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Abstract: The discovery of graphene and its unique properties has inspired researchers to try to invent
other two-dimensional (2D) materials. After considerable research effort, a distinct “beyond graphene”
domain has been established, comprising the library of non-graphene 2D materials. It is significant
that some 2D non-graphene materials possess solid advantages over their predecessor, such as having
a direct band gap, and therefore are highly promising for a number of applications. These applications
are not limited to nano- and opto-electronics, but have a strong potential in biosensing technologies,
as one example. However, since most of the 2D non-graphene materials have been newly discovered,
most of the research efforts are concentrated on material synthesis and the investigation of the
properties of the material. Applications of 2D non-graphene materials are still at the embryonic stage,
and the integration of 2D non-graphene materials into devices is scarcely reported. However, in
recent years, numerous reports have blossomed about 2D material-based biosensors, evidencing
the growing potential of 2D non-graphene materials for biosensing applications. This review
highlights the recent progress in research on the potential of using 2D non-graphene materials
and similar oxide nanostructures for different types of biosensors (optical and electrochemical).
A wide range of biological targets, such as glucose, dopamine, cortisol, DNA, IgG, bisphenol, ascorbic
acid, cytochrome and estradiol, has been reported to be successfully detected by biosensors with
transducers made of 2D non-graphene materials.

Keywords: two-dimensional materials; beyond graphene; transition metal dichalcogenides;
transition metal oxides; two-dimensional oxides; transducers; biosensors

1. Introduction

The developments in material science are the driving force of technological progress. In addition, it
may be strongly argued that the creation of new materials of different dimensionality and functionality
is the primary prerequisite for any likely significant breakthroughs to be made. The invention of
graphene has unambiguously demonstrated that the properties of two-dimensional (2D) materials can
be different and in many ways far superior to those of the bulk counterpart.
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Graphene, being one atom-thick carbon nanosheets, became the first 2D nanostructure, which was
isolated from parent graphite in 2004 [1]. It has served as a model for a two-dimensional system that has
captured the interest of researchers from different fields, such as electronics, photonics, material science,
engineering and sensing. In particular, graphene derivatives have been actively studied in the field
of electrochemistry because of their unique physical and chemical properties in comparison to other
carbon materials, such as large specific surface area (2630 m2/g) [2], superior electrical conductivity
(200 S/m) [3,4], excellent thermal stability with oxidation resistance temperatures up to 600 ˝C [5],
remarkable mechanical strength with Young’s modulus of around 1.0 TPa [6], outstanding optical
transmittance of 97.7% [7] and high thermal conductivity between 3080 and 5150 W/mK [8]. It also
demonstrates fascinating electrochemical properties, including wide electrochemical potential, activity
and low charge-transfer resistance [9–11].

However, graphene, being the most well-known 2D crystal with a plethora of unique properties,
has its disadvantages, which limit its applications. For instance, the lack of an intrinsic band gap
is one of the largest obstacles on its way to be fully utilized. Fortunately, graphene’s discovery has
triggered enormous interest toward other 2D materials and 2D nanostructures with possibly even
more superior properties.

With this in mind, the completely separate “beyond graphene” area of material science has been
recently established and is growing extremely rapidly at present: following the success of graphene,
the isolated monolayers and few-layer crystals of hexagonal boron nitride (hBN), transition metal
dichalcogenides (TMDCs: MoS2, MoSe2, WS2, WSe2, etc.), transition metal oxides (TMOs: LaVO3,
LaMnO3), transition metal chalcogenides (NbSe3, TaSe3) and others (Li7MnP4, MnP4), as well as
layered complex oxides have been successfully fabricated [12]. More recently, the 2D analogues of the
classical semiconductors, silicene and germanene have been studied [13], being most recently followed
by the somewhat unexpected phosphorene [14]. The resulting pool of 2D crystals is therefore huge
and covers a range of properties: from the most insulating to the best conductors, from the strongest to
the softest. Recently, a number of excellent reviews were published [15], reflecting the growing library
of the 2D materials. The summarized data are presented as a chart in Figure 1.

