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ABSTRACT

Reverse gyrase is the only topoisomerase that can
introduce positive supercoils into DNA in an
ATP-dependent process. It has a modular structure
and harnesses a helicase-like domain to support a
topoisomerase activity, thereby creating the unique
function of positive DNA supercoiling. The isolated
topoisomerase domain can relax negatively super-
coiled DNA, an activity that is suppressed in reverse
gyrase. The isolated helicase-like domain is a
nucleotide-dependent switch that is attenuated by
the topoisomerase domain. Inter-domain commu-
nication thus appears central for the functional co-
operation of the two domains. The latch, an
insertion into the helicase-like domain, has been
suggested as an important element in coordinating
their activities. Here, we have dissected the influ-
ence of the latch on nucleotide and DNA binding
to the helicase-like domain, and on DNA supercoil-
ing by reverse gyrase. We find that the latch is
required for positive DNA supercoiling. It is crucial
for the cooperativity of DNA and nucleotide binding
to the helicase-like domain. The latch contributes to
DNA binding, and affects the preference of reverse
gyrase for ssDNA. Thus, the latch coordinates the
individual domain activities by modulating the
helicase-like domain, and by communicating
changes in the nucleotide state to the topoisomer-
ase domain.

INTRODUCTION

DNA topoisomerases catalyze the inter-conversion of
DNA topoisomers in processes such as DNA replication,
recombination and repair (1). Reverse gyrase, first
identified in the hyperthermophilic archaeon Sulfolobus
acidocaldarius (2), is the only topoisomerase that can
introduce positive supercoils into DNA in an
ATP-dependent process. Reverse gyrases are unique to
thermophiles and hyperthermophiles, and presumably
protect their DNA at high temperatures via DNA chap-
erone and renaturase activities (3,4). In general, reverse
gyrases have a modular structure, comprised of an
N-terminal helicase-like domain covalently linked to a
C-terminal topoisomerase I domain (Figure 1) (5). The
helicase-like domain consists of two RecA-like
subdomains (H1 and H2) that harbor all signature
motifs of superfamily (SF) two helicases, though with
altered sequences (6). The H2 domain is interrupted by
an insertion called the ‘latch’ (H3), which structurally re-
sembles the RNA-binding region of the transcription ter-
mination factor Rho (7,8). The C-terminal topoisomerase
domain is homologous to prokaryotic type IA DNA topo-
isomerases, and consists of four subdomains (T1–T4)
equivalent to domains I-IV of Escherichia coli topoisom-
erase I (9). The isolated topoisomerase domain can relax
negatively supercoiled DNA in vitro (10). By contrast,
neither the isolated helicase-like domain nor reverse
gyrase exhibits any nucleic acid unwinding activity
(10,11). The helicase-like domain is a
nucleotide-dependent switch that exhibits a strong prefer-
ence for ssDNA in the nucleotide-free and ADP state, but
binds ssDNA and dsDNA with similar affinities in the
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ATP state (11). Reverse gyrase, in contrast, preferentially
interacts with ssDNA in all states, and it has been shown
that positive supercoiling is more efficient with a plasmid
containing single-stranded regions (4). Furthermore, the
DNA-stimulated ATPase activity of the helicase-like
domain of Thermotoga maritima reverse gyrase is 10-fold
higher than that of full-length reverse gyrase, pointing
toward a suppression of the activity of the helicase-like
domain by the topoisomerase domain (11). Harnessing a
helicase-like domain to support a topoisomerase activity
creates the unique function of positive DNA supercoiling
and thus generates an enzyme that is clearly more than the
sum of its parts. Undoubtedly, inter-domain communica-
tion is central for the combined activities of the
helicase-like and topoisomerase domains in the supercoil-
ing reaction.
Based on biochemical data and structural information,

a strand-passage mechanism, similar to DNA relaxation
by type IA topoisomerases, has been proposed for positive
supercoiling of DNA by reverse gyrase (6). The salient
features of this putative mechanism are a conformational
change in the helicase-like domain that brings domains H1
and H2 closer together, and a movement of the latch
domain away from the topoisomerase domain that
allows the lid (T3) to swing up. The latch has thus been
suggested as an important element in inter-domain com-
munication, and was shown to inhibit the DNA relaxation
activity of the topoisomerase domain of Archaeoglobus
fulgidus reverse gyrase (12). Moreover, mutants lacking
the latch exhibited altered DNA-dependent ATPase
activity, indicating a role of the latch in coupling ATP
hydrolysis to the supercoiling reaction. By contrast, the

latch was not required for the positive supercoiling
activity of the enzyme (13).

Here, we have dissected the influence of the latch on
nucleotide and DNA binding to the helicase-like
domain, and on DNA supercoiling by reverse gyrase.
The latch can be deleted without affecting the structure
of the H2 domain. We find that the latch contributes to
DNA binding, and inhibits nucleotide binding, but not
ATP hydrolysis. The latch is crucial for the cooperativity
of DNA and nucleotide binding to the helicase-like
domain, and affects the preference of reverse gyrase for
ssDNA. Most importantly, the latch is required for
positive DNA supercoiling. Our data demonstrate that
the latch modulates the properties of the helicase-like
domain, and communicates changes in the nucleotide
state to the topoisomerase domain, Thereby, it coordin-
ates and couples individual domain activities to allow for
positive supercoiling of DNA.

