hypoglycemic agent to treat

diabetes, as glibenclamide inhibits Sur1 receptors on pancreatic β cells, stimulating insulin

release [13]. In ICH, lower doses of glibenclamide are a promising therapeutic due to the role

Sur1-Trpm4 channels may play in edema formation and ion dyshomeostasis.

Two studies have explored whether glibenclamide improves outcome in a preclinical ICH

model. Jiang et al. used the autologous whole blood model of ICH in Sprague Dawley rats, and

found glibenclamide reduced edema, protected blood-brain barrier (BBB) integrity, and

improved long-term neurological deficits [16]. Another study, using the collagenase model of

ICH in rats, reported that glibenclamide reduced oxidative stress, inhibited apoptosis, and

improved neurological deficits [17]. Neither of these studies measured ion concentrations nor

did they assess lesion size. As lesion volume is a key predictor in patient and rodent outcomes,

it makes sense to determine the impact of potential therapies on total lesion size [18,19], which

is the definitive method to measure neuroprotection. Glibenclamide after ICH has been inves-

tigated clinically as well. Ghasami et al. compared the use of glibenclamide and insulin when

given to diabetic hemorrhagic stroke patients [20]. The glibenclamide group had no benefit as

compared to the insulin group. However, we note that this was a small, non-randomized, non-

placebo-controlled trial, and further clinical work in hemorrhage would be needed.

In our study, we rigorously tested the effectiveness of glibenclamide after ICH in rats. We

produced ICH using an intra-striatal injection of collagenase. As we were investigating the

ability of glibenclamide to reduce edema and improve BBB integrity, we used the collagenase

model that causes more extensive edema and BBB damage than the autologous whole blood

model [21]. Arguably, the collagenase model may better represent the amount of edema and

BBB injury seen in many ICH patients [4,21–23]. Further, ion dyshomeostasis persists for at

least 14 days in the collagenase model [3], likely far longer than what occurs in the standard

autologous whole blood model of ICH [2]. The effect of glibenclamide on edema, BBB integ-

rity, and ion homeostasis have only been assessed using the autologous whole blood model of

ICH. The use of multiple models is a recommended step in pre-clinical translational research

[21,24,25], as ICH patients have heterogeneous injuries that are not reproduced by any one

model. First, we assessed the safety of glibenclamide by measuring its effects on bleeding,

blood glucose, core temperature, and activity. Glibenclamide affects vasodilation and could

potentially impact bleeding after ICH [26]. These cardiovascular actions further support inves-

tigation using the collagenase model, which directly causes bleeding. Additionally, the effect of

glibenclamide on core temperature has not been assessed, although it is needed, as core tem-

perature can confound preclinical research and affect outcome in diverse ways [25,27]. Next,

we determined the acute effects of glibenclamide on edema, BBB integrity, ion concentrations,

neurological deficits, and blood glucose to directly assess the intended effects of blocking

Sur1-Trpm4. Finally, we evaluated the long-term effects of glibenclamide on skilled reaching,

walking ability, blood glucose, and lesion volume.

Glibenclamide after intracerebral hemorrhage
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Materials and methods

Subjects

Procedures were in accordance with the Canadian Council on Animal Care Guidelines and

were approved by the Biosciences Animal Care and Use Committee at the University of

Alberta. All surgical procedures were performed under isoflurane anesthesia, and bupivacaine

hydrochloride was used as an analgesic to minimize suffering.

We used 80 male Sprague Dawley rats (275–450 g, ~2–4 months old) from Charles River

(Saint Constant, Quebec). Purina rodent chow and water were provided ad libitum, except

when behavioural testing required food deprivation. Animals were single-housed, except dur-

ing experiment 3, where they were housed in groups of 4, in a temperature- and humidity-con-

trolled room with a 12-hour light cycle. All procedures were done in the light phase.

Experimental design

In all experiments, animals were randomly assigned to groups and data was collected and ana-

lysed while blinded to group assignment. A complete experimental plan, including power cal-

culations and statistical analyses were made prior to the start of the experiment and is available

at https://www.ualberta.ca/science/about-us/contact-us/faculty-directory/fred-colbourne. A
priori power analyses were based on expected effect size and variability of the primary

endpoint.

