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The mechanism of action underlying ketamine’s rapid antidepressant effects in patients
with depression, both suffering from major depressive disorder (MDD) and bipolar
disorder (BD), including treatment resistant depression (TRD), remains unclear. Of
the many speculated routes that ketamine may act through, restoring deficits in
neuroplasticity may be the most parsimonious mechanism in both human patients and
preclinical models of depression. Here, we conducted a literature search using PubMed
for any reports of ketamine inducing neuroplasticity relevant to depression, to identify
cellular and molecular events, relevant to neuroplasticity, immediately observed with
rapid mood improvements in humans or antidepressant-like effects in animals. After
screening reports using our inclusion/exclusion criteria, 139 publications with data from
cell cultures, animal models, and patients with BD or MDD were included (registered on
PROSPERO, ID: CRD42019123346). We found accumulating evidence to support that
ketamine induces an increase in molecules involved in modulating neuroplasticity, and
that these changes are paired with rapid antidepressant effects. Molecules or complexes
of high interest include glutamate, AMPA receptors (AMPAR), mTOR, BDNF/TrkB, VGF,
eEF2K, p70S6K, GSK-3, IGF2, Erk, and microRNAs. In summary, these studies suggest
a robust relationship between improvements in mood, and ketamine-induced increases
in molecular neuroplasticity, particularly regarding intracellular signaling molecules.

Keywords: bipolar disorder, ketamine, major depressive disorder, mechanism of action, neuroplasticity,
treatment-resistant depression, rapid antidepressant effects

INTRODUCTION

Depressive Disorders affect 280 million people globally, being the leading cause of disability
worldwide (1). One widely accepted neurobiological theory for this highly prevalent mental
disorder is the monoamine hypothesis of depression, developed over 50 years ago (2), suggesting
that serotonin, norepinephrine, and dopamine deficiencies were responsible for the occurrence of
depressive symptoms. Since then, all antidepressant drugs, such as selective serotonin reuptake
inhibitors, monoamine oxidase inhibitors, and tricyclic antidepressants have targeted this system
to provide relief. While effective for some, remission rates remain low with a delayed onset of
clinical efficacy, and up to 46% of patients do not respond effectively to available treatments—
resulting in treatment-resistant depression (TRD) (3). One accepted definition of TRD is when
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patients exhibit inadequate responses to two or more
antidepressants after adequate dosing and duration (3).
However, in practice, many patients with TRD have exhausted
all available treatments, yet struggle to find symptom relief. This
highlights the complexity of this disorder as well as the deficiency
of evidence regarding its pathogenesis and methods of treatment.

The neuroplasticity hypothesis of depression is a recent
neurobiological theory of major depressive disorder (MDD).
Neuroplasticity is a phenomenon characterized by neuronal
adaptation, i.e., the brain’s ability to reorganize itself when
facing an internal or external stimulus (4–8). MDD is strongly
linked to abnormalities in neuroplasticity shown through
neuroimaging and pharmacological studies (9, 10). When
referring to neuroplasticity, this term generally encompasses
three large categories; structural, molecular, and functional
neuroplasticity (11). Changes in volumes of brain regions,
phenotypical changes in neuronal cell types, and differing levels
of biomarkers involved in neuroplasticity signaling cascades are
all observed in both patients with depressive symptoms and
animal models of depression, compared to healthy controls
(9, 10). Furthermore, traditional antidepressant medications
that target the monoamine hypothesis of depression show
downstream effects of improved neuroplasticity in patients, and
rescued neuroplasticity in animal models of depression (11–
13). Through these observations, the deficit of neuroplasticity
has been elucidated as a potential target in developing novel
therapeutics for the pathology of depression.

Ketamine, an N-methyl-D-aspartate receptor antagonist
within the glutamatergic system, was first approved by the U.S.
Food and Drug Administration (FDA) as an anesthetic in 1970.
In recent years, many studies have explored its antidepressant
properties and demonstrated its potential for patients with
MDD and TRD. Following these studies, the FDA approved
the isomer (s)-ketamine, also known as esketamine, as the
first glutamatergic antidepressant in the form of an intranasal
spray called Spravato, in 2019 (14). Unlike currently available
pharmacological antidepressants, ketamine elicits its effects as
fast as 1 h following administration and is sustained for
up to 1–2 weeks (15, 16). It also shows high response and
remission rates at approximately 60–70% and 30%, respectively
(17–20). Additionally, ketamine also affects several domains
of neuroplasticity including molecular biomarkers, cellular
structures, and regional brain volumes, raising the question about
the underlying mechanisms of action mediating ketamine’s rapid
clinical antidepressant effects.

The exact relationship between the pathology of depression,
deficits in neuroplasticity, and ketamine’s rapid antidepressant
effect remain poorly understood. Current results of the literature
seem to fall into two different categories of mechanisms that
converge to enact ketamine’s antidepressant effect: molecular
neuroplasticity for its immediate effects (minutes to hours),
and structural neuroplasticity for its sustained effects (days).
Molecular plasticity affected by ketamine include changes in
receptors, primary and secondary effectors, proteins involved
in signaling cascades, neurotransmitters, and microRNAs. These
changes are observed immediately post infusion in both
humans and animal models and seem to precede any other

structural or functional plasticity markers observed. Here we
have summarized the broad range of ketamine’s effects on
neuroplasticity in the context of depression, with a specific focus
on the immediate molecular cascades that may mediate ketamine’s
rapid antidepressant effects. In conjunction, we postulate that
deficits or alterations in molecular neuroplasticity may constitute
pathological markers of depression and that ketamine might
serve to restore plasticity to induce its rapid antidepressant effect.