MATERIALS AND METHODS

Cloning, protein production and purification

Reverse gyrase lacking the latch region (aa 389–459) was
constructed by inverse polymerase chain reaction (PCR)
using pET28a with the reverse gyrase gene inserted into
the NcoI and XhoI sites (14) as a template, and primers
containing a BamH1 restriction site and the region down-
stream from the codon for aa 459 (forward primer), or
upstream from the codon for aa 389 (reverse primer).
The amplified DNA was restricted with BamH1, and
circularized by ligation, resulting in pET28a with the
gene for reverse gyrase lacking the latch domain
(rgyr_�latch). The helicase-like domain lacking the latch
(rgyr_hel_�latch) was constructed by overlap extension
PCR with pET28 containing the coding region for aa
59–541 as a template. The generated fragment was
amplified using primers containing NcoI and XhoI restric-
tion sites, and ligated into the NcoI and XhoI sites of
pETM28. The region coding for the latch (aa 388–459)
was amplified using primers containing NcoI and XhoI
restriction sites and ligated into the NcoI and XhoI sites
of pETM30 (G. Stier, EMBL Heidelberg). Reverse gyrase
(rgyr) and the rgyr_�latch were produced in E. coli
BL21(DE3) Star RIL and were purified as described
(11). Rgyr_hel, rgyr_hel_�latch and the isolated latch
domains were produced in E. coli Rosetta(DE3).
Rgyr_hel and rgyr_hel_�latch were purified as described
(11). Cells overproducing the latch as a GST fusion were
disrupted in a Microfluidizer in 50mM Tris/HCl, pH 7.5,
1M NaCl, 10mM MgCl2, 10mM Zn(OAc)2, 2mM
b-mercaptoethanol, and the crude extract was cleared by
centrifugation. All purification steps were performed at
room temperature. The NaCl concentration of the super-
natant was adjusted to 0.2M, and it was applied to a
Glutathione sepharose column equilibrated in 50mM
Tris/HCl, pH 7.5, 0.2M NaCl, 10mM MgCl2, 10mM
Zn(OAc)2, 2mM b-mercaptoethanol. The GST fusion
protein was eluted with the same buffer containing
20mM reduced glutathione, and cleaved overnight with
TEV protease. Remaining fusion protein and GST were

Figure 1. Reverse gyrase structure and constructs used. (A) Structure
of reverse gyrase from A. fulgidus (PDB-ID 1gku) (6). The helicase-like
domain is shown in dark blue (H1, H2) and orange (H3, latch, residues
389–459), and the topoisomerase domain (T1-T4) in cyan. The figure
was created with Pymol (www.pymol.org). (B) Constructs used in this
study. rgyr: reverse gyrase, rgyr_�latch: reverse gyrase lacking the latch
region H3, rgyr_hel: helicase-like domain comprising H1, H2 and H3
(latch), rgyr_hel_�latch: helicase-like domain comprising H1 and H2.
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removed by purification via size-exclusion chromato-
graphy on a calibrated S75 column in 50mM Tris/HCl,
pH 7.5, 0.2M NaCl, 10mM MgCl2, 10mM Zn(OAc)2,
2mM b-mercaptoethanol. As the latch does not contain
tryptophans, the protein concentration was determined
with the Bradford method.

Protein crystallization, data collection and structure
determination

Diffraction quality crystals for rgyr_hel_�latch were
obtained at 25�C from the PEG/ion screen (Hampton).
20mg ml�1 protein was mixed 1:1 (v/v) with reservoir
consisting of 0.2M magnesium formate, 20% PEG 3350.
Crystals were cryo-protected with paraffin oil, mounted in
an arbitrary orientation and data were collected at SLS
beamline X06DA on a MAR-CCD detector. Data were
indexed in a primitive orthorhombic lattice, integrated
with XDS (15), scaled with MOSFLM (16) and corrected
for anisotropy with XPREP (Bruker). Data statistics are
collected in Table 1. Systematic absences identified space
group P212121. A Matthews coefficient of 2.8 Å3/Da cor-
responding to 56% solvent content indicated two
rgyr_hel_�latch molecules per asymmetric unit.

The structure was determined by molecular replacement
using the truncated (termini and loops were removed, the
sequence of conserved residues was adjusted to match
T. maritima reverse gyrase) H1 and H2 domains of A.
fulgidus reverse gyrase as separate search models with
PHASER (16). Both H2 domains, but only one H1
domain, were found. Refinement of this model with
BUSTER (17) resulted in spurious electron density for
the second H1 domain, which could be placed manually.

Further refinement using PHENIX (18) and rebuilding in
COOT (19) enabled tracing of the connections between the
H1 and H2 domains to generate a model of two complete
helicase modules. Refinement statistics are summarized in
Table 1. The coordinates and structure factors have been
deposited in the Protein Data Bank (accession code 3oiy).

Nucleotides and nucleic acid substrates

Nucleotides were purchased from Jena Biosciences.
Oligonucleotides for ssDNA or dsDNA substrates were
purchased from Purimex. The 60 b ssDNA was 50-(Fl)-
AAG CCA AGC TTC TAG AGT CAG CCC GTG
ATA TTC ATT ACT TCT TAT CCT AGG ATC CCC
GTT-30. The 60-bp dsDNA substrate was formed by an-
nealing with the complementary strand. Negatively super-
coiled pUC18 was purified from transformed E. coli
XL1-Blue cells.

Fluorescence equilibrium titrations

Dissociation constants of enzyme/nucleotide complexes at
37�C were determined in fluorescence equilibrium titra-
tions with a Fluoromax-3 fluorimeter (Jobin Yvon)
using the fluorescent ADP analog mantADP (20). In ti-
trations of 1 mM mantADP in 50mM Tris/HCl, pH7.5,
0.15M NaCl, 10mM MgCl2, 100mM Zn(OAc)2, 2mM
b-mercaptoethanol, binding was monitored via Förster
resonance energy transfer (FRET) from tryptophan to
the mant group. Tryptophan fluorescence was excited at
295 nm (3 nm bandwidth), and mant fluorescence was
detected at 440 nm (3 nm bandwidth). The Kd value was
determined using the solution of the quadratic equation
describing a 1:1 complex formation [Equation (1)].