In experiment 1, we assessed the impact of glibenclamide on bleeding, blood glucose, core

temperature, and activity at 24 hours post-ICH to determine the safety of glibenclamide with

the collagenase ICH model. Rats were randomized to either glibenclamide (n = 6) or vehicle

(n = 6), which was estimated to give 80% power to detect a 40% change in hematoma volume.

Note that this experiment was stopped after a blinded and planned interim analysis (at a N of 6

per group, set at α = 0.1) showed no change in hematoma volume.

In experiment 2, we determined the effect of glibenclamide on edema, BBB permeability,

ion concentrations, blood glucose, and neurological deficits at 3 days post-ICH. With 16 ani-

mals per group (glibenclamide vs. vehicle), we anticipated having 80% power to detect a 1%

increase or decrease in edema. This effect size was based on Jiang et al, who saw a 1.04%

decrease in edema after treatment with glibenclamide [16].

In experiment 3, we assessed whether glibenclamide provided long-term efficacy by assess-

ing skilled reaching, walking ability, and lesion volume at 28 days post-ICH. Animals were

randomized to either glibenclamide (n = 18) or vehicle (n = 18), which was expected to give

80% power to detect a 30% increase or decrease in lesion volume. This effect size is detectable

[19], and should be biologically meaningful.

Telemetry Probe Implantation (Exp. 1)

Animals were anesthetized with isoflurane (4% induction, 2–2.5% maintenance, 60% N2O,

and remainder O2) [28–30]. A sterile probe was inserted into the abdomen (Model TA10TA-

F40, Data Sciences International, St. Paul, MN, accurate to ±0.1˚C). Meloxicam (0.2 mg/kg

SC) and bupivacaine hydrochloride (0.5 mg/kg SC) were administered for analgesia. Baseline

data was recorded for 24 hours prior to ICH induction. Core temperature and activity were

recorded every 30 seconds and averaged every hour. Post-ICH core temperature and activity

readings were corrected hourly to baseline values in order to control for circadian rhythm

effects. According to our typical analysis methods, extreme data points (e.g., above 42˚C),

which occasionally occur due to signal noise, were excluded.

Glibenclamide after intracerebral hemorrhage
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Blood glucose measurement

Blood glucose was measured using a glucometer (Contour Next One, Ascensia Diabetes Care,

Mississauga, ON) in free feeding rats [29]. Immediately following induction of isoflurane anes-

thesia, the tail was pricked with a needle to obtain a small drop of capillary blood for analysis.

Intracerebral hemorrhage

Rats were anesthetized (isoflurane) and rectal temperature was maintained at 37˚C using a rec-

tal thermometer probe and a heating pad. Bacterial collagenase (Type IV-S, Sigma, 1.0 μL of

0.6 U/μL in saline) was infused into the striatum at 0.5 mm anterior, 3.5 mm lateral, and 6.5

mm down from Bregma over 5 minutes [28,31,32]. The needle was left in place over 5 minutes

to prevent backflow. A screw was used to close the needle hole and the incision was stapled

shut. Bupivacaine hydrochloride was applied subcutaneously for analgesia. Collagenase was

injected into the left striatum, except in experiment 3, where collagenase was injected into the

side contralateral to the preferred paw, as assessed by the skilled reaching task baseline. Ani-

mals were randomly assigned following the ICH procedure.

Glibenclamide administration

Glibenclamide (Abcam, Product # ab120267, Toronto, ON) was prepared using dimethylsuf-

oxide, sodium hydroxide, and saline as described [12]. Glibenclamide was infused subcutane-

ously starting at 2 hours post-ICH using a mini-osmotic pump (Alzet osmotic pumps, 2001,

1.0 μl/h) to give a dose of 200ng/hour. This was the same dose used in previous work in hem-

orrhage and ischemia [12,16,33]. Mini-osmotic pumps were primed overnight before implant.

At the time of pump insertion, a loading dose of 10 μg/kg was given intraperitoneally. Drug

delivery was verified by measuring amount of solution remaining after pump removal.