METHODS

Using Preferred Reporting Items for Systematic Review and
Meta-Analysis (PRISMA) guidelines (21), the search for this
systematic review was conducted through January 2022 and
registered on PROSPERO (ID: CRD42019123346). The database
PubMed was used to identify peer-reviewed literature regarding
ketamine and neuroplasticity in both preclinical and clinical
trials, with or without controls or randomization. Our search
included open-label studies, as well as citations from reviews for
additional papers to include.

Search terms were the following: “ketamine” and
“neuroplasticity, dendritic spines, spinogenesis, synaptogenesis,
dendritic arbor, synapse, neurogenesis, neuroregeneration,
neurotransmission, BDNF, neurotrophic, neuronal plasticity,
nerve growth factor, mTOR, synaptic plasticity, functional
plasticity, glutamate, cognitive flexibility, and GSK-3.” The
search strategy was reviewed by all authors and reports were
reviewed by two investigators independently (M.JY.K and
E.R.H) to verify correct filtering and sampling process. Screening
selected titles and abstracts, as well as full article eligibility
assessments were completed by the same two investigators
independently, with continuation to full texts of reports.
Inclusion criteria included reports that were peer-reviewed
and published that evaluated ketamine’s neuroplastic nature
either in vivo, in vitro, both in animals and humans, in an
antidepressant context, and written in English. Exclusion
criteria included studies regarding schizophrenia or any other
disorder not relevant to bipolar disorder, MDD or TRD,
chart reviews, and reports lacking data on significant changes.
In addition, any studies regarding structural or functional
(electrophysiology, connectivity, potentiation) neuroplastic
changes post-ketamine were excluded as it was out of the scope
of the current review. Data was sought for study design, sample
size, route of administration or exposure to ketamine, measures
of improvement, main results, and fundamental mechanism of
neuroplasticity, conclusions, and limitations.

During the first search, 8,352 reports were identified, and
after removal of duplicates, 5,176 papers were considered.
Another 4,730 papers were excluded during the title and abstract
screening process for lack of relevance, with a remainder of
446 reports for full text review. This process led to another
exclusion of 305 reports for reasons including manuscripts
only studying ketamine at anesthetic doses, results mainly
surrounding ketamine’s metabolite hydroxynorketamine, results
only surrounding ketamine-induced behavioral changes, main
pathologies explored were not MDD or TRD, timelines explored
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were only long-term and chronic, and results were surrounding
functional or structural plasticity which was out of scope for our
current review which focuses on molecular plasticity, resulting
in a final number of 141. The results from these reports are all
included in this systematic analysis (Figure 1).

RESULTS

Glutamate/Gamma-Aminobutyric Acid
Neurotransmission and Its Receptors
Are Highly Affected by Ketamine
Glutamate is the main excitatory neurotransmitter in the
brain and has functionality in over half of the total neuronal
synapses. Differing levels of glutamate has been reported in
healthy controls vs. patients with depression (22), as well as in
post-mortem studies of suicide victims (23). The transmission of

glutamate, its precursor glutamine, as well as the main inhibitory
neurotransmitter gamma-aminobutyric acid (GABA), has been
explored as a part of ketamine’s mechanism of action.

After exposure to ketamine, a glutamate burst in the synapse
is observed, and this is thought to be caused by the binding of
ketamine to inhibitory interneurons and thereby enhancing the
actions of pyramidal excitatory neurons (24–28). Downstream
signaling molecules of this process, such as neuregulin-1, has
shown to be downregulated post ketamine administration in
parvalbumin-expressing (PV) interneurons, resulting in cortical
disinhibition (29). In addition, this glutamate burst is not
observed with traditional antidepressants (24–28, 30), though it
seems to be dependent on specific synapses and is not globally
observed (31). Some studies suggest that this burst may also be
sex-dependent (32).

Fluctuating levels of glutamate, glutamine, and GABA
following ketamine depend on brain region, timing of
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FIGURE 1 | Schematic representation of PRISMA methods utilized for this systematic review.
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measurement, and species. Clinical studies offer varied results.
Acute increases in levels of glutamate, glutamine, and GABA
have been found in the medial prefrontal cortex (mPFC) of
patients with MDD post-ketamine, with GABA levels decreasing
after 3–4 h (33, 34). This reduction is maintained for up to 24 h
post-ketamine (35). Another study, published by the same group,
found the opposite result in the ventro-mPFC, with glutamine
and glutamate (Glx) levels decreasing post ketamine, with lower
mean Glx levels associated with a better antidepressant response
(36). They postulate the reason for their opposite result to be
the existence of a placebo group in the latter trial (36). Glx
cycling has also shown to contribute to ketamine’s mechanism
in the mPFC (37) and the pregenual anterior cingulate cortex
(pgACC) (38, 39). The pgACC of healthy controls and patients
with MDD demonstrated no changes in glutamate levels, but
a significant increase in the ratio of glutamine/glutamate, after
24 h (38, 39). Supporting this, ketamine induced an increase
in prefrontal glutamate release in humans, measured by 13C-
glutamine labeling of glutamine, which were more prominent
than 13C-glutamate (40). This suggests an increased production
of glutamine, but not glutamate post-ketamine. The above
clinical studies employed magnetic resonance spectroscopy
(MRS) and used the most observed subanesthetic dose of
0.5 mg/kg of ketamine, with the exception of the 13C-MRS
study, which administered a 0.23 mg/kg bolus followed by a
0.58 mg/kg infusion.