Sensors 2016, 16, 223 2 of 23 

Graphene, being one atom-thick carbon nanosheets, became the first 2D nanostructure, which 
was isolated from parent graphite in 2004 [1]. It has served as a model for a two-dimensional system 
that has captured the interest of researchers from different fields, such as electronics, photonics, 
material science, engineering and sensing. In particular, graphene derivatives have been actively 
studied in the field of electrochemistry because of their unique physical and chemical properties in 
comparison to other carbon materials, such as large specific surface area (2630 m2/g) [2], superior 
electrical conductivity (200 S/m) [3,4], excellent thermal stability with oxidation resistance 
temperatures up to 600 °C [5], remarkable mechanical strength with Young’s modulus of around  
1.0 TPa [6], outstanding optical transmittance of 97.7% [7] and high thermal conductivity between 
3080 and 5150 W/mK [8]. It also demonstrates fascinating electrochemical properties, including wide 
electrochemical potential, activity and low charge-transfer resistance [9–11]. 

However, graphene, being the most well-known 2D crystal with a plethora of unique properties, 
has its disadvantages, which limit its applications. For instance, the lack of an intrinsic band gap is 
one of the largest obstacles on its way to be fully utilized. Fortunately, graphene’s discovery has 
triggered enormous interest toward other 2D materials and 2D nanostructures with possibly even 
more superior properties. 

With this in mind, the completely separate “beyond graphene” area of material science has been 
recently established and is growing extremely rapidly at present: following the success of graphene, 
the isolated monolayers and few-layer crystals of hexagonal boron nitride (hBN), transition metal 
dichalcogenides (TMDCs: MoS2, MoSe2, WS2, WSe2, etc.), transition metal oxides (TMOs: LaVO3, 
LaMnO3), transition metal chalcogenides (NbSe3, TaSe3) and others (Li7MnP4, MnP4), as well as 
layered complex oxides have been successfully fabricated [12]. More recently, the 2D analogues of 
the classical semiconductors, silicene and germanene have been studied [13], being most recently 
followed by the somewhat unexpected phosphorene [14]. The resulting pool of 2D crystals is 
therefore huge and covers a range of properties: from the most insulating to the best conductors, from 
the strongest to the softest. Recently, a number of excellent reviews were published [15], reflecting 
the growing library of the 2D materials. The summarized data are presented as a chart in Figure 1. 

 

Figure 1. Chart illustrating the categorized library of 2D materials. Data are adapted from [16]. hBN 
is a hexagonal boron nitride; BCN is 2D nanocomposites containing boron, carbon and nitrogen; 
BSCCO is bismuth strontium calcium copper oxide. 

However, in order to make rapid progress, what is ideally needed is a more complete library of 
2D materials of matching semiconductor and electronic properties combined with new technologies 
for their fabrication on a commercial scale. The mentioned obstacle of the lack of band gap in 
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However, in order to make rapid progress, what is ideally needed is a more complete library of 2D
materials of matching semiconductor and electronic properties combined with new technologies for
their fabrication on a commercial scale. The mentioned obstacle of the lack of band gap in graphene can
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be successfully overcome not only by existing 2D non-graphene materials, but also by a forthcoming
group of metal oxides, which are able to fill the missing band gap energy range (~2.3–4.9 eV) (Figure 2).

However, to date, the technology for obtaining 2D materials has been inherently related to
their layered structure and the weak van der Waals bonds that exist between the layers: the earliest
scotch-tape approach was later transformed to the chemical intercalation and exfoliation of 2D flakes,
and only recently has attention turned to the direct growth techniques (chemical vapor deposition
(CVD) of Gr, TMDs and others); while metal oxides, e.g., TiO2, MnO3, WO3, mica and perovskite-like
crystals, are only represented in the 2D materials family very modestly, highlighting once again the
need for further detailed studies of their growth and properties. Herein and further in the article, we
will call the group of 2D metal oxides and similar (e.g., one or a few atoms thin layers) the 2D metal
oxide nanostructures.
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In this article, we intentionally will not describe the methods and approaches for 2D non-graphene
material synthesis, but recommend to our readers several comprehensive review articles, which
were published recently and are devoted specifically to the technology of 2D materials fabrication
(e.g., [13,17,18]).