F ¼F0+
�Fmax

L½ � tot
�

�
E½ � tot+L½ � tot+Kd

2

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E½ � tot+L½ � tot+Kd

2

� �2

� E½ � tot L½ � tot

s � ð1Þ

where F0 is the fluorescence of free mantADP, �Fmax is
the amplitude, [E]tot is the total enzyme concentration and
[L]tot is the total ligand concentration.
DNA binding was measured in fluorescence anisotropy

titrations of DNA labeled with fluorescein at the 50-end in
50mM Tris/HCl, pH7.5, 0.15M NaCl, 10mM MgCl2,
100 mM Zn(OAc)2, 2mM b-mercaptoethanol, and
analyzed as described (11).

Steady-state ATPase activity

The steady-state ATPase activity was measured in a
coupled ATPase assay via the decrease in A340 due to
oxidation of NADH to NAD+ (21) as described (11).
Assay conditions were 50mM Tris/HCl, pH7.5, 0.15M
NaCl, 10mM MgCl2, 2mM b-mercaptoethanol, 0.4mM
phosphoenolpyruvate and 0.2mM NADH, 23 mgml�1

lactate dehydrogenase, 37 mgml�1 pyruvate kinase.
Initial velocities v (inmM ATP s�1) were calculated from
the absorbance change �A340/�t with e340,
NADH=6220M�1 cm�1, and converted to kcat. Data

Table 1. Data collection, phasing and refinement statistics

Data set 3OIY

Data collection 132.7–2.35
Resolution range (Å)a (2.44–2.35)
Space group P212121
Cell dimensions (Å) a=59.6, b=126.5, c=132.7
Unique reflections 42 547 (4453)
Multiplicity 7.1 (7.4)
Completeness (%) 99.6 (100)
Rsym (%)b 9.9 (65.9)
Average I/�(I) 9.7 (1.3)

Refinement 44.4–2.35
Resolution range (Å) (2.41–2.35)
Rcryst (%)c 20.8 (39.4)
Rfree (%)c 25.1 (41.5)
# of residues/waters 807/99
Phase/coordinate errors (�/Å)d 28.3/0.38
rmsd bonds/angles (Å/ �) 0.012/1.56
Ramachandran plot (%)e 96.8/3.1/0.1

aValues in parentheses correspond to the highest resolution shell.
bRsym=100·�h�i|Ii(h) – <I(h)>|/�h�iIi(h), where Ii(h) is the i-th mea-
surement of reflection h and <I(h)> is the average value of the reflec-
tion intensity.
cRcryst=�|Fo| – |Fc|/�|Fo|, where Fo and Fc are the structure factor
amplitudes from the data and the model, respectively; Rfree is Rcryst

with 5% of test set structure factors.
dBased on maximum likelihood.
eCalculated using COOT (19); numbers reflect the percentage amino
acid residues of the core, allowed and disallowed regions, respectively.
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were analyzed according to the Michaelis–Menten
equation.

Topoisomerase activity

Relaxation and supercoiling activities were measured in
50mM Tris/HCl, pH 7.5, 0.15M NaCl, 10mM MgCl2,
100mM Zn(OAc)2, 2mM b-mercaptoethanol, 10% (w/v)
polyethylene glycol 8000 and 15 nM negatively supercoiled
pUC18 plasmid as a substrate. Reactions were started by
adding 2mM ATP, ADP, ATPgS or ADPNP to 1 mM
reverse gyrase at 75�C, and samples taken at different
time points were analyzed on a 1.2% (w/v) agarose gel
run at 11V cm�1. To separate positively and negatively
supercoiled species, two-dimensional electrophoresis in
2% agarose gels was performed in the presence of
10 mgml�1 chloroquine in the second dimension.

RESULTS

The latch interferes with nucleotide binding, but
contributes to DNA binding to the helicase-like domain

We have previously shown that the helicase-like domain,
rgyr_hel, is a nucleotide-dependent switch that binds
DNA and ATP cooperatively (11). In the ATP state of
rgyr_hel, the affinities for ssDNA and dsDNA are com-
parable, whereas in the ADP state, ssDNA is bound pref-
erentially. In the context of full-length rgyr, the differences
in affinities for ssDNA and dsDNA are reduced, as is the
cooperativity between ATP and DNA binding.
To dissect the role of the latch region in positive DNA

supercoiling, we constructed a latch deletion mutant of
T. maritima reverse gyrase in which residues 389–459 of
the helicase-like domain are replaced by a glycine
(Figure 1, rgyr_hel_�latch). Residues 387 and 460 are
prolines in T. maritima reverse gyrase (Pro352 and
Pro424 in A. fulgidus numbering) that are conserved
among reverse gyrases. In the structure of A. fulgidus
reverse gyrase, Pro352 and Pro424 mark the beginning
and end, respectively, of b-strands leading into and out
of the latch domain. These b-strands are part of a b-sheet
that connects the latch domain to H2. The Ca-atoms of
the prolines are 0.66 nm apart, a distance that can be
covered by two amino acids. To confirm that the replace-
ment of the latch domain by a glycine does not alter the
overall structure of reverse gyrase, we determined the
crystal structure of rgyr_hel_�latch to 2.35-Å resolution
(Table 1, Figure 2). The H2 domains of T. maritima and
A. fulgidus reverse gyrases superpose with an rmsd of
1.6 Å over 181 residues, proving that the deletion of the
latch domain does not significantly alter the structure of
the H2 domain (Figure 2A). Importantly, the glycine
residue replacing the latch domain is well defined by
electron density (Figure 2B). The region around the
conserved proline residues is similar in both structures
with a Ca–Ca distance of 0.57 nm for Pro387 and
Pro460. Thus, the deletion of the latch region does not
alter the RecA fold of H2, and, consequently, should
not have any undesired effects on the overall structure
of reverse gyrase.

We also measured far-ultraviolet (UV) circular dichro-
ism (CD) spectra of rgyr and rgyr_�latch at 37�C, 50�C
and 70�C (Supplementary Figure S1). The CD spectra
indicate that the two proteins are thermostable and have
similar folds in this temperature range. Both enzymes are
active topoisomerases at 75�C (see below). Overall, we
thus have no indication for large structural changes in
rgyr_�latch.