Similar fluctuation patterns are observed in the prefrontal
cortex (PFC) and hippocampus of rats (41–44), though one
study showed decreased levels of Glx in the mouse hippocampus
after 14 h, and increased GABA levels 72 h after ketamine
exposure (45). Receptor subunit alterations are also observed.
Hippocampal protein levels of GABAA receptor subunit α1
significantly decreases acutely after ketamine in mice (45). Levels
of GAD67, a GABA synthetic enzyme, are restored with ketamine
administration in stressed models of mice (46), though another
found reduced levels of GAD67 post-ketamine in the rat PFC
(47). One study found that ketamine’s mechanism may involve
changes in G-protein signaling regulators, such as RGS4, in
the glutamatergic synapse (48). The rapid antidepressant effects
may result directly from the alterations or restorations of these
glutamatergic neurotransmitters, neuromodulatory regulators, or
from a trigger of receptor activated signaling cascades from the
increase of glutamine and glutamate. The nature of these changes
in glutamate, glutamine, or GABA levels is still not defined.
Ketamine doses used in animal studies most commonly range
from 10 to 30 mg/kg, a comparable subanesthetic dose used
frequently in rodent and animal studies.

AMPA receptors (AMPAR), one of three glutamatergic
receptors, mediate most of the synaptic transmission that occurs
in the brain and is likely integral in ketamine’s mechanism of
action. AMPARs are located on post-synaptic neurons, and are
comprised of GluA1, GluA2, GluA3, and GluA4 subunits (49,
50). Under normal conditions, the consequences of AMPAR
activation result in downstream effects including fast excitatory
synaptic transmission and increased signaling cascades integral
to synaptic plasticity (49, 51). AMPARs and their receptor
subunits have been implicated as pivotal factors in the control

of mood as well as the pathophysiology and treatment of
depression (52). Observed increases in glutamate is presumed
to enhance the activation of AMPARs, to carry out ketamine’s
antidepressant effects.

Many studies support activity at AMPARs as significant
contributions to ketamine’s antidepressant effect. For example,
when ketamine is administered at a dose below the threshold
of response, an AMPA agonist induces an antidepressant-like
effect in a rat model of depression (53). Even when the AMPA
agonist is administered alone, similar responses are observed in
rats, followed by increased downstream molecular effects, such
as increased mTOR activity and BDNF levels (54). Ketamine
also upregulates the mRNA of AMPAR subunits 1.5–2-fold (55).
When an AMPAR antagonist, NBQX, is administered, ketamine’s
rapid behavioral antidepressant-like effects are blocked (54, 56–
58). NBQX is shown to inhibit ketamine-induced glutamate and
GABA release in the mPFC of mice (58). In addition, ketamine-
induced increases in mTOR signaling and protein levels in the
hippocampus and prefrontal cortex are blocked by AMPAR
antagonists (54, 59, 60). The inverse is true as well—downstream
signaling inhibition reduces AMPAR activation and prevents the
effects of ketamine (61). As expected, ketamine administration
also increases the AMPA to NMDA receptor ratio transiently, a
marker of increased activity at AMPARs, in the hippocampus of
rat models of anxiety (62). These observations are not limited
to in vivo studies, as AMPA antagonists abolish all spontaneous
activity of ketamine in cultured neurons of the dorsal raphe
nucleus (61).

There is some debate on whether ketamine administration
phosphorylates subunits of the AMPAR, as a method of
enhancing AMPA activation. Ketamine administration has
shown to induce phosphorylation of the AMPA GluA1 subunit
on the post synaptic terminal (63, 64). In addition, animals with
a knockout of this phosphorylation site were unable to produce
ketamine’s electrophysiological and rapid antidepressant-like
effects (63). This suggests that phosphorylation of GluA1 is a
requirement for a therapeutic response. However, a separate
study observed ketamine inducing significantly lower levels of
rodent hippocampal phosphorylated GluA1 (57). This effect was
inhibited by AMPA antagonists (56). Opposite to results observed
in GluA1, a stress paradigm in a rat model of depression increased
hippocampal GluA2 phosphorylation levels, which was partially
reduced by acute ketamine administration (65), though some
studies showed opposite results where ketamine upregulated
GluA2 subunits in both the mPFC and hippocampus of rodents
(45, 64). In in vitro studies of human induced pluripotent
stem cell (iPSC)-derived dopaminergic neurons, GluA1 and
GluA2 increases were observed (66), though this was specific to
dendrites. Only GluA2 and not GluA1 upregulation was observed
in the soma (66). Levels of subunit GluA3 was significantly
reduced in the hippocampus of vehicle mice treated with
s-ketamine (45). Selective upregulation of subunit expression
specific to regions of the neuron and brain may contribute to
ketamine’s mechanism.

Along with receptors for glutamate, glutamate transporters
are affected by ketamine administration. Stressed mice
show decreased levels of excitatory amino acid transporters
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(EAAT) 2 and 3 and increased extracellular concentrations
of glutamate—exhibiting improper glutamate transmission
(67). Ketamine administration show restoration of EAAT
levels coupled with behavioral antidepressant-like effects (67).
Ketamine as an augmentative compound administered with
guanosine diminished depressive-like behavior in rodent
models of depression, and normalized decreased levels of
hippocampal levels of glutamate transporter-1 (GLT-1) (68–70).
However, another study showed decreased levels of GLT-1 with
ketamine exposure in the mPFC (64). This suggests differential
mechanisms of ketamine in the hippocampus and mPFC of
animal models and are summarized in Table 1, and illustrated
in Figure 2.

Ketamine Induces a Net Increase in the
Activation of the Mechanistic Target of
Rapamycin (mTOR) Signaling Pathway
Recent studies outline the mechanistic target of rapamycin
(mTOR) as one of the kinases involved in ketamine’s mechanism
of action. mTOR is triggered by both the activation of AMPARs
and the antagonism of NMDA receptors from ketamine binding.
This protein kinase has many upstream and downstream effectors
and is known as a master regulator of cell growth that responds
to various physiological cues such as amino acids, stress, growth
factors, and metabolism (71). mTOR combines with several
different proteins to form a complex which function to execute
cell survival, maturation, and maintenance (71). Knockdown
of mTOR has previously evoked depressive-like states in mice
(72) and rapamycin, an mTOR inhibitor, has allowed for the
investigation of ketamine’s role in the mTOR signaling pathway.