Interest in the metal oxides in the 2D form is particularly strong in the context of biosensor
applications. Among the various transducer materials that have been developed, nanostructured metal
oxides have exceptional optical and electrical properties that offer excellent prospects for the interfacing
of biological recognition events with electronic or optical signal transduction and for designing of a
new generation of bioelectronics devices that may exhibit novel functions.

2. Principle of Biosensors Operation and Current Trends in Biosensing Technology

2.1. Biosensors Design and Principles of Operation

A biosensor is an analytical device that transforms a biological recognition event into another
signal, e.g., optical, chemical, electrical or physical signal, that can be measured and quantified in real
time [19].

Technologically, a biosensor is an integrated miniaturized device that has a biosensitive layer,
connected to a transducing system for signal detection. The biosensitive layer is created by
immobilization of the biological recognition element (enzyme, antibody, oligonucleotide, receptor
protein, microorganism or the whole cell) on the surface of the biosensor (Figure 3). The biosensitive
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layer should be bioselective and sensitive to capture the appropriate analyte (enzyme, antigen,
DNA/RNA, toxin, virus, heavy metal, pesticide, etc.) and interpret accurately the bio-recognition
event. Biosensors integrate the selectivity of biomolecules and the processing power of modern
microelectronics and optoelectronics [20].
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biologically-affined sensitive layer, immobilized on the transducer. The biological response is
transformed to an electrical, optical or electrochemical signal by the transducer and then further
processed, providing the information. Data are summarized from [20,21].

Based on the detection method and transducer system, biosensors may be classified respectively
into electrochemical, physical or optical (Figure 4).
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Figure 4. Types of biosensors based on their transducer operation.

Electrochemical biosensors are defined as integrated devices that provide specific quantitative
or semi-quantitative analytical information using a biological recognition element, which is in
contact with an electrochemical transduction element. Electrochemical biosensors are usually
based on potentiometry and amperometry. The amperometric biosensors are the most successfully
commercialized devices among numerous types of biosensors, since the research in the field of
biosensors started with them [21]. Recent advances in electrochemical biosensors have been reviewed
extensively by Lin et al. [22–24].
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A physical transducer system includes piezoelectric and thermometric types of biosensors.
Piezoelectric biosensors are based on an alternating potential and produce a standing wave in a
crystal at a characteristic frequency. This frequency is highly sensitive to the surface properties of a
crystal. If a crystal is coated with a biological recognition element, binding of a target analyte to a
receptor will produce a change in the resonant frequency.

Thermometric biosensors are constructed by combining enzymes with temperature sensors. When
the analyte is exposed to the enzyme, the heat of the enzymatic reaction is measured and calibrated
against the analyte concentration [25].

Optical biosensors detect changes in the absorbance, photoluminescence (PL) or fluorescence of
an appropriate indicator and changes in the refractive index [25]. The basic idea of optical biosensors
is to produce an electronic signal, which is proportional in intensity or frequency to the concentration
of a specific analyte or group of analytes, to which the biosensing element binds [26].

2.2. Current Trends in Biosensors

Since 1962, groups from all over the world have joined biosensor research from the moment when
Clark and Lyons [27] designed the first amperometric biosensor by immobilizing of glucose oxidase
on an oxygen electrode [28].