As the helicase-like domain is responsible for ATP
binding and hydrolysis, we first analyzed the effect of
the latch on adenine nucleotide binding (Figure 3). We
have previously established that mantADP is a suitable
analog to monitor adenine nucleotide binding to rgyr
and rgyr_hel (11,14). Deletion of the latch in rgyr led to
a 7-fold increase in affinity for mantADP, and a 2-fold
increase in the affinity for ADPNP (Table 2). In the
context of the isolated helicase-like domain, deletion of
the latch led to a 1.6-fold increase in mantADP affinity,
and a 2.7-fold in (mant)ADPNP affinity. Thus, the latch
insertion in H2 affects adenine nucleotide binding.

To dissect contributions of the latch domain to DNA
binding, anisotropy titrations of fluorescently labeled
ssDNA and dsDNA were performed (Figure 4). Ideally,
DNA binding studies should be performed with a reverse
gyrase mutant in which the catalytic tyrosine involved
in DNA cleavage is replaced by a phenylalanine to
prevent covalent binding of the DNA. However, the
DNA-cleavage-deficient rgyr_�latch_Y851F mutant was
not soluble. Therefore, we performed comparative
DNA-binding studies with rgyr_�latch and wild-type
reverse gyrase that also contained the catalytic tyrosine
(Table 3) to dissect the influence of the latch. The effects
of the latch deletion on DNA binding to rgyr were small,
with a 2-fold reduction of ssDNA affinity (Kd 17 nM for

Figure 2. Structure of H2 in rgyr_hel_�latch. (A) Superposition of the
H2 domain in rgyr_hel_�latch (T. maritima, gray) and H2/H3 of
A. fulgidus reverse gyrase. H2 is depicted in dark blue, the latch
domain (H3) in orange. (B) Close-up of the deletion region. P387,
S388 and P460, as well as the introduced glycine are shown in stick
representation; S388 and the glycine are highlighted in cyan. The
sA-weighted 2mFo–DFc electron density in this region is contoured at
the 1s level and depicted as a gray mesh. The figure was created with
Pymol (www.pymol.org).
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rgyr versus 33 nM for rgyr_�latch), and a 1.3-fold reduc-
tion of dsDNA affinity (74 nM versus 96 nM). These dif-
ferences in Kd values correspond to a small energetic
contribution of the latch to DNA binding by <2 kJ/mol.
For rgyr_hel, the effects of the latch deletion on DNA
binding were more pronounced. The ssDNA affinity was
decreased 2.1-fold (Kd 0.20mM for rgyr_hel versus
0.42mM for rgyr_hel_�latch), and the dsDNA affinity
was decreased 5.4-fold (3.9 mM versus 21 mM), corres-
ponding to small but significant energetic contributions
of the latch to DNA binding by 2–4 kJ/mol. To test
directly for DNA binding to the latch, we produced the
isolated latch domain, and determined its affinities for
ssDNA and dsDNA (Figure 4E). The isolated latch
binds both ssDNA and dsDNA with low affinities (Kd

64±29 mM for ssDNA, 78±39 mM for dsDNA), con-
firming that it contributes to DNA binding. Although dif-
ferences in the helicase-like domain reflect contributions of
the latch to DNA binding to the helicase-like domain only
(and suggest that the latch is involved in DNA binding to
this site), Kd values for the full-length enzyme also contain
contributions from the (nucleotide-independent) DNA-
binding sites in the topoisomerase domain, masking the
influence of the latch and rendering a dissection of effects
difficult.

Deletion of the latch diminishes cooperativity in the
helicase-like domain

We next characterized the effect of the latch on ATP hy-
drolysis, and stimulation of ATP hydrolysis by DNA in
steady-state ATPase assays (Figure 5, Table 4). The kcat
values for the intrinsic ATPase activities of rgyr and
rgyr_�latch are small, with 30� 10�3 s�1 and
18� 10�3 s�1, respectively, indicating that the latch is
not involved in ATP hydrolysis. The KM value for ATP
is slightly reduced in rgyr_�latch (44 mM for rgyr, 26 mM
for rgyr_�latch). In the context of the isolated
helicase-like domain, the analogous deletion of the latch
also does not affect the intrinsic ATPase activity much
(kcat=30� 10�3 s�1, KM,ATP=77 mM for rgyr_hel, and
kcat=20� 10�3 s�1, KM,ATP=67 mM for
rgyr_hel_�latch). The small reduction in KM,ATP upon
deletion of the latch is in-line with the interference of the
latch with nucleotide binding (see above, Table 2). The
effect is more pronounced for rgyr than for rgyr_hel.
The similar kcat values demonstrate that the latch does
not play a role in basal ATP hydrolysis within the
helicase-like domain of reverse gyrase.
In the presence of ssDNA, dsDNA or pUC18 plasmid,

the kcat values for ATP hydrolysis by reverse gyrase are
increased 5–10-fold (Table 4, ref. 11). Similar to wild-type
reverse gyrase, ATP hydrolysis by rgyr_�latch was
stimulated 6–9-fold by DNA (Table 4), excluding a role
of the latch for stimulation of the ATPase activity by
DNA. At 75�C, similar effects of ssDNA and plasmid
DNA on ATP hydrolysis by rgyr and rgyr_�latch were
observed (Supplementary Figure S2).
Rgyr binds ATP and DNA cooperatively, reflected in a

2.8–3.7-fold decrease of theKM,ATP in the presence ofDNA
(Table 4, ref. 11). By contrast, decreases inKM,ATP values in
the presence of ssDNA, dsDNA or pUC18 plasmid are

Figure 3. Nucleotide binding. (A) Titration of 1 mM mantADP with
rgyr (filled squares) and rgyr_�latch (open squares). The Kd

values are 1.1±0.3 mM (rgyr) and 0.16±0.02 mM (rgyr_�latch).
(B) Titration of 1 mM mantADP with rgyr_hel (filled circles) and
rgyr_hel_�latch (open circles). The Kd values are 4.4±0.2 mM
(rgyr_hel) and 2.7±0.1 mM (rgyr_hel_�latch). Binding was detected
via energy transfer from tryptophans to the mant group. For Kd

values in the presence of DNA, see Table 2.