Ketamine administration rapidly activates the mTOR
pathway in animal models, and consequently increases levels
of associated signaling proteins dose-dependently, such as
phospho- eukaryotic initiation factor 4E binding protein 1 (p4E-
BP), p70S6 kinase (p70S6K), extracellular signal-regulated kinase
(ERK), and Akt (also named protein kinase B, PKB), an effect
that is sustained for at least 72 h (73). Levels of phosphorylated
mTOR increase in rat hippocampus and dorsal raphe nucleus
post ketamine exposure (61, 74). Blocking the mTOR pathway
with rapamycin results in inhibition of ketamine’s behavioral and
molecular effects (73, 75) including increases in synaptic proteins
such as postsynaptic density protein 95 (PSD-95), and GluA1
in the PFC (73, 75) and hippocampus (76). Ketamine-induced
increases in PSD-95 were also observed in the somatosensory
cortex of mice (77). These molecular changes may be very
specific to brain region, as the ventral hippocampus of mice
exhibit greater upregulations of proteins in the mTOR pathway,
than the dorsal hippocampus (78). Pre-treatment with ketamine
also prevents reductions of PSD-95, GluA1, and synapsin
induced by models of depression (79–81). Ketamine also reverses
stressed-induced changes in levels of GluA1 in the amygdala
(82), hippocampus (76), and levels of GluA4 in the dentate
gyrus (83).

In vivo deletion of GluN2B (NR2B), a subunit of the
glutamatergic NMDA receptor increases mTOR signaling and
mimics ketamine’s behavioral antidepressant-like effects in mice

(84, 85), though one study found increases in GluN2B in the
rat mPFC after ketamine exposure (64). Interestingly, deletion
of another NMDAR subunit, GluN2C, fully preserves ketamine’s
antidepressant-like effects in mice (86), suggesting only selective
NMDA isomers are required in this mechanism.

An upstream G-protein, Ras homolog enriched in brain
(Rheb), is involved in the regulation mTOR activity (87). Rheb,
when bound to glycolytic enzyme glyceraldehyde 3-phosphate
dehydrogenase (GAPDH) and therefore sequestered, inhibits
mTOR activation. Conversely, it is implied that when Rheb-
GAPDH binding is blocked, mTOR activation will increase and
potential antidepressant mechanisms can ensue (88). In the
presence of ketamine, levels of Rheb are significantly increased in
cell culture, which is presumed to be closely associated with the
increased levels of mTOR activity (88). When NMDA receptors
are concomitantly activated, Rheb levels decrease, supporting
NMDAR antagonism as part of ketamine’s mechanism of
action (88).

The mTOR pathway largely initiates mRNA protein
translation through eukaryotic initiation factor 4E-binding
proteins (4E-BP), and the mTOR-4E-BP pathway has shown to
be pivotal for synaptic plasticity (89, 90). Downstream signaling
proteins 4E-BP1 and 4E-BP2 are required for antidepressant-like
effects of ketamine and its metabolite, (2R,6R)-HNK, in rodents
(89). Additionally, another regulator called extracellular signal-
related kinases (ERK) has shown involvement in ketamine’s
mechanism, which has previously demonstrated increased levels
of phosphorylation in response to traditional antidepressants
such as escitalopram, paroxetine, and tranylcypromine in rat
hippocampal cultures (91). Ketamine reversed stress-induced
decreases in levels of ERK 44 and 42 in the rat amygdala,
reflective of increased mTOR activation (82). The mTOR and
ERK pathway may only be specific to the mechanism of (S)-
ketamine, as (R)-ketamine did not show changes in levels of
phosphorylation in the mouse PFC (92).

A neurotrophin largely responsible for neuroplasticity in the
brain is brain-derived neurotrophic factor (BDNF). BDNF is a
marker of neuronal survival and growth and has been heavily
associated with mood and antidepressant therapy (93, 94). BDNF
is produced by mTOR activation, released into the synapse by the
neuron, and stimulates its receptor, tropomyosin receptor kinase
B (TrkB) on the same postsynaptic neuron (95, 96). This further
stimulates mTOR activation and functions as a positive feedback
loop (96).

Infusion of a BDNF neutralizing antibody, BDNF-knockout,
and TrkB-knockout resulted in abolishment of ketamine’s
behavioral antidepressant-like effects in animal models (90,
97–100). Similar results are observed with a TrkB antagonist
(81, 101). Stress-induced decreases in levels of BDNF in the
mouse hippocampus and the ventromedial prefrontal cortex
is effectively restored with ketamine administration (102–
105). Ketamine also acutely increases BDNF levels in the
hippocampus and amygdala (106–111), dentate gyrus (109), and
serum (112) of rodents. Administration of a TrkB inhibitor to
the hippocampus blocks ketamine’s behavioral and molecular
effects in a rat model of depression (81, 113). In vitro studies
show similar effects. Primary neuronal cultures incubated with
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TABLE 1 | Molecular changes observed after ketamine administration in preclinical (cell cultures, animals), and clinical studies.