Today, due to recent advances, the definition of a biosensor has evolved from the classical concept
of an enzyme-electrode to a variety of analytical methods based on biocatalysis and bioaffinity [29].
The improvement of biological components, the implementation of micro- and nano-technologies and
the development of new methods of integration between bioreceptors and transducers promise rapid
progress in biosensor technology [30]. As a result, biosensor research has become an interdisciplinary
field that integrates state-of-the-art achievements in physics, biology, chemistry, material science,
engineering, mathematics and information technologies [19]. In the past few decades, biosensors,
which come in a large variety of sizes and shapes, have found applications, such as environmental and
industrial monitoring, medicine, biotechnology, food analysis and production monitoring, healthcare,
agriculture, as well as national security and defense [19,25]. Recently, the successful use of biosensors
for environmental and industrial analysis, such as monitoring the microbiological and chemical quality
of water [31,32], rapid detection of various toxins (bacterial, dinoflagellate toxins, mycotoxins, plant
toxins) [32,33] and trace-level toxic heavy metal ions [34–36] and monitoring the concentration of
different pesticides and their residues in food, water and soil [37], were reported. Biosensors are
currently widely used in clinical diagnostics to determine the blood parameters (pH, pCO2 and
pO2) [38], glucose, lactate, urea, creatinine, cholesterol and triglyceride monitoring [39–41], testing
of genetic and infectious diseases [42], mutational analysis [43], skin allergy test [44] and cancer
diagnostics [45]. Biosensors are the main resources to be utilized in the forthcoming era of point-of-care
diagnostics. Diverse biosensing devices are considered to be applicable for point-of-care sensing
systems. Recently, a number of reviews concerning this topic were published [46–48].

Such extensive development of biosensors set the specific requirements for the transducers
materials, namely their properties. Transducer materials, first of all, should have good biological
affinity, enabling efficient immobilization of the biosensitive layer. Secondly, but not least, it should
provide an intense output signal (electronic or optical, etc.) depending on the sensing type.

Recent nanotechnology-oriented research provided plenty of novel material systems, appropriate
for biosensors design (nanostructures, quantum dots (QDs), carbon nanotubes (CNT), graphene and,
recently, other 2D materials). Being in fact the extreme case of surface science, 2D materials possess
the highest surface-to-volume ratio. This feature makes them extremely prospective for sensors
applications, where the interface occurring phenomena define the device performance. Therefore,
the number of reports devoted to biosensors using 2D materials as a transducer has been constantly
growing since the graphene discovery, as is evidenced by a simple search (Figure 5a). Apparently,
such progress is due to extensive graphene development as a material, and only a small number
of reports is devoted to biosensors based on non-graphene 2D materials (Figure 5b). However, it is
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noteworthy that the articles reporting the application of 2D non-graphene materials are most recent,
being dated mainly at last two years ago. Several remarkable reviews have been recently published on
this topic, reporting the application of graphene-like materials and graphene analogues in biomedical
and biosensing applications [49,50]. Additionally, this can be explained as being due to the fact that
2D non-graphene materials have the following advantages over graphene in context of electronics and,
hence, biosensor applications:

‚ Primarily, since graphene has a zero band gap, the transistors based on intrinsic graphene have a
low on-to-off current ration, resulting in high standby power dissipation, which limits their real
circuit application [51]. While 2D non-graphene materials have almost all of the necessary range
of band gap values (Figure 2), they can be used for the design of a field effect transistor (FET)
device. FET is characterized by high electron mobility and a high on-to-off ratio. Thus, integrating
the 2D non-graphene material-based channel of FET with biosensing layers, one can expect the
design of a complex biosensing device (FET biosensor). Such devices possess an extremely high
sensitivity due to the enhancement of the interface-related phenomena and selectivity due to the
immobilized biosensitive layers’ affinity.

‚ Another significant feature of 2D non-graphene materials is that unlike graphene or Si, many
of them have either an intrinsic direct band gap in a bulk state or undergo the transition from
indirect to direct semiconductors upon being scaled down to single layers [51]. This opens up
their application as a transducer for biosensors of the optical type of detection, where their strong
light-matter interaction can be influenced by the interface-related biological actions.