Table 2. Nucleotide binding

mADP
rgyra Kd (mM) rgyr_�latch Kd (mM)

– 1.1±0.3 0.16±0.02
ssDNA 2.2±0.4 0.67±0.05
dsDNA 0.5±0.2 0.13±0.03

rgyr_hel Kd (mM) rgyr_hel_�latch Kd (mM)
– 4.4±0.2 2.7±0.1
ssDNA 10±1 2.6±0.7
dsDNA 1.7±0.4 0.9±0.4

ADPNP
rgyr Kd (mM) rgyr_�latch Kd (mM)

– 10±0.8 4.7±0.8
ssDNA 12±3 12±2
dsDNA 8±1 8±1

rgyr_helb Kd (mM) rgyr_hel_�latchb Kd (mM)
– 36±8 13±4
ssDNA 12±2 16±8
dsDNA 1.9±0.4 11±4

aData from ref. (11) .bTitrations were performed with mADPNP.
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Figure 4. DNA binding. (A) Titration of 10 nM ssDNA with rgyr (filled squares) and rgyr_�latch (open squares). (B) Titration of 25 nM ssDNA
with rgyr_hel (filled circles) and rgyr_hel_�latch (open circles). (C) Titration of 10 nM dsDNA with rgyr (filled squares) and rgyr_�latch (open
squares). (D) Titration of 25 nM dsDNA with rgyr_hel (filled circles) and rgyr_hel_�latch (open circles). (E) Titration of 25 nM ssDNA (red) or
dsDNA (blue) with the isolated latch domain. Binding curves for ssDNA are shown in red, binding curves for dsDNA are depicted in blue. For Kd

values from the depicted data and Kd values in different nucleotide states, see Table 3. (F) Preference for ssDNA in rgyr and rgyr_�latch (upper
panel) and rgyr_hel and rgyr_hel_�latch (lower panel) in different nucleotide states. (G) Thermodynamic cycle for ADPNP (N) and dsDNA (D)
binding to rgyr_hel (rgh). The Kd values in mM are indicated. Numbers in the center refer to the coupling factor (n-fold decrease in Kd when the first
ligand is already bound). The coupling factor for binding of ADPNP and dsDNA to rgyr_hel is �20. (H) Thermodynamic cycle for ADPNP (N) and
dsDNA (D) binding to rgyr_hel_�latch (rgh�). The coupling factor for ADPNP and dsDNA binding is �1, indicating that coupling is lost upon
latch deletion.
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Figure 5. ATPase activity. Steady-state ATPase activity as a function of the ATP concentration. (A) rgyr, (B) rgyr_�latch, (C) rgyr_hel, (D)
rgyr_hel_�latch. Black: no DNA, red: ssDNA, blue: dsDNA. Data for rgyr are depicted with squares, data for rgyr_hel with circles. Data for
wild-type proteins are depicted with filled symbols, data for latch deletions with open symbols. For kcat and KM values, see Tables 4 and 5.

Table 3. DNA binding

rgyr rgyr_�latch

Kd (mM) rel. Kd (mM) rel.
ssDNA

– 0.017+0.004 1 0.033±0.077 1
ADP state 0.013±0.003 0.8 0.025±0.005 0.8
ATP state (ADPNP) 0.015±0.006 1.2 0.040±0.010 1.2

dsDNA
– 0.074±0.016 4.3 0.096±0.019 2.9
ADP state 0.11±0.02 6.5 0.058±0.010 1.8
ATP state (ADPNP) 0.055±0.015 3.2 0.104±0.015 3.2

rgyr_hela rgyr_hel_�latch

Kd (mM) rel. Kd (mM) rel.
ssDNA

– 0.20±0.01 1 0.42±0.07 1
ADP state 0.28±0.01 1.4 2.6±0.3 6.2
ATP state (ADPNP) 0.46±0.03 2.3 1.1±0.1 2.6

dsDNA
– 3.9±0.6 20 21±5 50
ADP state 3.7±0.5 19 24±5 57
ATP state (ADPNP) 0.19±0.03 1 36±8 86

aData from ref. (11).
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only 0.7–1.3-fold for rgyr_�latch (Table 4), pointing
toward a complete loss in cooperativity upon deletion of
the latch region. A similar effect is observed with rgyr_hel,
where the cooperativity of DNA and ATP binding leads to
a large, 16- and 7-fold decrease of the KM,ATP in the
presence of ssDNA and dsDNA, respectively. Deletion of
the latch reduces the cooperativity, and the decrease is only
2.5- and 2.2-fold. Thus, the latch is crucial for coupling
ATP and DNA binding within the helicase-like domain
of reverse gyrase.
Measuring the steady-state ATPase activity as a function

of the DNA concentration allows for the determination of
apparent KM values for DNA. These values provide a
relative measure for DNA affinity to the predominant
states populated under steady-state conditions. For
reverse gyrase, the ATP state should be the predominant
form as ATP hydrolysis is the rate-limiting step in the nu-
cleotide cycle of reverse gyrase (14) (in the absence of
DNA). In contrast to Kd values above that describe
overall DNA binding to all sites, the KM values only
report on DNA-binding sites on reverse gyrase that are
coupled to ATP hydrolysis. The KM,DNA values for rgyr
are 0.45 mM (ssDNA), and 2.2 mM (dsDNA), respectively