In vitro Animals, in vivo Humans

Brain region Blood Neuroimaging Blood

PFC HPC AMY DG DRN PAG NAc VTA SN Serum mPFC pgACC Serum Plasma

Glutamate ↑ (43) ↑ (43)
↓ (45)

↑ (33, 34)
↓ (36)

− (38, 39)

Glutamine ↓ (45) ↑ (33, 34, 40)
↓ (36)

Glx cycling ↑ (41) ↑ (37) ↑ (38, 39)

GABA ↓ (43) ↓ (43)
↑ (45)

↑ (33)
↓ at 3–4 h

(34)
− at 24 h (35)

GAD67 ↓ (43)
↑ (46)

↓ (43)

Neuregulin-1 ↓ (29) ↓ (43) ↓ (43)

RGS4 ↓ (48)

NMDA GluN2A ↓ (155)

NMDA GluN2B ↑ (64) ↑ (155)

NMDA GluN1

NMDA GluN3 − (155)

AMPAR mRNA ↑ (55) − (155)

AMPAR/NMDAR ratio ↑ (62)

AMPA GluA1 p↑ (63, 64)
↑ (66)

↑ (73, 75) p↓ (57) ↑ (76,
149)

↓ (82)

AMPA GluA2 ↑ (66) ↑ (64) ↑ (64) p↓ (65)

AMPA GluA3 ↓ (45)

AMPA GluA4 ↓ (83)

EAAT2 and EAAT3 ↑ (67)

GLT-1 ↓ (64) ↑ (68–70)

mTOR ↑ (73)
↓ female only

(32)

p-mTOR ↑ (74) ↑ (61)

p4E-BP ↑ (73)

p70S6K ↑ (73)

ERK ↑ (73)

ERK44 and ERK42 ↑ (82)

(Continued)
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TABLE 1 | (Continued)

In vitro Animals, in vivo Humans

Brain region Blood Neuroimaging Blood

PFC HPC AMY DG DRN PAG NAc VTA SN Serum mPFC pgACC Serum Plasma

Akt ↑ (73)

PSD-95 ↑ (73, 75) ↑ (76, 108),
(154)

p-PSD-95 ↓ (153)

Egr-1

Rheb ↑ (88)

BDNF ↑ (60, 114,
118)

↑ (102, 109),
(115, 120),

(121)

↑

(104–110),
(115, 121),

(122)

↑ (102, 111),
(121)

↑ (109) ↑ (115) ↑ (112) ↑ (126)
− (129)

↑(127, 128)
− (129–133)

BDNF mRNA ↑ (118) ↑ Female
only (158),
− (117)

↑ Female
only (158)

BDNF exon IV mRNA ↑ (118)

BDNF gene ↑ (103)

BDNF promotor IV

HDAC ↓ (109) ↓ (109)

ProBDNF ↓ (119)

p-TrkB ↑ (164) ↑ (164)

p-CREB ↑ (164) ↑ (164) ↓ (164)

VGF ↑ (140)

eEF2K

p-eEF2K ↑ (143) ↓ (90)

p-p70S6K ↑ (60, 88) ↑

(59, 146)
↑

(88, 146)
↑ (146) ↑ (146) ↑ (146) ↑ (146)

GSK-3 ↓ (109) ↓ (109, 150) ↓ (109)

GSK-3β ↑

(151, 152)

IGF2 ↑ (157)

VEGF ↓ (169) − (131)

VEGFA ↑ (170)

VEGF mRNA ↑ (170)

miR-29b-3p ↑ (171)

GRM4 ↓ (171)

miR-206 ↓ (172)

miR-9-5p ↑ (173) ↑ (173)

↑ Indicates increase, ↓ indicates decrease, − indicates no change, p means phosphorylation, superscripts correspond to reference list.
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FIGURE 2 | Ketamine’s postulated mechanism of action and associated molecules.

ketamine show increased release of BDNF at 15 min (60).
Neuronal cultures isolated from the hippocampus of rat models
of depression show increased levels of BDNF when the rats
were treated with ketamine, as opposed to those that were
not (114).

Interestingly, ketamine’s metabolite, (2R,6R)-HNK also
upregulated BDNF levels in the rat ventrolateral periaqueductal
gray, hippocampus, and mPFC (115). Infusion of (2R,6R)-HNK
into the intramedial-mPFC or systemic administration induced
antidepressant-like effects in mice (97). In vitro studies show that
ketamine and (2R,6R)-HNK disrupts TrkB receptor interaction
with a protein complex crucial for endocytosis, adaptor
protein complex 2 (AP2M) (116). This suggests differential
regulation mechanisms.

One study also showed differential effects of the R- and
S- isomer requiring TrkB receptor activation involved
in ketamine’s mechanism (92). Behavioral effects of
R-ketamine required TrkB receptors, while S-ketamine did
not (92). Though further research is required, these studies
robustly support involvement of BDNF-TrkB signaling in
ketamine’s mechanism.

Specific phases of upstream or downstream signaling of
BDNF are also involved. One study showed ketamine-induced
restoration of hippocampal dendritic trafficking of BDNF mRNA
that was impaired by chronic mild stress in rats, though global
levels of BDNF mRNA were not rescued (117). Significantly
increased levels of BDNF promotor IV’s transcriptional activity
has also been found post-ketamine (118). Ketamine decreases
levels of a transcriptional regulator, histone deacetylase (HDAC),
in the mouse striata, hippocampus, and PFC (109). However,
knocking out histone deacetylase 5 (HDAC5) resulted in a
dysregulated increase of BDNF, which abolished ketamine-
induced increases (118).

ProBDNF, a BDNF precursor, is cleaved to produce mature
BDNF (mBDNF) and this cleavage is assumed to be integral
in producing antidepressant effects (119). The administration
of ketamine increases mBDNF levels and decreases the ratio
of proBDNF to mBDNF in stressed mice (119). When this
cleavage is inhibited with a tissue plasminogen activator
(tPA), mice show increased depressive-like symptoms (119).
Additionally, the release of mBDNF post S-ketamine in the
mouse mPFC was shown to be dependent on the expression of
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stress-responsive glucocorticoid receptor co-chaperone FKBP51,
and FKBP51-knockout mice did not show antidepressant-like
effects of ketamine (120). This suggests that this cleavage,
and the expression of mBDNF, is integral in ketamine’s
mechanism of action.