‚ Finally, it has to be noticed that among the various transducer materials that have been developed,
nanostructured metal oxides are promising due to their exceptional optical and electrical
properties that offer excellent prospects for the interfacing of biological recognition events with
electronic or optical signal transduction and for the designing of a new generation of bioelectronics
devices that may exhibit novel functions.
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3. Application of 2D Non-Graphene Materials and 2D Nanostructures in Biosensor Design

Recently, there were several excellent reviews published, devoted to biosensors, based on
graphene (e.g., [15]). However, the area of graphene analogues is practically undiscovered and
not covered by any specific review. Therefore, we have focused our attention on the most recent reports
on biosensors, based on 2D non-graphene materials. Interestingly, that report on the biosensoring
properties of 2D non-graphene materials follows their development trend: most articles are devoted to
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molybdenum disulfide (MoS2) and tungsten disulfide (WS2) as the pioneering non-graphene materials.
Later, this trend continued for other materials, including other dichalcogenides and chalcogenides
(SnS2, CuS, etc.), and most recently by metal oxides (MnO2, ZnO).

The dominating detection principle of the biosensors reported is electrochemical, being marginally
represented by optical types (see Figure 4). The electrochemical biosensors, based on non-graphene
2D materials, cover a range of the spectrum of analytes to be detected, such as glucose, dopamine,
hydrogen peroxide and DNA [52].

We have summarized the reported 2D non-graphene material-based biosensors into several
groups, depending on the analytes they were used to detect (Figure 6). As one can see, despite the fact
that the materials are only at the sunrise of their application in biosensing technologies, they are able
to cover a wide range of biological substances.
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Figure 6. Demonstration of the ability of some 2D non-graphene material-based biosensors to be used
for the detection or control of different biological substances.

3.1. MoS2 Material for Electrochemical and Optical Biosensors

The MoS2 crystal consists of a metal Mo layer sandwiched between two S layers, with these triple
layers stacking together to form a layered structure. It has been predicted that the layered MoS2 is
expected to act as an excellent functional material, because the two-dimensional electron-electron
correlations among Mo atoms would aid in enhancing the planar electric transportation properties.
Indeed, the most dominating 2D non-graphene material in biosensor applications is unambiguously
MoS2. This can be explained by its rather “mature” age, as well as good material stability in an ambient
atmosphere (see Figure 1).

One of the most advanced MoS2 biosensor performance has been recently reported by
Sarkar et al. [53], where the effect transistor (FETs) concept for biosensors design was elaborated.
The authors emphasized that interest in biosensors based on FETS is stimulated by their highly
desirable attributes, such as rapid electrical detection without the need for labeling the biomolecules,
low power consumption, portability, inexpensive mass production and the possibility of on-chip
integration of both sensor and measurement systems.

In a conventional FET used for digital applications, two electrodes (source and drain) are used
to connect a semiconductor material, the so-called channel. Current flowing through the channel
between the source and drain is electrostatically modulated by a third electrode called the gate, which
is capacitively coupled through a dielectric layer covering the channel region.

While in the case of an FET biosensor (Figure 7), the physical gate is removed and the dielectric
layer is functionalized with a specific biosensitive layer for selectively capturing the desired target
biomolecules, during the capture of the biomolecules, which are charged, a gating electrostatic effect
is produced, which is then further transduced into a signal in the form of a change in the electrical
characteristics of the FET, such as drain-to-source current or channel conductance [53].
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The device, fabricated by Sarkar et al., demonstrated extremely high sensitivity: a MoS2-based
pH sensor demonstrated a sensitivity as high as 713 for a pH change by one unit along with efficient
operation over a wide pH range (3–9). Via immobilization, the protein biotin, the ultra-sensitive and
specific streptavidin protein, sensing was also achieved with a sensitivity of 196 even at 100 femto
molar concentration [53].