Hemoglobin assay (Exp. 1)

A spectroscopic hemoglobin assay was used to determine the amount of hemoglobin in each

hemisphere based upon a standard curve [21]. Hematoma volume, our primary endpoint in

experiment 1, was calculated as: ipsilateral blood volume minus contralateral blood volume,

which accounts for blood in the vasculature not attributed to the hematoma.

Behavioural assessment

The Montoya staircase task was used to measure skilled reaching ability and was the primary

behavioural endpoint [19]. During training and testing, animals were maintained at 90% of

their free feeding weight to encourage reaching. Rats were trained twice daily, 5 days per week

for 4 weeks prior to ICH. The average number of pellets retrieved by the dominant paw over

the last 3 training days was used as the baseline score. Animals were excluded if they failed to

retrieve at least 9 out of 21 pellets (45 mg reward pellets, Bio-Serv Flemington, NJ). Excluded

animals still underwent behavioural testing and were otherwise included in the experiment.

Testing took place on days 8–10 and 25–27 post-ICH.

Walking ability was assessed using the horizontal-ladder walking test [19]. Rats were video-

taped while crossing a horizontal ladder with variable spaced rungs (3–5 cm apart). On each

testing day, 2 crosses were recorded. The number of slips for each limb was recorded and aver-

aged across the trials. Animals were assessed at baseline (pre-ICH), and days 7 and 28 post-

ICH. Rats were excluded from only the ladder test if they failed to cross the apparatus twice in

the baseline testing session.

Glibenclamide after intracerebral hemorrhage
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Neurological deficits were assessed using the Neurological Deficit Scale (NDS), which is

comprised of beam walking, spontaneous circling, forelimb flexion, bilateral forelimb grasp-

ing, and contralateral hind limb retraction [19]. Scores ranged from 0–14, with 0 indicating no

impairments.

Brain water and ion determination (Exp. 2)

Rats were briefly anesthetized (isoflurane) and received an injection of Magnevist (gadopente-

tate dimeglumine; 2.5 mL/kg; Bayer, Mississauga, ON) into the tail vein [4]. Gadolinium (Gd)

does not normally cross an intact BBB, and thus high Gd content in the brain is an indicator of

BBB permeability [34]. Magnevist has a short half-life, so rats were decapitated 10 minutes

after injection. Brains were rapidly removed and assessed for water and element content.

Brain water content was measured using the wet weight-dry weight method, our primary

endpoint in experiment 2 [35]. Here, we define edema as increased water content, and note

that this can include serum extrusion as well as edema. Brains were blocked from 2 mm ante-

rior to 4 mm posterior to the collagenase needle tract, and tissue was separated into striatal

and cortical tissue for each hemisphere. The cerebellum was taken as a control. The tissue wet

weight was measured, and the dry weight was determined after tissue samples were baked at

100˚C for 24 hours.

After measurement of brain water content, the dried tissue was digested in high purity

nitric acid (Sigma-Aldrich) for 1 week, as done previously [4,28]. Na, K, iron (Fe), and Gd

were measured using inductively coupled plasma mass spectrometry (ICP-MS; Thermo Scien-

tific ICAP-Q quadrupole ICP-MS, Canadian Centre for Isotopic Microanalysis, University of

Alberta). Fe was used as a rough indicator of hematoma volume. Other elements measured but

not presented include magnesium, phosphorus, calcium, manganese, copper, zinc, and sele-

nium (data available in S1 Dataset).

Histology (Exp. 3)

On day 28 post-ICH, animals were injected with 100 mg/kg IP of Na pentobarbital and per-

fused with 0.9% saline followed by 10% neutral-buffered formalin. Brains were cryoprotected

with 20% sucrose prior to cryostat sectioning. Coronal sections were 40-μm thick and taken

every 200 μm from before, through, and beyond the lesion. Tissue was stained with cresyl vio-

let and lesion volume was analyzed, as previously done [19]. The volume of a hemisphere was

calculated as: (average area of complete coronal section of hemisphere-area of damage-area of

ventricle) x interval between sections x number of sections). The volume of tissue lost, which

includes observable tissue loss, atrophy and ventriculomegaly, was calculated as the contralat-

eral hemisphere minus the ipsilateral hemisphere volume. Total tissue loss was the primary

endpoint of experiment 3, and a priori, what we considered to be our most important endpoint

overall.