While most researchers agree on the importance of BDNF in
ketamine’s rapid therapeutic effects, the exact role of BDNF is
still contested. Measurement of BDNF protein levels induced by
ketamine seems to vary as a function of time. Rats who were
sacrificed immediately after administration had higher BDNF
levels in the prefrontal cortex, amygdala, and hippocampus than
those sacrificed 1 and 6 h post-administration (121). Acute
administration of ketamine results in a spike of BDNF levels
in the hippocampus (122), though chronic administration for
14 days results in BDNF hippocampal levels being unaffected
(123, 124). BDNF protein levels seem to increase acutely, and
decrease slowly, suggesting a trigger in homeostatic mechanisms
to clear increased protein levels (121). However, increased BDNF
is seemingly unnecessary for the sustained antidepressant effect.
Though protein levels returned to baseline after 24 h, behavioral
antidepressant-like responses were still intact in mice (90). In
one study, ketamine was still able to manifest antidepressant-
like effects in BDNF knockout mice unable to produce BDNF,
suggesting that ketamine elicits its clinical effects via additional
mechanisms (125).

Results of BDNF levels in humans show variability, and all
clinical studies employed the common subanesthetic dose of
0.5 mg/kg, with the exception of two studies which included a
range of 0.2–0.5 mg/kg. Ketamine-induced increases in BDNF
are observed in serum after 1 week (126) and plasma after 230–
240 min (127, 128). Depressive symptoms of patients correlated
with BDNF plasma levels for up to 72 h (128), while one found
no correlation with mood responses (129). Other studies have
found no differences in BDNF levels in plasma at the same
time points despite significant improvements in mood (129–
133). In a genome-wide association study, single nucleotide
polymorphisms as well as whole genes involved in BDNF-
TrkB signaling were shown to be associated with rapid and
sustained antidepressant effects in patients with TRD (134).
Specific polymorphisms associated with BDNF, namely those
with the Val/Val BDNF allele at rs65, were more likely to
exhibit an antidepressant response (135) and an anti-suicidal
response (136) to intravenous ketamine than those with the
Val66Met polymorphism.

One critical limitation of using BDNF as a biomarker arises
from the fact that quantification of BDNF is often conducted
in animal models through brain tissue, and peripheral blood
in humans. Robust animal data may not translate to humans
in practice. For example, a robust increase in plasma BDNF
from ketamine was shown to have no effect on brain BDNF
in rats, and no correlation was seen between peripheral and
central BDNF levels (137). Studies like this contribute to the
challenge of interpreting BDNF’s exact role in ketamine’s rapid
antidepressant effects.

BDNF acts to modulate several downstream processes
essential to ketamine’s treatment efficacy. A protein that is
regulated by and downstream to BDNF, is neuropeptide VGF

(non-acronym). VGF is an exercise regulated protein that
is downregulated by stress and models of depression, and
upregulated with exercise (138, 139). VGF levels increase with
ketamine administration in the ventromedial prefrontal cortex
in mice (140). Inhibition of VGF in the prefrontal cortex
decreases ketamine-induced mTOR signaling and inhibits rapid
antidepressant-like effects in mice (141). When VGF is artificially
overexpressed, behavioral deficits typically caused by chronic
restraint stress is prevented (140). When VGF is knocked out,
ketamine exposed mice were more susceptible to chronic stress.
Thus, it is likely that VGF is one of many proteins utilized by
ketamine, via BDNF, to execute its rapid clinical effects.

Beyond BDNF but still within the mTOR signaling pathway
is eukaryotic elongation factor 2 kinase (eEF2K), a downstream
kinase of mTOR. This kinase is paired with the protein eEF2, an
important factor of ribosome translocation of protein synthesis
(142). When NMDAR is at its resting state, eEF2K phosphorylates
eEF2, which pauses translation of proteins. Thus, NMDAR
antagonism stops eEF2 phosphorylation, which promotes
translation of transcripts. Administration of ketamine led to
rapid decreases in p-eEF2 in the hippocampus, and artificially
inhibiting eEF2K led to increased BDNF protein expression
(90). In addition, inhibiting eEF2K in BDNF knockout mice
had no antidepressant-like effect, further supporting BDNF’s
involvement in ketamine’s actions (90). Ketamine administration
was shown to increase levels of phosphorylated eEF2K in the
prefrontal cortex (143), yet the significance of this result is yet
to be clarified, as the location of phosphorylation determines
increased or decreased activity and impacts on eEF2 (144).

P70 ribosomal S6 kinase (p70S6K) is another downstream
substrate of mTOR that works to promote protein synthesis,
and has previously shown decreased levels in depressed subjects
compared to healthy controls (145). Ketamine significantly
increased levels of p70S6K in primary neuronal cultures, in the
mPFC of rats, and NAc, ventral tegmental area, substantia nigra,
hippocampus, and basolateral amygdala of mice, with rapamycin
abolishing these effects (59, 60, 88, 146, 147). Ketamine also
restores levels of p70S6K in mice models of depression.
Interestingly, this ketamine-induced increase in p70S6K does not
occur in dopamine 3 receptor (D3R) knockout mice (146). This
suggests that ketamine’s mechanism of action depends on viable
D3Rs (146).

Glycogen synthase kinase 3, or GSK-3, is one of the enzymes
in the mTOR signaling pathway responsible for regulating many
aspects of the cell cycle such as proliferation and apoptosis (148).
This serine/threonine kinase has previously been studied in the
context of bipolar disorder, diabetes, and Alzheimer’s disease. In
the context of depression, inhibition of this enzyme is required
for ketamine’s behavioral antidepressant effect in numerous
animal models of depression (149, 150). Constitutively active
GSK-3 is associated with resistance to ketamine’s antidepressant
effect, and the usage of a GSK-3 inhibitor, lithium, mimics
ketamine’s effects (149). Ketamine has shown to decrease
levels of GSK-3 in the mouse hippocampus, striata, dentate
gyrus, and PFC (109), and may also act through increasing
levels of phosphorylated GSK-3β, the inactive form, in rat
prefrontal cortex (151, 152). GSK-3 inhibitors act to augment
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antidepressant-like effects of ketamine when the dose of ketamine
is at a sub-threshold value (152).

