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Abstract: Synthetic chemicals are widely used in food, agriculture, and medicine, making chemical
safety assessments necessary for environmental exposure. In addition, the rapid determination of
chemical drug efficacy and safety is a key step in therapeutic discoveries. Cell-based screening
methods are non-invasive as compared with animal studies. Cellular phenotypic changes can also
provide more sensitive indicators of chemical effects than conventional cell viability. Array-based
cell sensors can be engineered to maximize sensitivity to changes in cell phenotypes, lowering the
threshold for detecting cellular responses under external stimuli. Overall, array-based sensing can
provide a robust strategy for both cell-based chemical risk assessments and therapeutics discovery.

Keywords: cellular phenotypic response; array-based sensor; multichannel; chemical risk assessment;
therapeutics discovery

1. Introduction

Synthetic chemicals are used in almost every aspect of daily life, making it critical to
know their acute and long-term health effects [1–3]. Additionally, new synthetic chemicals
are being developed regularly by the pharmaceutical [4], agricultural [5], cosmetics, [6] and
other related industries. Each of these new chemicals needs to be evaluated for toxicity.
Similarly, the ability to assess the efficacy and off-target effects of drugs is essential to their
use [7,8].

Cell-based screening assays are important tools in drug discovery and risk assessments,
providing a less expensive alternative to animal models [9]. Additionally, the use of cell
models provides the ethical benefit of minimizing animal use and suffering [10]. The most
common cell-based approach for chemical safety assessments is cell viability [11]. These
approaches are effective for predicting cell death or major cellular dysfunctions arising
from acute chemical exposure [12]. Long-term exposure to low doses of synthetic chemi-
cals, however, can induce more subtle cellular responses which are responsible for chronic
diseases, including metabolic [13], autoimmune [14], neurocognitive [15] and cardiovas-
cular diseases [16]. Intracellular and extracellular biomarkers provide useful indicators
for detecting cellular abnormality, with limits of detection at the range of micromolar to
nanomolar levels [17,18]. However, recent studies have shown that chronic exposure to
far lower levels of chemicals can induce cellular phenotypic responses [19]. Additionally,
biomarker-based strategies are generally expensive and require the multi-step processing
of cells, limiting their application in high-throughput detection [20].

Cellular phenotypic signatures have the potential to be more sensitive indicators of
chemical effects than conventional cell viability and biomarker-based measurements [21].
Hypothesis-free array-based sensing platforms can be engineered to maximize sensitivity to
early and subtle cellular phenotypic changes [22]. This design capability makes hypothesis-
free sensor arrays potential tools for both high-throughput chemical safety assessments and
as important tools for probing both efficacy and off-target effects for drug discovery [23].
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In this review, we focus on the opportunities provided by array-based sensing plat-
forms for chemical safety assessments and therapeutic discoveries. We will briefly outline
the design of array-based sensing platforms. In the following sections, we will review
recent studies where array-based sensing strategies have been used for chemical risk as-
sessments and drug efficacy screening. Finally, we will offer some insights on future
directions on developing array-based sensing platforms for chemical safety assessments
and therapeutic discoveries.

2. Design of Array-Based Sensing Platforms
2.1. Design and Fabrication of Array-Based Sensing System

Sensors feature two connected processes: a recognition event, and a transduction
process that creates a measurable output from this recognition event (Figure 1) [24,25]. For
hypothesis-free array-based sensing systems, the recognition units should not be specific
to any analyte; instead, desired cross-reactivity is generated between analytes towards
recognition elements, forming distinct signal patterns [26]. Increasing the number of
recognition elements and transduction elements can then be used to maximize sensitivity
and improve the detection performance [27].
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Figure 1. Schematic illustration of the array-based sensing platform. The multiple recognition
elements in the sensor array interact with each analyte, generating distinguishable signal fingerprints,
which can be classified using multivariate data analysis.

Array-based sensing systems can be created by using a wide range of synthetic el-
ements [28–31]. Nanoparticles are one of the most commonly used sources for sensor
array fabrication due to their ease of functionalization and large surface areas, provid-
ing surfaces for biomolecular recognition [32–34]. In addition, metallic nanoparticles are
excellent fluorescent quenchers, providing distinguishable fluorescent signatures with a
higher sensitivity that facilitates transduction [35]. Another promising material is synthetic
polymers, which have high stability and scalability [36–39]. Both recognition elements
and dyes can be added to a single polymer to reduce the sensor elements but increase the
sensitivity [40]. Finally, synthetic small-molecule fluorescent compounds are also useful
sources for developing sensor arrays due to their small size and high sensitivity towards
targets [41,42].