Statistical analysis

Data were analyzed using GraphPad Prism (v. 6.0, GraphPad Software Inc., La Jolla, CA) or

RStudio (v. 1.1.456, RStudio, Boston, MA). All data are presented as mean ± 95% confidence

interval, except non-parametric data, which are expressed as median ± interquartile range.

Two group comparisons were made using a t-test, except NDS, which was compared with a

Mann-Whitney U-test. Repeated measures data was assessed using a 2-way ANOVA with

Sidak’s multiple comparisons test. Level of statistical significance was set at α = 0.05.
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Results

Mortality and exclusions

In experiment 1, 1 rat died due to surgical complications during the telemetry probe implanta-

tion, prior to group assignment. In experiment 2, 1 animal in the glibenclamide group and 3

animals in the vehicle group were excluded from Gd analysis due to technical problems with

the Gd injection. These animals were excluded at the time of the procedure, prior to data anal-

ysis. In experiment 3, 1 animal from the vehicle group was excluded from skilled reaching

analysis due to failure to meet baseline criteria. One glucose reading in the vehicle group was

excluded due to failure to obtain sufficient blood sample. Five individual ladder videos were

excluded from analysis due to experimenter error.

Experiment 1

Temperature and activity. Core temperature varied over time after ICH, with core tem-

peratures above baseline until approximately 12 hours post-ICH, indicating mild post-stroke

hyperthermia (Fig 1A, P< 0.001, time main effect, partial η2 = 0.901, large effect). Core tem-

perature was not significantly impacted by glibenclamide (Fig 1A, P = 0.187, group main effect;

P = 0.323, interaction effect). The ICH reduced spontaneous activity, (Fig 1B, P = 0.001, time

main effect, partial η2 = 0.683, large effect), but glibenclamide did not impact activity levels

(Fig 1B, P = 0.876, group main effect, P = 0.240, interaction effect).

Hematoma volume. Glibenclamide did not significantly alter hematoma volume mea-

sured 24 hours post-ICH (Fig 1C, P = 0.991).

Blood glucose. Blood glucose values dropped at 24 hours after ICH (Fig 1D, P = 0.040,

time main effect, partial η2 = 0.795, large effect). This was likely due to rats eating less. Gliben-

clamide did not significantly impact blood glucose (Fig 1D, P = 0.763, group main effect;

P = 0.475, interaction effect).

Experiment 2

Brain water content. Water content was increased in the ipsilateral striatum after ICH

(Fig 2A, P< 0.001, region main effect; Cohen’s d = 2.68). Glibenclamide did not affect the

amount of water in the brain (Fig 2A, P = 0.629, group main effect; P = 0.897, interaction

effect). There was no effect of ICH or glibenclamide on water content in the contralateral

hemisphere (see S1 Dataset).

NDS. The ICH led to significant neurological deficits (Fig 2B, P< 0.001, Cohen’s

d = 2.31, large effect), which were unaffected by glibenclamide (Fig 2B, P = 0.743).

Blood glucose. There was no effect of glibenclamide or time on blood glucose concentra-

tion (Fig 2C, P = 0.506, time main effect; P = 0.531, group main effect; P = 0.823).

Ion concentrations. The integrity of the BBB was measured using tissue Gd content

(ICP-MS). While ICH increased Gd levels significantly (Fig 3C, P< 0.001, Cohen’s d = 0.50,

medium effect), glibenclamide did not significantly affect Gd concentration (Fig 3C,

P = 0.288). Glibenclamide did impact the distribution of Gd concentrations in the ipsilateral

striatum (P = 0.031, Shapiro-Wilk normality test), as data in the glibenclamide group was posi-

tively skewed (skewness = 1.47), indicating fewer values with higher levels of Gd. Thus, we also

analyzed the Gd data using a non-parametric test which also indicated glibenclamide did not

affect BBB permeability (P = 0.777). After ICH, Na concentration was significantly increased

(Fig 3A P< 0.001, Cohen’s d = 1.94, large effect), but not significantly altered by glibenclamide