(Table 5, ref. 11). The corresponding KM,DNA values for
rgyr_�latch are 0.27mM (ssDNA), and 0.12mM
(dsDNA), corresponding to a slight increase in affinity
for ssDNA (1.7-fold), and a significant increase for
dsDNA (18-fold). The affinity for pUC18 plasmid was
also increased by deleting the latch (Table 5). These data
suggest an inhibitory effect of the latch on (ds)DNA
binding to the ATP state of rgyr. The KM,DNA values for
rgyr contain contributions from DNA binding to the
helicase-like domain and to the topoisomerase domain, if
these are coupled to ATP hydrolysis. We therefore dis-
sected the contribution of the latch to DNA binding by
performing the same experiments with rgyr_hel.
Interestingly, the effects observed with rgyr are not paral-
leled by rgyr_hel (Table 5). Here, the KM,DNA values are
increased 3.6-fold for ssDNA and 1.6-fold for dsDNA
upon latch deletion, in-line with a contribution of the
latch to DNA binding to the helicase-like domain in the
ATP state. Overall, these findings are thus consistent with
contributions of the latch to ssDNA and dsDNA binding
to the helicase-like domain of reverse gyrase, in agreement
with the findings from anisotropy titrations of DNA (see
above). The decrease in KM,DNA of rgyr_�latch that is not

Table 5. Steady state ATPase parameters (DNA dependence)

rgyra rgyr_�latch

KM,DNA (mM) kcat (10
�3 s�1) KM,DNA (mM) kcat (10

�3 s�1)

– n.a. 20±0.8 n.a. 18±0.5
ssDNA 0.45±0.06 160±7 0.271±0.024 108±2
dsDNA 2.2±0.30 148±9 0.124±0.039 98±8
pUC18 No sat. No sat. 0.020±0.013 104±14

rgyr_hela rgyr_hel_�latch

KM,DNA (mM) kcat (10
�3 s�1) KM,DNA (mM) kcat (10

�3 s�1)

– n.a. 30±2 n.a. 20±2
ssDNA 0.07±0.04 1160±188 0.25±0.03 780±20
dsDNA 0.18±0.03 1450±64 0.29±0.06 780±40
pUC18 0.046±0.006 673±21 n.d. n.d.

aData from ref. (11).

Table 4. Steady state ATPase parameters (ATP dependence)

rgyra rgyr_�latch

KM,ATP (mM) kcat (10
�3 s�1) KM,ATP (mM) kcat (10

�3 s�1)

– 44±6 20±0.8 26.5±3.5 18±0.5
ssDNA 12±1.5 108±2.1 33.3±5.5 101±4
dsDNA 16±1.5 117±1.6 18.3±4.1 131±6
pUC18 15.6±0.9 199±1.6 42.1±2.3 164±3

rgyr_hela rgyr_hel_�latch

KM,ATP (mM) kcat (10
�3 s�1) KM,ATP (mM) kcat (10

�3 s�1)
– 77±23 30±2 67±18 20±2
ssDNA 4.8±1 992±12 27±2 660±10
dsDNA 11±4 1435±57 30±4 850±20
pUC18 7.4±1.1 818±10 n.d. n.d.

aData from ref. (11).
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observed for rgyr_hel_�latch suggests that the latch (nega-
tively) coordinates dsDNA binding within the topoisomer-
ase domain to ATP hydrolysis by the helicase-like domain.

The effect of the latch on coupling nucleotide and DNA
binding

The loss of cooperativity between ATP and DNA binding
upon deletion of the latch region suggests a role of the
latch for coupling DNA binding to the nucleotide state.
We next determined the effect of the latch on
nucleotide-dependent DNA binding (Table 3). In the
nucleotide-free state, the latch contributes to ssDNA
and dsDNA binding to the helicase-like domain of rgyr
(see above, 1.3–2-fold loss in affinity by deleting the latch
in rgyr, 2.1–5.4-fold in rgyr_hel). In the ADP state,
deletion of the latch leads to a modest (2-fold) decrease
in affinity for ssDNA, and an equally modest 2-fold
increase in affinity of rgyr for dsDNA. These values
suggest a contribution of the latch to ssDNA binding,
but interference with dsDNA binding, in the ADP state.
In the ADPNP state, in contrast, deletion of the latch
causes a 2.7-fold and 1.9-fold loss in ssDNA and
dsDNA affinity, in-line with a positive contribution of
the latch to ssDNA and dsDNA binding to reverse gyrase.

Similar to the KM,DNA values, Kd values for rgyr/DNA
complexes contain contributions from (nucleotide-
dependent) DNA binding to the helicase-like domain
and (nucleotide-independent) DNA binding to the topo-
isomerase domain, as well as possible coupling effects. To
dissect the contribution of the latch to DNA binding
within the helicase-like domain, we therefore also per-
formed titrations with rgyr_hel. Here, the deletion of the
latch consistently leads to a decrease in both ssDNA and
dsDNA affinity in all nucleotide states (Table 3). In the
ADP state, this loss in affinity is 9-fold for ssDNA
and 7-fold for dsDNA; in the ADPNP state it is 2.4-fold
for ssDNA and 190-fold for dsDNA. These values
demonstrate that the latch contributes to ssDNA and
dsDNA binding to the helicase-like domain in all
nucleotide states. The largest contribution of the latch to
DNA binding is observed for dsDNA in the ADPNP
state.