GSK-3’s activity is a prerequisite for biomolecular changes
observed in animal models after ketamine administration.
Specifically, ketamine increases membrane levels of the
AMPAR subunit, GluA1 (147, 153). However, when GSK-3 is
knocked out, ketamine’s effects on GluA1 are abolished, and
previously observed increases in BDNF are inhibited (153).
Similar results occur when rapamycin is administrated (147).
This mechanism may be monitored through postsynaptic
density protein 95 (PSD-95), a substrate for GSK-3 that also
regulates AMPAR trafficking (153). To add further, ketamine
decreases hippocampal membrane levels of phosphorylated-
PSD-95, the target of GSK-3 that would promote AMPA-GluA1
internalization (153). Decreased p-PSD-95 would mean more
AMPARs would be available on the membrane to be activated.
Ketamine also increased PSD-95 in the rat hippocampus (108,
154) and normalized levels of transcription factor Egr-1 (154).

Ketamine’s modulatory actions also converge on to pathways
downstream of NMDAR. In a poststroke depression model
of rats, ketamine administration significantly improved
antidepressant-like symptoms (155). Along with this, there was
an upregulation of subtype NMDAR2-β and downregulation
of subtype NMDAR2-α, as well as their downstream signaling
proteins, β-CaMKII and α-phosphorylation, respectively, in the
dentate gyrus (155). Interestingly, no effects on NR1 and NR3
subtypes were seen, suggesting that ketamine is not dependent
on all subunits of NMDARs (155).

Decreased levels of a protein upstream of GSK-3, called
insulin-like growth factor 2 (IGF2), has previously been
implicated in rodent models of depression, with artificial
induction of IGF2 expression having protective effects against
depressive-like behaviors (156). IGF2 is upregulated with
ketamine in vivo and in vitro (150, 157)—and this requires the
inhibition of GSK-3 as well (150). Knocking out IGF2 reduces
ketamine’s behavioral antidepressant effect, and mice resilient to
induced depression show higher amounts of IGF2 than mice that
were susceptible to depression paradigms (150).

There are several limitations to all mTOR results discussed
so far. The first limitation is that there seem to be sex-
dependent differences in mTOR signaling. Ketamine treatment
increased levels of BDNF mRNA in female, not male mice
(158), suggesting sex-dependent mechanisms that require both
protein translation and transcription. While female rats display
greater sensitivity to ketamine at lower doses than male rats,
such as at 2.5 mg/kg, this rapid behavioral antidepressant effect
was not paired with an increased phosphorylation level of
mTOR (159). A similar result was observed in female mice,
where there was actually a decrease of mTOR phosphorylation
in the prefrontal cortex (32). In addition, ketamine-induced
reductions in levels of eEF2K activation in male rats were
in agreement with previous results; however, this was not
seen in female rats (159). In fact, the increased sensitivity to
ketamine was not seen when female rats were ovariectomized—
and restored when artificial estrogen and progesterone were
administered, suggesting integral roles of gonadal hormones
in ketamine’s mechanism of action (159). This gender-specific

response to ketamine is not isolated to this one study, as a similar
result is seen with acetylation of α-tubulin—another marker of
neuroplasticity. Increased acetylation of α-tubulin was observed
only in females 24 h post-ketamine administration, suggesting
increased stabilization of microtubules (160). These differences
may point to possible variations of the mechanism of action or
metabolism for ketamine depending on the sex.

The second limitation arises from the fact that these
results stem from a combination of different rodent models
of depression. Each model may manifest through various
phenotypes of depression, and therefore cannot be considered
as one consistent valid method of inducing depression. In fact,
when a model of resistant depression was utilized, mTOR levels
were significantly reduced in the prefrontal cortex, despite a
behavioral antidepressant response (161). This suggests that an
increase in mTOR levels do not necessarily reflect a behavioral
antidepressant response in all cases.

Lastly, the third limitation is observed from a recent
study that showed oral rapamycin in humans with depression
prolonging ketamine’s antidepressant effect at 2 weeks (162).
However, the addition of rapamycin did not affect ketamine’s
acute antidepressant effects (162). This study puts preclinical
results into perspective and generates questions about the
function of mTOR in sustained antidepressant effects. Taken
together, while the current field of literature supports mTOR
involvement in the mechanism of action for ketamine, these are
limitations to consider.

Inhibition of MAPK/Extracellular
Signal-Related Kinases May Be Involved
in the Actions of Ketamine
MAPK/ErK signaling pathway is another important pathway
involved in neural plasticity, carrying signals from the cell
surface to the nucleus. The MAPK pathway regulates CREB, an
integral modulator of cell survival. Inhibition of this pathway
shows further potentiation of ketamine’s effects in the rat brain.
Ketamine increased levels of p-TrkB and pCREB in cultured
neurons and the prefrontal cortex, and decreased pCREB in the
hippocampus (163, 164). A MAPK inhibitor alone showed similar
results and augmented ketamine’s effects when administered
together, suggesting that MAPK signaling inhibition may be
involved in ketamine’s mechanism (163).