Interestingly, the authors claim that graphene cannot compete with a MoS2-based FET biosensor,
which surpasses the sensitivity of that based on graphene by more than 74-fold. Furthermore, MoS2,
being highly flexible and having a transparent nature, can offer new opportunities in advanced
diagnostics and medical prostheses. This unique fusion of desirable properties makes MoS2 a highly
potential candidate for next-generation low-cost biosensors [53].

Narayanan et al. demonstrated the electrochemical enzymatic and non-enzymatic biosensing
applications of ultrathin MoS2-based electrodes [54]. Atomically thin sheets of MoS2 were synthesized
and isolated via solvent-assisted chemical exfoliation.

Firstly, the MoS2 sheets were studied using positively-charged hexamine ruthenium (III) chloride
and negatively-charged ferricyanide/ferrocyanide redox probes for examining the charge-dependent
electrochemical activities of the electrodes. An extensive study indicates that MoS2 electrodes can be
extended to the selective detection of different biomolecules. In parallel, the ultrathin MoS2 sheet-based
electrodes were employed for the electrochemical detection of such an important neurotransmitter
as dopamine (DA), in the presence of ascorbic acid (AA). It is revealed, that MoS2 electrodes were
capable of distinguishing the coexistence of the DA and the AA with an excellent stability.

The enzymatic detection of glucose was studied by immobilizing glucose oxidase on the MoS2

electrodes. It was concluded that the MoS2 surface is a favorable surface for enzyme accommodation:
organic molecules can bind with the MoS2 surface efficiently, since their binding properties are greater
than highly-oriented pyrolytic graphite or mica. Thus, even the simple application of MoS2 as an
electrode opens up the possibility for highly sensitive enzymatic biosensing applications [54].

Another example of a label-free and ultra-sensitive electrochemical biosensor of DNA was
demonstrated by Wang et al. [55], using thin-layer molybdenum disulfide (MoS2) nanosheets as
a sensing platform. The thin-layer MoS2 nanosheets were prepared via a simple ultrasound exfoliation
method from bulk MoS2. The authors postulate that this procedure allows the formation of MoS2

with enhanced electrochemical activity. It was shown that based on the high electrochemical
activity and different affinity toward ssDNA versus dsDNA of the thin-layer MoS2 nanosheet
sensing platform, the tlh gene sequence assay was performed label-freely for the concentrations
from 1.0 ˆ 10´16 M–1.0 ˆ 10´10 M with a detection limit as low as 1.9 ˆ 10´17 M. Due to the utilized
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MoS2, a viable alternative for DNA analysis was achieved, which has the priority in sensitivity,
simplicity and costs. The authors emphasized also that the proposed sensing platform has good
electrocatalytic activity and can be extended to detect more targets, such as guanine and adenine [55].

The optical type of biosensors utilizing MoS2 is mainly fluorescence-quenching-based devices.
Such biosensors, comprising in fact homogeneous arrays for target molecules with fluorogenic
probes, are becoming increasingly popular due to their inherent advantages, such as operation
convenience, rapid binding kinetics and ease of automation. The probes by themselves usually
contain a fluorophore and a quencher to form a Förster resonance energy transfer (FRET) pair, in which
the distance-dependent fluorescence quenching is closely coupled with biomolecular recognition
events. Zhu et al. demonstrated recently a simple and homogeneous assay format for DNA and small
molecules by using single-layer MoS2-based fluorogenic nanoprobes. The authors presented the next
”mix-and-detect” strategy (Figure 8). Single-layer MoS2 can be considered as an ”S-Mo-S” sandwich
structure, stacking a positively-charged molybdenum plane between two negatively-charged sulfur
planes. MoS2 adsorbs a dye-labeled single-stranded DNA (ssDNA) probe via the van der Waals
interaction between the nucleobases and the basal plane of MoS2 and then quenches the fluorescence
of the dye. In contrast, when an ssDNA probe is hybridized with its complementary target DNA (since
the nucleobases are buried between the dense negatively-charged helical phosphate backbones), the
interaction between MoS2 and double-strained DNA is weaker; thus, the dye-labeled probe is away
from the material surface, resulting in the retention of the fluorescence of the probe [56].
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intensity of the dye-labelled ssDNA probe P1 (Homo sapiens tumor suppression gene) and retained
fluorescence for P1/T1. A single-layer MoS2 nanosheet exhibits a high fluorescence quenching ability
and different affinity toward ssDNA versus dsDNA. The inset of (b) represents the quenching kinetics of
the sensing process. Adapted with permission from [56]. Copyright 2013 American Chemical Society.