As a reciprocal approach to monitoring DNA binding
in different nucleotide states, we also measured nucleotide
binding to different DNA-bound forms of rgyr and
rgyr_hel (Table 2). Consistent with the observation in
the absence of DNA, the affinity of rgyr and rgyr_hel
for mantADP was increased in all DNA-bound states
upon deletion of the latch, with more pronounced effects
for rgyr (3–7-fold) than for rgyr_hel (2–4-fold). For rgyr,
the increase in nucleotide affinity was most pronounced in
the DNA-free state, whereas for rgyr_hel it was most
pronounced in the ssDNA-bound state. The increased
affinity of the latch deletions for (mant)ADPNP was
alleviated in the presence of DNA, with identical nucleo-
tide affinities for rgyr and rgyr_�latch, and similar values
for rgyr_hel and rgyr_hel_�latch. The only exception is
mantADPNP binding to rgyr_hel_�latch in the presence
of dsDNA. Here, the latch deletion decreases the nucleo-
tide affinity 5.8-fold. In combination with the

nucleotide-dependent DNA binding studies (Table 3),
thermodynamic cycles of DNA and nucleotide binding
can be constructed (Figure 4). Coupling of overall DNA
binding and nucleotide binding is small in reverse gyrase,
and only small effects of the latch are observed. Coupling
is larger for rgyr_hel, however, and here the effect of the
latch becomes apparent. In rgyr_hel, ADPNP and dsDNA
binding are thermodynamically coupled, with a coupling
factor of 20 (Figure 4G). Upon deletion of the latch, this
coupling is lost completely (Figure 4H). Some coupling is
also present for ADPNP and ssDNA binding to rgyr_hel,
which is also lost upon deletion of the latch. Overall, the
data are thus consistent with a major effect of the latch on
coupling (ds)DNA binding and ADPNP binding to the
helicase-like domain.

The latch contributes to the discrimination between
ssDNA and dsDNA

Reverse gyrase exhibits a clear (4–8-fold) preference for
ssDNA over dsDNA in the nucleotide-free, the ADP and
the ATP-state (Figure 4F, Table 3, ref. 11). Deletion of the
latch reduces the preference for ssDNA significantly, and
leads to a similar (2–3-fold) small preference for ssDNA in
the nucleotide-free, the ADP- and the ADPNP state. In
rgyr_hel, the latch deletion leads to a further increase of
the preference for ssDNA in the nucleotide-free and the
ADPNP state, but slightly reduces the preference in the
ADP state (Figure 4F, Table 3). The preference of
rgyr_hel_�latch for ssDNA in the ADPNP state is in
stark contrast to similar affinities of rgyr_hel for ssDNA
and dsDNA in the ADPNP state (11), strongly suggesting
a role of the latch in this switch in DNA affinities upon
ATP binding (switch from nucleotide-free to ADPNP
state), and upon ATP hydrolysis/product release (switch
from ADPNP to ADP state). This switch is suppressed in
context of rgyr (11), and the effect of the latch can thus
only be studied with the isolated helicase-like domain.
Overall, our results point toward a role of the latch in
coupling nucleotide and DNA-binding sites within the
helicase-like domain, and in coordinating DNA binding
within the topoisomerase domain with ATP hydrolysis in
the helicase-like domain.

The latch is required for positive supercoiling of DNA by
T. maritima reverse gyrase

Finally, we investigated the effect of the latch on the topo-
isomerase activities of reverse gyrase (Figure 6,
Supplementary Figure S3). Similar to the wild-type
enzyme, rgyr_�latch does not show significant relaxation
activity in the absence of nucleotides, even at a large
excess of enzyme (Supplementary Figure S3). In the
presence of ATP and ATPgS, rgyr_�latch relaxes nega-
tively supercoiled DNA, but is not capable of introducing
positive supercoils as the wild-type enzyme (14). The re-
laxation activity of rgyr_�latch is also observed in the
presence of ADP and ADPNP, indicating that it does
not depend on ATP hydrolysis. Consequently, the latch
region is required for the positive supercoiling reaction.
Interestingly, this observation sets T. maritima reverse
gyrase apart from the A. fulgidus homolog, which does
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not seem to require the latch for the positive supercoiling
reaction (13).

DISCUSSION

The latch modulates the properties of the helicase-like
domain in reverse gyrase

Studies on reverse gyrase from A. fulgidus have suggested
that the latch region is involved in communication
between the helicase-like and the topoisomerase domain
and coordination of their activities, even though it was not
required for positive supercoiling (13). Here, we have dis-
sected the contributions of the latch to nucleotide binding
and hydrolysis, DNA binding, and cooperativity in the
isolated helicase-like domain of T. maritima reverse
gyrase, as well as in the full-length enzyme. The latch
affects nucleotide binding to the helicase-like domain,
but does not alter the intrinsic or the DNA-stimulated

ATPase activities. Coupling between DNA binding and
ATP binding and hydrolysis in the helicase-like domain
is lost when the latch is deleted, demonstrating that the
latch is crucial for cooperativity within the helicase-like
domain of reverse gyrase.

The helicase-like domain of reverse gyrase resembles
DEAD box proteins. Members of this protein family
within the SF2 helicases mediate ATP-dependent struc-
tural rearrangements of RNA, and typically exhibit
cooperativity between nucleotide and DNA/RNA
binding (22). This cooperativity has been rationalized
from DEAD box protein structures that reveal a bipartite
nucleic acid binding site that covers the surface of both
RecA domains (corresponding to H1 and H2 in reverse
gyrase) and a nucleotide binding site that is formed in the
inter-domain cleft by residues from both domains (23).
The similar spatial distribution of conserved motifs (6),
mutational studies on the contributions of these motifs
to supercoiling (24), as well as the existing cooperativity
between DNA and ATP binding in the helicase-like
domain of reverse gyrase altogether suggest similar con-
certed conformational changes upon ATP (and DNA)
binding (11) in the helicase-like domain in reverse
gyrase. The observation that the latch is involved in
cooperativity of DNA and nucleotide binding suggests
that it contributes to the DNA binding site within H2.
On the other hand, the latch interferes with nucleotide
binding. In the structure of A. fulgidus reverse gyrase
with ADPNP bound to the helicase-like domain, the nu-
cleotide only interacts with residues in H1, but not H2 (6),
again supporting the notion that, similar to SF2 helicases,
a closure of the cleft between H1 and H2 in response to
nucleotide (and DNA) binding may lead to an increased
nucleotide affinity. The interference of the latch with nu-
cleotide binding to the helicase-like domain in the absence
and presence of DNA suggests that the latch modulates
the underlying conformational change, possibly by
reducing the flexibility of the helicase-like domain.
Consistent with the effect on the isolated helicase-like
domain, inhibition of nucleotide binding by the latch is
also observed in reverse gyrase. Here, binding of DNA
and nucleotide is less cooperative, which may reflect an
inhibition of the underlying conformational change in the
helicase-like domain by the topoisomerase domain (11). In
line with this scenario, the effect of the latch on nucleotide
binding in reverse gyrase is less severe. In addition, it is
alleviated in the presence of ssDNA and dsDNA. It is
conceivable that nucleotide and DNA binding alleviate
conformational restrictions caused by interactions
between the helicase-like and the topoisomerase-like
domains, consistent with a possible release of the latch
from the topoisomerase domain in the presence of DNA
(6), and a concomitant loss of conformational restrictions
in the helicase-like domain.