(Fig 3A, P = 0.798). K was lowered after ICH (Fig 3B, P< 0.001, Cohen’s d = 2.11, large effect),

but glibenclamide did not attenuate this decrease (Fig 3B, P = 0.979). ICH increased Fe
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Fig 1. Experiment 1. Glibenclamide did not significantly impact (A) core temperature (P = 0.187, group main effect) or (B) activity

(P = 0.876, group main effect) after ICH (n = 6 in glibenclamide group, n = 5 in control group). Core temperature (˚C) and activity (AU,

arbitrary units–detections of animal movement over a receiver [36]) data were taken using implanted telemetry devices. Core temperature

and activity averages for each hour were corrected for the same hour of baseline data to account for time of day effects (e.g., circadian

rhythms). Rectal temperature was regulated during surgical procedures; the core temperature drop within the first few hours was due to

rapid but mild cooling after post-surgical anaesthesia. (C) Bleeding (P = 0.991) and (D) blood glucose (P = 0.763, group main effect) were

both unaffected by glibenclamide. Sample sizes were n = 6 in glibenclamide group, n = 5 in control group.

https://doi.org/10.1371/journal.pone.0215952.g001
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Fig 2. Experiment 2. Glibenclamide did not reduce (A) brain water content (P = 0.629, group main effect) or (B)

neurological deficits (P = 0.743). (C) Blood glucose was not impacted by glibenclamide (P = 0.531, group main effect).

Sample size was n = 16/group.

https://doi.org/10.1371/journal.pone.0215952.g002
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concentration in the ipsilateral hemisphere (Fig 3D, P = 0.025, region main effect). Glibencla-

mide did not significantly change Fe concentration (Fig 3D, P = 0.317, group main effect;

P = 0.735, interaction effect), which indicates that the hematoma size and resolution did not

differ between groups.

Ion concentrations (Na, K, and Gd) and edema levels were closely related. Increased Na

was associated with increased edema (Fig 4A, R2 = 0.47, P< 0.001), and decreased K was asso-

ciated with increased edema (Fig 4B, R2 = 0.60, P< 0.001). Similarly, a larger increase in Na

predicted a greater amount of BBB permeability (Fig 4C, R2 = 0.37, P = 0.001), as did a larger

decrease in K (Fig 4D, R2 = 0.23, P = 0.009). A greater extent of BBB permeability, as assessed

with Gd, predicted increases in edema (Fig 4E, R2 = 0.22, P = 0.012).

Experiment 3

Lesion volume. Collagenase infusion caused significant damage to the striatum and ven-

triculomegaly (Fig 5B). Glibenclamide increased tissue lost by 23% at 28 days post-ICH, but

this was not statistically significant. (Fig 5A, P = 0.089, Cohen’s d = 0.56).

Fig 3. Experiment 2-Ion Concentrations. (A) Na (P = 0.798) and (B) K (P = 0.979) concentrations were not affected by glibenclamide, despite being increased

in the hemisphere ipsilateral to the ICH. Treatment with glibenclamide did not impact (C) BBB permeability, as assessed with Gd (P = 0.288), or amount of Fe

in the striatum (P = 0.317, group main effect). Sample size was n = 16/group.

https://doi.org/10.1371/journal.pone.0215952.g003
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Behaviour. As expected, ICH caused reaching impairments in the staircase test. (Fig 5C,

P< 0.001, time main effect, partial η2 = 0.994, large effect). Glibenclamide did not attenuate

the impairments in reaching ability (Fig 5C, P = 0.927, group main effect; P = 0.798, interac-

tion effect). Similarly, ICH caused significant impairments in walking ability in both forelimbs

and the impaired hindlimb (Fig 6, all P<0.020, all partial η2 between 0.850 and 0.881, large

Fig 4. Experiment 2-Correlations. (A) Increased Na (R2 = 0.47, P< 0.001), and (B) decreased K (R2 = 0.60, P< 0.001) was associated with

increased ipsilateral striatum edema. (C) More Na (R2 = 0.37, P = 0.001) and (D) less K (R2 = 0.23, P = 0.009) was related to greater amount of

Gd extravasation. (E) More Gd extravasation was positively associated with edema (R2 = 0.22, P = 0.012).

https://doi.org/10.1371/journal.pone.0215952.g004
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effect). After ICH, the unimpaired hindlimb was not significantly affected (P = 0.638, partial η2

= 0.472). There was no effect of glibenclamide on walking ability with any limb (Fig 6, all

P>0.110). Unimpaired limb data is not shown but is available in S1 Dataset.