One of the upstream extracellular signaling growth factors
that stimulate the MAPK/Erk pathway, among many others, is
vascular endothelial growth factor (VEGF), which has previously
been discussed as a potential target for treating depression (165).
It is an important mitogen that functions in the survival of
endothelial cells, neurons, as well as maintenance of synaptic
transmission (165), and has previously shown to mimic actions of
antidepressants in behavioral models of rodents (166). Neuron-
specific deletion of VEGF or its receptor, or the usage of a
VEGF neutralizing antibody resulted in ketamine’s behavioral
and synaptogenic effects being abolished in rodents (167, 168).
Additionally, infusion of VEGF alone into the mPFC produced
rapid antidepressant-like effects in these animal models (167,
168). However, in the rat hippocampus, ketamine administration
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decreased levels of VEGF after 2 h (169). Data from clinical
studies show contradictory results. One found no effects in
plasma VEGF levels after treatment with ketamine (131), while
another found increased plasma levels of VEGFA mRNA and
VEGFA protein (170). Ratio of the mRNA of VEGF to pigment
epithelial-derived factor (PEDF), a signaling molecule closely
linked to VEGF, was increased with ketamine as well (170). This
may suggest VEGF as a part of ketamine’s mechanism.

Regulation of MicroRNA Expression Is
Involved in Ketamine’s Mechanism of
Action
MicroRNAs (or miRNAs) are non-coding small molecules that
are integral in synthesizing proteins, and modulators of protein
expression. Members of the MiR-29 family have shown to
regulate neuropathological processes relevant to neuroplasticity.
Metabotropic glutamate receptor 4 (GRM4), which is predicted
to be a target of MiR-29, regulates many major neurotransmitters
such as dopamine and glutamate. Inducing depression in rat
models was paired with downregulation of miR-29b-3p and
increased levels of GRM4 in the prefrontal cortex, which
were restored by ketamine administration (171). In fact, pre-
treatment of ketamine prevented upregulation of GRM4 in
the rat prefrontal cortex, and miR-29b-3p overexpression was
followed by a relief of behavioral depressive symptoms (171).
An miRNA from a different family, miR-206, was down-
regulated in ketamine-treated rodents, which was determined
to be a critical regulator of BDNF protein expression (172).
In addition, overexpression of miR-206 in primary cultured
hippocampal pyramidal neurons impaired ketamine-induced
upregulation of neuronal BDNF protein expression (172). Rats
vulnerable to chronic mild stress exhibited reduced levels of
another microRNA, miR-9-5p, in the hippocampus, which
was reversed by ketamine administration in 24 h (173). An
in vitro model of stress also showed restored levels of miR-9-
5p with ketamine (173). These results suggest that the pathway
involving microRNAs may significantly be involved in ketamine’s
antidepressant mechanism of action.

Ketamine’s Mechanisms of Action in
Bipolar Depression
Ketamine’s rapid antidepressant potential in unipolar depression
have initiated the exploration of its treatment effects in
bipolar disorder (BD) as well (174–180). However, evidence
supporting ketamine’s effects for BD is limited, and the
number of randomized controlled trials is significantly less
than those exploring unipolar depression. In addition, extra
caution is required due to relevant ketamine’s psychomimetic and
dissociative effects (181). Still, current evidence seems to support
acute ketamine’s rapid antidepressant and anti-suicidal effects in
bipolar depression (182–185), though the data that measures the
sustainability of this effect is limited. Studies that differentiate
BD-I and BD-II is even fewer, though Zarate et al. (178) suggests
that results may be similar in both subtypes.

According to our literature search, there are very few studies
that investigate ketamine’s mechanism of action for bipolar

disorder specifically. Assumptions can be made from mechanistic
actions of lithium, a common treatment option for BD, as
both ketamine and lithium inhibit GSK-3 (153, 186) in animal
models. This suggests glutamatergic modulation as one of the
mechanisms employed by ketamine. A clinical study, Lally et al.
(187) found that ketamine improved anhedonia, independent
from mood, in patients with bipolar depression, and this effect
was significantly associated with increased glucose metabolism in
the dorsal anterior cingulate cortex and putamen. Interestingly,
patients who were taking concomitant lithium, but not valproate,
had greater hedonic improvements (187). BDNF as a molecular
marker has been robustly linked with bipolar episodes in patients,
with low levels of BDNF associated with depressive and manic
episodes, as well as their severity (188–190). BDNF upregulation
after ketamine administration may partially explain ketamine’s
mechanism in BD (191). Patients with euthymic BD have
reported decreased expression of HDAC genes compared to
control (192), and ketamine has shown to alter levels of HDAC
in animal models as well (109, 193), suggesting the involvement
of epigenetic mechanisms of ketamine.

CONCLUSION

The present systematic review summarized the wide-ranging
scope of current literature regarding molecular neuroplastic
changes that occur rapidly after exposure to ketamine. We
found that these changes in molecular neuroplasticity revolving
glutamate, AMPA receptors (AMPAR), mTOR, BDNF/TrkB,
VGF, eEF2K, p70S6K, GSK-3, IGF2, Erk, and microRNAs may
likely be responsible in mediating and producing ketamine’s rapid
antidepressant effects in MDD and bipolar disorder depression.
We found studies that report similar findings post ketamine, such
as increased glutamate/glutamine cycling, enhanced actions of
AMPA receptors, increased activation of mTOR, BDNF/TrkB,
and associated signaling molecules. However, no matter how
robust a field of evidence is, such as mTOR’s involvement
pathway, potential inconsistencies still exist, such as sex-
dependent results and differences in sources of tissue in animal
models vs. clinical studies. In addition, these studies employ
a range of methodologies in various lab environments, models
of depression, and doses of ketamine. It is most probable that
many different pathways contribute to ketamine’s actions, and
it is currently difficult to narrow down which mechanisms are
most dominant over others to produce this effect, due to the
widespread nature of ongoing research. Further studies should
focus on reproducing currently available data with different
animal models of depression, larger sample sizes, and long-term
studies exploring mechanisms of maintenance and sustained
effects to strengthen the evidence.
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