The latch affects the discrimination between ssDNA
and dsDNA

The DNA-binding site on the helicase-like domain
exhibits a preference for ssDNA in the nucleotide-free
and the ADP state, but switches to similar affinities for

Figure 6. Topoisomerase activity. (A) Topoisomerase activity of rgyr
and rgyr_�latch. (B) Topoisomerase activity of rgyr with ATP, ATPgS
and ADPNP. Rgyr introduces positive supercoils in the presence of
ATP and ATPgS, but only relaxes DNA in the presence of ADPNP.
(C) Topoisomerase activity of rgyr_�latch with ATP, ATPgS and
ADPNP. Rgyr_�latch relaxes DNA in the presence of ATP and
ATPgS, and exhibits weak relaxation activity in the presence of
ADPNP. In (A), reaction products from incubation of rgyr or
rgyr_�latch with negatively supercoiled DNA were separated via
one-dimensional gel electrophoresis. When two lanes are depicted for
the same experimental conditions, the left lane corresponds to 1 h in-
cubation time, the right lane to 2 h. In (B) and (C), reaction products
were separated via two-dimensional gel electrophoresis (‘Material and
Methods’ section). The species in the left arm of the arch represent
negatively supercoiled DNA, the right arm of the arch represent posi-
tively supercoiled DNA. For analysis via one-dimensional gel electro-
phoresis in the presence of chloroquine, see Supplementary Figure S3.
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ssDNA and dsDNA in the ATP state. By contrast, in the
absence of the latch the preference for ssDNA is high in
the nucleotide-free and ATP state, but reduced for the
ADP state, implicating the latch in the switching
properties of the helicase-like domain. In line with the
effect of the latch on cooperativity, it indeed contributes
to DNA binding to the helicase-like domain in reverse
gyrase, and it is capable of weak DNA binding on its
own. The latch is structurally homologous to a region of
the transcription termination factor Rho that is involved
in RNA binding (7,8), but for A. fulgidus reverse gyrase no
effect of the latch on DNA binding was observed (13).
This may be due to the presence of various different
DNA-binding sites within reverse gyrase that contribute
to the overall DNA affinity, hiding contributions from the
latch. These effects thus only become detectable in
DNA-binding studies with the isolated helicase-like
domain as we have performed here, and may have been
missed in studies of the A. fulgidus enzyme. Even though
the latch provides minor contributions to DNA binding, it
is not required for high-affinity DNA binding to reverse
gyrase. Its contribution may be relevant for transient
contacts of the latch with DNA that have been proposed
(6), consistent with a guiding effect of the latch for DNA
during supercoiling and strand passage. Most import-
antly, the latch affects the discrimination of reverse
gyrase between ssDNA and dsDNA. The strong prefer-
ence of reverse gyrase for ssDNA in all nucleotide states
(11) is thought to be important for sensing single-stranded
regions in DNA at high temperatures (4). Upon deletion
of the latch in reverse gyrase, this preference is reduced,
and is now similar for the nucleotide-free, ATP and ADP
states, consistent with the latch being involved in
communicating the nucleotide state of the helicase-like
domain to the DNA-binding sites on the topoisomerase
domain.

The latch is required for positive supercoiling

It has been suggested previously that a conformational
change bringing H1 and H2 close together may lead to a
movement of the latch and to a release of the lid of the
topoisomerase domain during positive supercoiling (6). In
light of this scenario (that has not been proven experimen-
tally as yet), a crucial role of the latch in positive super-
coiling is expected. Interestingly, a deletion of the latch in
A. fulgidus reverse gyrase did not abolish positive super-
coiling, though the activity was significantly reduced (13).
By contrast, we have shown here that the latch is abso-
lutely required for positive supercoiling by T. maritima
reverse gyrase. The latch deletion construct we used here
does not contain the two-stranded b-sheet connecting the
latch to the H2 domain. This region is absent in SF2
helicases, but was retained in the deletion construct of
A. fulgidus reverse gyrase (13). On the other hand, the
latch region shows less sequence conservation among
reverse gyrases than the H1 and H2 domains, and may
have different roles in different enzymes. It is thus unclear
whether the different effects of the latch deletions in
A. fulgidus and T. maritima reverse gyrase are due to

different deletions studied, or reflect genuine differences
between these enzymes.
Despite its requirement for positive DNA supercoiling

by T. maritima reverse gyrase, the latch is not required for
nucleotide-mediated relaxation of DNA in the presence of
ATP, ATPgS and ADPNP, and is thus not necessary per
se for strand passage in general, or for strand passage
toward a higher linking number. The latch has been
implicated in repressing relaxation of DNA by the topo-
isomerase domain (13) in the absence of nucleotides.
However, deletion of the latch in T. maritima reverse
gyrase does not lead to DNA relaxation in the absence
of nucleotides, arguing against a general role of the latch
in repressing this activity. Deletion of the latch leads to
relaxation in the presence of all nucleotides tested, sug-
gesting an important role of the latch in coupling ATP
hydrolysis to strand passage towards positive DNA super-
coiling. To dissect how DNA is guided toward positive
DNA supercoiling, future studies will have to address
DNA binding to individual sites on reverse gyrase, and
their contributions to DNA binding at different stages
of the supercoiling.
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