2.2. Multivariate Data Analysis for Array-Based Sensing

The cross-reactivity of sensor arrays enables the generation of high-dimensional and
high-content data [43]. The complexity of the signal data is readily amenable to multivariate
data analysis strategies that reduce the dataset dimensionality and provide quantitation [44].
Use of these machine learning techniques helps in the classification and prediction of data,
as well as facilitating interpretation [45]. Machine learning primarily has two types: unsu-
pervised learning and supervised learning [46]. Unsupervised learning algorithms learn
from unlabeled test data without classification. They directly identify commonalities in
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each new piece of data. Principle component analysis (PCA) and hierarchical clustering
analysis (HCA) are two commonly used unsupervised methods [47,48]. Conversely, super-
vised methods, including linear discriminant analysis (LDA), have a set of training data
to classify the known samples, giving a reference to identify unknown samples [49,50].
Both unsupervised and supervised learning methods play important roles in array-based
sensing. For example, Shin et al. used array-based sensing with PCA to identify target
volatile organic compounds in contaminated humid air [51]. Pan et al. used LDA and other
machine learning methods to assist with surface-functionalized carbon dot sensor arrays
for discriminating different types of proteins [52]. De et al. used different machine learning
methods to analyze the sensitivity of cationic MoS2 and GFP conjugates for discriminating
protein types in serum media and compared the classification accuracy of different meth-
ods [53]. Unsupervised learning methods such as PCA are important in identifying trends
in large sets of data using statistical parameters. LDA, on the other hand, depends on a
‘training set’ of data to create a model which organizes data into defined classes based on
the input from the user. Based on this trained algorithm, a secondary independent dataset
can be tested and the success of the classification of the secondary data set provides an
indication of the accuracy of the model. Supervised learning methods, therefore, offer a
method of quantitation of unknown analytes based on input data and a more accurate
prediction of these unknown analytes [54].

3. Applications of Array-Based Cell Sensing for Chemical Screening

Array-based sensors are engineered to maximize their sensitivity towards analytes,
often identifying subtle changes in complex patterns. Array-based sensors are becoming
important tools in a range of applications [55,56]. For example, they are widely applied
to sense different chemical species for monitoring environmental conditions [57–59] and
food quality [60]. Particularly, array-based sensing platforms are well suited to detect
early and subtle changes in complex biosystems present in/on mammalian cells and
bacteria [61–65]. Array-based cell sensing often employs interactions of sensors with cell
surface components (phospholipids, proteins, and carbohydrates, etc.), which are different
between cell types and states, making them excellent targets for rapidly assessing cell
responses under environmental stimuli [66,67].

3.1. Array-Based Cell Sensing for Chemical Safety Assessment
3.1.1. Environmental Safety Assessment

Synthetic chemicals are widely used in agriculture [68], food [69] and medicine [70],
raising concerns and fears regarding potential risks to human health. Current chemical
safety assessment approaches generally focus on acute health outcomes as the endpoints
for assessing the risks posed by chemical agents [71]. This focus limits their application in
the detection of early cellular responses following chemical exposure. Biomarkers provide
a useful tool for detecting more subtle cellular abnormalities, but current biomarker-based
strategies are generally expensive and need the multi-step processing of cells. Array-based
sensing provides a more simple and rapid complementary method to detect subtle cellular
phenotypic changes exposed to chemicals.

Living cells produce a large variety of metabolites [72,73]. Volatile compounds can
provide valuable information about the physiological and metabolic state of cells [74,75].
Early studies using array-based sensing explored cellular volatile organic compounds
(VOCs). Aldo et al. designed a metal–oxide semiconductor gas-sensor array to detect the
changes in cell VOC profiles in response to the presence of chemical compounds [76]. This
sensing was achieved through changes in electrical resistance resulting from the redox
interactions of volatile compounds with sensor-surface-absorbed oxygen.