Blood glucose. Glucose levels dropped post-ICH (Fig 5D, P = 0.035, time main effect, par-

tial η2 = 0.829, large effect), and glibenclamide had no effect (Fig 5D, P = 0.419, group main

effect; P = 0.086, interaction effect).

Discussion

Glibenclamide, a Sur1-Trpm4 inhibitor and hypoglycemic agent, has shown promising results

in ischemic and hemorrhagic stroke, including reducing edema, mortality, and functional defi-

cits [12,14,16,17]. In contrast to those findings, glibenclamide did not reduce BBB permeabil-

ity, element concentration alterations, edema, behavioral impairment or brain injury after

collagenase-induced ICH in our experiments. The failure to affect BBB injury, ion alterations

and edema suggests that glibenclamide will not mitigate brain swelling or intracranial pressure

rises after ICH in patients. Furthermore, the lack of benefit against functional impairments

and brain injury after ICH does not support the clinical use of glibenclamide as a neuroprotec-

tant after ICH. Fortunately, physiological measures, including core temperature, activity, and

blood glucose were not affected by glibenclamide. As well, hematoma volume was not affected.

Fig 5. Experiment 3. Glibenclamide did not affect (A) tissue lost at a 28-day survival (P = 0.089). (B) Representative lesion volume image (vehicle group)

demonstrating area of dead tissue (dashed line) and ventriculomegaly (larger ventricle). (C) reaching ability (P = 0.927, group main effect) and (D) blood

glucose (P = 0.419, group main effect) we not impacted by glibenclamide. Sample size was n = 18/group.

https://doi.org/10.1371/journal.pone.0215952.g005
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Fig 6. Experiment 3-Ladder. After ICH, walking ability was impaired (all P<0.020). Glibenclamide did not impact walking ability in (A) the contralateral

forelimb or (B) the contralateral hindlimb (all P>0.11). Sample size was n = 18/group. Data from uninjured limbs available in S1 Dataset.

https://doi.org/10.1371/journal.pone.0215952.g006
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Many preclinical glibenclamide studies, which support clinical investigation, have focused

on reductions in edema [10,13,37,38]. Similarly, a previous study in ICH found that the same

dose of glibenclamide used here significantly reduced brain water content [16], while we

report no change in water content. This discrepancy is hard to reconcile because Zhou et al.

used the autologous whole blood model, where most of the increase in brain water content

arises from serum extrusion and not true edema [21]. Conversely, the collagenase model

causes considerably more extensive BBB damage and edema [21], which one would think

would be more amenable to glibenclamide. Perhaps the extent of injury after even moderate

collagenase ICH is still too devastating, and despite blocking an important transporter, ions

and water can still move freely through the damaged BBB. The autologous whole blood model

has considerably less BBB damage [21], and thus simply blocking the Sur1-Trpm4 transporter

may be an effective strategy in this environment. The magnitude of injury and edema observed

in our study was modest, and caused no mortality. In a model of traumatic brain injury, which

is also characterized by extensive BBB damage [39], it was also shown that a similar dose of

glibenclamide did not attenuate increases in edema [40]. Therefore, the failure of glibencla-

mide was likely not because the ICH was exceptionally severe, but more so that the nature of

damage in collagenase ICH is too disruptive or complex.

While our findings suggest that glibenclamide is safe to use, further testing should be con-

ducted. Glibenclamide is currently being clinically investigated for use after large hemispheric

infarction, an injury associated with hemorrhagic transformation [41]. Given the likelihood of

hemorrhagic transformation in this population, the safety of glibenclamide after hemorrhage

must be considered. Our data suggests no increase in bleeding, edema, or BBB damage. How-

ever, we saw a non-significant increase in lesion volume (Cohen’s d = 0.56, moderate effect

size) in the glibenclamide group. This suggests that glibenclamide may worsen injury after

hemorrhage, but we note that we are underpowered to detect an effect of this size. Unfortu-

nately, other ICH studies did not examine lesion size, so we do not know if this effect occurred

in those experiments [16,17]. No other study of glibenclamide in ICH has quantified lesion

volume or total tissue loss (including cell death, cavity formation, and ventriculomegaly),

which is an accepted and unambiguous measure of neuroprotection [25].