Pesticides are one of the most prevalent sources of chemical exposure due to their
wide use in the food and agriculture industries [77]. Our group developed a multi-channel
array-based sensing platform capable of detecting the effects of femtomolar levels of com-
mon pesticides on macrophages [78]. This system used a polymer–protein supramolecular
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assembly to generate a scalable sensor array platform. The sensor array was composed of
a cationic benzylammonium-functionalized cationic poly(oxanorborneneimide) random
copolymer conjugated with pyrene dye (PONI-C3-Bz-Py), electrostatically bound to anionic
enhanced green fluorescent protein (EGFP). The benzyl group provides differential inter-
actions with cell surface functionalities, resulting in changes in Förster resonance energy
transfer (FRET) upon interactions of the sensor with cells. Additionally, the pyrene moiety
displays an ensemble of monomeric fluorescence emission peaks and an excimer peak.
Therefore, five fluorescent channels are generated in a single well (Figure 2a). The FRET-
based nanosensor array detected and discriminated phenotypic changes in macrophages
after 24 h exposure to femtomolar concentrations (10−14 M) of two common pesticides,
chlorpyrifos and methoxychlor, with 96% correct classification and 96% accurate unknown
identification (Figure 2b).In addition, this system was able to differentiate between different
pesticide-induced phenotypes to classify pesticide class (Figure 2c), which confirmed the
high sensitivity of array-based sensing for observing the effects of environmental chemicals
on human health. Moreover, we also performed two widely used cytotoxicity assays
(Alamar Blue assay and Trypan Blue exclusion assay) and a reactive oxygen species (ROS)
detection assay to determine the effects of pesticides on RAW 267.4 cells at the 10−14 M
concentration. No significant cell response was detected from these methods, further
indicating that cellular phenotypic changes provide a more sensitive indicator of chemical
effects than conventional cell viability, as well as the high promise of array-based sensing
in drug discovery and diagnostics.

Nanomaterials are widely used in drug delivery [79], cell imaging [80], and consumer
product development [81], leading to increased human contact. There are several cell-
based approaches to study nanotoxicity using simple outputs [82]. Li et al. presented a
microelectromechanical-system-based sensor array system to highlight the cell kinetics
behavior of small-cell colonies of PC12 cells under exposure to NPs with different com-
positions [83]. The sensor array was fabricated using different sizes of microwells to hold
different numbers of cells, and the cell responses under different NPs exposure were mea-
sured with a microelectromechanical system (MEMS) (Figure 3). The MEMS was fabricated
with two different electrodes, an indium tin oxide (ITO) electrode and gold electrode, to
generate dielectrophoresis (DEP) from a non-uniform dielectric field. DEP can manipulate
the movement of particles by a trapping force when the particles and surrounding medium
have different polarizabilities, offering a rapid and label-free toxicity detection method with
high reproducibility. In this system, the cell impedance response to NPs was dependent on
major changes in cell morphology and cell attachment.

Our lab created a hypothesis-free nanosensor through the electrostatic complexation
of cationic gold nanoparticles (AuNPs) with anionic enhanced green fluorescent protein
(EGFP). The fluorescence of EGFP can be quenched by AuNP and restored by the com-
petitive interactions of AuNPs and biomacromolecular analytes. The multivalency of the
nanoparticle provides high sensitivity, and fluorogenesis of the EGFP generates a robust
fluorescent pattern. This sensor was initially used to discriminate metastatic cells and
tissues [84]. The sensitivity displayed in these studies suggested that this platform could
be used for the detection of cell phenotypes arising from nanoparticle exposure [85]. We
determined the effects of ultra-low concentrations of a library of cationic nanoparticles
with varying degrees of hydrophobicity (C2, C4, C6 and C10) on the non-malignant human
mammary epithelial cell line MCF10A. In addition, we compared the sensing results with
three commonly used cytotoxicity assays, Trypan Blue exclusion assay, Alamar Blue assay
and DNA-staining Hoechst dye, which were used to evaluate cell membrane integrity,
mitochondrial metabolism and cell proliferation, respectively. The nanosensor was readily
able to detect phenotypic changes, whereas no response was observed using traditional
cytotoxicity assays (Figure 4). Similarly, the AuNP-EGFP nanosensor was used to detect
the estrogenic activity of low doses of endocrine-disrupting chemicals (EDCs) and their
mixtures on MCF-7 cells [86].
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Figure 2. FRET-based sensor array for detecting cellular responses in macrophages induced by femto-
molar level of pesticides. (a) The FRET-based sensor array was fabricated through a supramolecular
assembly of PONI-C3-Bz-Py with EGFP, generating five fluorescence channels through fluorescence
and FRET changes between the polymer and EGFP. (b) LDA classification of fluorescence responses
from RAW 264.7 cells under methoxychlor or chlorpyrifos exposure (n = 8). (c) LDA classification of
fluorescence responses from RAW 264.7 cells exposed to three classes of pesticides (n = 8). Reproduced
with permission from [78]. Copyright 2022 Royal Society of Chemistry.
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showed strong signals when exposed to C2–C10 NPs, whereas weak or null responses were obtained
from other cytotoxicity methods. Reproduced with permission from [85]. Copyright 2020 Wiley-VCH.
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3.1.2. Therapeutics Safety Assessment