With our novel approach, we were able to measure edema, BBB permeability, and ion con-

centrations in the same tissue. ICP-MS enables precise determination of element concentra-

tions, including Gd, Na, K, Fe, and others, excluding chloride. This measure of BBB

permeability has translational relevance, as Magnevist is used in clinical imaging [34]. Further,

assessing Gd extravasation in dried tissue assesses the amount of BBB permeability while

excluding edema confounds, which would affect element concentrations on a per gram of wet

weight basis [42]. Other common BBB permeability assays, such as Evans Blue, are unable to

control for edema, and have been heavily criticized [43–45]. We are the first to directly assess

the relationship between Na, K, edema, and BBB permeability in an experimental ICH model.

The extent of Na increases and K decreases are closely related to increased edema, as reported

by others [46,47]. Additionally, the amount BBB permeability correlates with both Na and K

dyshomeostasis as well as edema. This data provides further support that edema, BBB perme-

ability, and ionic dyshomeostasis have closely related mechanisms of damage after ICH

[4,11,48], but the sometimes weak correlations suggest that other key mechanisms are

involved. Interestingly, data using x-ray fluorescence imaging, a method used to precisely and

spatially image elements in tissue, shows that BBB permeability and ionic dyshomeostasis are

not spatially correlated [4].

The current study has limitations. We only assessed one dose of glibenclamide, and perhaps

other doses may have conferred benefit. However, the dose we used is most commonly used

after brain injury [12,16,33,49], as it selectively inhibits Sur1-Trpm4 and does not impact
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blood glucose levels. Additionally, the mini-osmotic pumps maintain a steady plasma concen-

tration of glibenclamide, reducing risk of fluctuations in blood glucose. Further, we did not

assess brain levels of glibenclamide to ensure the drug was biologically available in brain tissue.

However, effects in the brain (e.g., lowering brain water content) with the same dose in other

studies certainly suggests that this dose is bioavailable in the brain after injury [12,16,17,33].

We did not directly assess expression of Sur1 or Trpm4 in the collagenase model of ICH. How-

ever, Sur1-Trpm4 expression is reproducibly increased after ICH in rats, clinical ICH, and

other preclinical models of injury such as ischemia and subarachnoid hemorrhage

[9,10,13,16,37,38]. Glibenclamide may only work in large insults, and data in ischemia suggests

glibenclamide can lower mortality by reducing life-threatening edema [14]. Our study had no

mortality, and thus we may be unable to detect such benefits in ICH. However, we did see

large (~4%), non-life-threatening increases in edema that glibenclamide did not reduce. We

acknowledge that glibenclamide may reduce mortality in cases where edema is increased to a

greater extent. Similarly, glibenclamide may improve outcome when using different models,

such as comorbidities (e.g., diabetes, hypertension), aged animals, or female animals, which we

did not test. While our studies were designed to have adequate power to detect biologically

meaningful effects, it is possible as in all negative studies, that smaller effects went undetected.

We have taken steps to reduce bias and improve translation quality in this study. A priori
experimental design with power calculations [50], statistical plan, and exclusion criteria reduce

the potential for unconscious bias to interfere with the course of the study. Post hoc changes to

experimental design or statistical analysis increase the rate of type I errors in a given study

[51–53]. In this study, there were no post hoc changes made. Translational quality is another

strength of this study. We used blinding, randomization, multiple endpoints, short- and long-

term assessment, multiple measures of functional outcome, and a direct, unambiguous mea-

sure of neuroprotection [24].

In conclusion, this study demonstrates that glibenclamide is not beneficial after ICH. Glib-

enclamide failed to attenuate injury and improve outcome in every endpoint measured,

including both the acute and chronic phases after ICH. Despite benefits seen in other pre-clini-

cal ICH studies, we did not find any reduction in edema, BBB permeability, bleeding, or lesion

volume after treatment with glibenclamide.
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