Toxicology plays an important role in drug development for evaluating the risk of po-
tential drug candidates on human health [87]. For example, medications can cause acute kid-
ney injury [88]. However, the complexity and diversity of various nephrotoxic mechanisms
make risk assessments of nephrotoxic drugs challenging. Recently, Tian et al. constructed
an array-based sensor using cationic polydopamine-polyethyleneimine (PDA-PEI) and
three anionic quantum dots (QD515: CdSe/ZnS QD modified with 3-mercaptopropionic
acid; QD580: CdSe/ZnS QD modified with PEG-COOH; QD640: CdSe/ZnS QD modified
with l-cysteine) to classify nephrotoxic drug mechanisms based on the fluorescence changes
arising from changes in cell surface phenotypes induced by multiple nephrotoxic drugs [89].
PDA-PEI is an effective quencher, and the QDs have a wide absorption and narrow emis-
sion, allowing multiple emission channels with a single excitation wavelength [90]. A total
of 50 nephrotoxic drug from 7 classes were incubated with HK-2 cells at a concentration of
IC50 for 24 h. The array-based sensor generated a unique fluorescent fingerprint for each
class of drug-induced cell injury, and 50 drugs were separated into 7 clusters using both
PCA and LDA, corresponding to 7 classes of drugs. These clusters were classified with
100% accuracy, and each cluster had an individual fluorescence signature trend over time.

3.2. Array-Based Cell Sensing for Therapeutics Discovery

The high-throughput screening of therapeutic efficacy and mechanism of drug candi-
dates accelerates the discovery of new therapeutics [91]. Conventional screening methods,
including screening genomic [92], transcriptional [93] and metabonomic [94] signatures,
are time-consuming and require specialized equipment. The array-based sensing of cell sur-
face phenotype signatures provides new directions for high-throughput and high-content
screening (HT-HCS) methods for drug discovery.

We developed a rapid multichannel sensor platform capable of profiling the mecha-
nism of chemotherapeutic drugs in minutes [95]. This sensor uses a three-channel fluores-
cent protein (FP) platform analogous to the previously discussed EGFP systems [85,86]. In
this study, the authors complexed a cationic AuNP with three different anionic FPs, EGFP,
enhanced blue fluorescent protein (EBFP) and tandem dimer Tomato (tdTomato) (Figure 5).
The nanosensor was used to screen 15 chemotherapeutics with different known molecular
mechanisms to generate a training set of fluorescence fingerprints using LDA. The overlap
of drugs with similar mechanisms and the separation of apoptotic and necrotic groups
demonstrates the ability of the sensor to detect broader classes of cell death mechanisms.
Significantly, the nanosensor can also predict unknown mechanisms and determine mecha-
nistic correlations between individual drugs and their combinations. This identification
was quantifiable through the use of Mahalanobis distances, a key advantage of LDA-based
clustering [96]. In more recent work, this hypothesis-free AuNP-FPs sensor platform was
used to identify nanoparticles capable of efficiently differentiating cancer stem cells (CSCs)
into new phenotypes that are more susceptible towards traditional chemotherapeutics [97].
The susceptible phenotype had increased ROS levels and had synergistic effects with a
metabolic inhibitor, 2DG on CSCs.

Single-stranded DNA (ssDNA) can be readily chemically synthesized to generate
a large library, making these materials attractive motifs for sensing [98]. Agasti et al.
complexed three cationic surface-functionalized AuNPs with different fluorophore-labeled
ssDNA strands to form a robust multichannel array-based sensing platform [99]. Cells with
different states were lysed to extract the total protein components. Proteins vary in size
and possess their own signature of surface amino acid residues; therefore, they generate
unique interactions with cationic AuNPs. The fluorescence of ssDNA was quenched by
AuNPs via surface binding, but regenerated the fluorescence response when the lysate
competitively interacted with AuNP, achieving the discrimination of cells based on their
entire proteome signatures. The ability of this DNA-based multichannel sensor array to
rapidly identify cell states encouraged authors to determine small-molecule autophagy
modulator-induced global cellular state alterations, using LDA to assess the fluorescence
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signatures (Figure 6). The high accuracy of discrimination between inducers, inhibitors and
control (98%) further demonstrated the excellent capability of the multichannel sensing
system for high-throughput drug screening.
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The combination of microfluidics with functional nanomaterials facilitates the rapid
and sensitive detection of various bioanalytes [100]. Kurita et al. reported an array-based
cell sensing strategy based on a multichannel surface plasmon resonance (SPR) chip, in
which five cysteine derivatives with different structures were immobilized on Au films [101]
(Figure 7a). When cells flowed into the chip, cell-secreted molecules interacted nonspecifi-
cally with cysteine derivatives, generating five unique SPR sensorgrams (Figure 7b). An
automatic statistical program was built to acquire kinetic parameters from the SPR sensor-
grams. The patterns of SPR responses were described as coefficients a and b for each probe,
and curve fitting was carried out using R software. This microfluidic-based sensor array
successfully identified different cell lines with 100% accuracy, with results mirrored in the
testing of a model therapeutic, tamoxifen citrate (TAM). The multichannel microfluidic
device allowed the on-site and real-time evaluation of cultured cells under external stimuli
with high efficiency and accuracy.
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fluorescence pattern. (c) Sensor array generated different fluorescent fingerprints against the treat-
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with autophagy inhibitors and inducers, and the accuracy of discrimination under LDA was 98%.
Reproduced with permission from [99]. Copyright 2019 American Chemical Society.
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Figure 7. A multichannel SPR chip with immobilized cysteine derivatives for cell characterization.
(a) Simultaneous acquisition of the SPR sensorgrams reflecting the interactions between cysteine
derivatives on a chip and cell-secreted molecules. (b) Unique SPR response patterns resulting from
cross-reactive interactions between cysteine derivatives and cell-secreted molecules. Reproduced
with permission from [101]. Copyright 2020 American Chemical Society.
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4. Conclusions and Future Perspectives

The increase in synthetic chemical production and drug diversification greatly in-
creases the need for new tools for chemical risk assessment. Cell-based screening assays
are important tools in chemical risk assessments and drug discovery. Hypothesis-free
array-based sensing platforms with cross-reactive properties have unique capabilities for
discriminating cellular responses under external stimuli, enabling the achievement of high-
throughput chemical safety assessments and therapeutic discoveries as compared with
conventional cell viability and biomarker-based strategies. Significantly, the high sensitivity
of array-based sensing enables the detection of more subtle cellular phenotypic changes
under ultra-low doses of chemical exposure, facilitating the safer use of synthetic chemicals
and the discovery of new therapeutic chemicals.

Array-based sensing systems have the potential to improve through the fabrication
of more selective recognition elements and more sensitive transduction elements, as well
as improving statistical analyses. In the near future, it will be important to combine the
opportunities provided by hypothesis-free array-based sensing with the mechanistic un-
derstanding that biomarkers offer. These ‘hybrid’ platforms will allow for the better design
of sensor arrays and better biomarker discovery for early chemical exposure diagnosis
and therapy.

In summary, array-based sensing provides a promising method for detecting subtle
cellular phenotypic changes under chemical exposure, which enable the early identification
of ultra-doses of chemical-induced cellular responses. By combining sensor arrays with
cellular biomarker discovery, array-based sensing will become a more robust and efficient
tool for chemical risk assessments and drug candidate screening.
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