Thus, Zhu et al. revealed that a single-layer MoS2 nanosheet possesses high fluorescence
quenching efficiency and different affinities toward ssDNA versus dsDNA. Inspired by these findings,
the authors employed a MoS2 nanosheet as a sensing platform for the detection of DNA and small
molecules. This mix-and-detect assay format is simple and can be finished within a few minutes.
Importantly, the assay is homogeneous, because it occurs exclusively in the liquid phase, which makes
it easy to automate or suitable for in situ detection [56].

Huang et al. developed a novel MoS2 nanosheet-based microfluidic biosensor for the
ultra-sensitive detection of DNA. Compared to other nanomaterials, such as graphene, high
concentration ultrathin MoS2 nanosheets can be readily synthesized on a large scale in aqueous
solution and can be directly used to interact with DNA without further processing. Remarkably, MoS2

nanosheets are able to quench most of the fluorescence in a very short time (~min) and possess different
affinities towards ssDNA versus dsDNA. The authors noticed that these properties of MoS2 make it
perfect to be integrated with microfluidics. By using a high concentration MoS2 nanosheet solution
uniformly mixed with the testing sample in zigzag-shaped microchannels, ssDNA and dsDNA can be
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easily and consistently distinguished within the range of ~min (more than 90% quenching efficiency
was obtained within 1 min). This microfluidic biosensor can detect as low as 0.5 fmol target DNA,
which is much lower than other similar nanoprobe-based fluorescence methods in bulk solution.
The research conducted provides a simple and high throughput analysis method for rapid DNA
screening [57].

Another example of the fluorescence quenching-based MoS2 biosensor is reported by
Kong et al. [58], demonstrating a novel aptamer-functionalized MoS2 nanosheet fluorescent biosensor
for the detection of prostate-specific antigen (PSA). Prostate-specific antigen (PSA) is a significant
and the most widely-used biomarker for the early diagnosis of prostate cancer and its subsequent
treatment. The principle of operation of the biosensing assay is the following: the binding of the
aptamer to the target PSA induces a rigid aptamer structure, which makes the integration with the
MoS2 nanosheet very weak. This results in the release of the aptamer probe from the nanosheet surface
and restores the quenched fluorescence. The fabricated biosensor demonstrated high sensitivity and
high selectivity with a detection limit for the PSA of 0.2 ng/mL. Later, the biosensor was further
applied for the detection of PSA in human serum samples with satisfactory results. The foregoing
indicates its promising application to real-life biological samples. The authors emphasized a higher
fluorescence-quenching ability of MoS2 than graphene, when applied to a dye-labeled single-stranded
DNA probe. Additionally, the simple design and rapid detection of PSA were reported as the
advantages of this approach [58].

Finally, the biosensing assays comprising MoS2 were fabricated and tested for detection of
heavy metals, particularly Ag ions [59]. Heavy metals are highly toxic and carcinogenic, even at
a trace level, which can enter the environment due to increasing industrial activities. They are
non-biodegradable and can accumulate in the food chain, posing a severe threat to the environment
and human health. Among these heavy metal ions, silver ions (Ag+) have received substantial attention
in recent years because the use of silver, silver nanoparticles and silver compounds has increased,
and recent studies emphasized bioaccumulation and the potential negative impact of Ag+ on aquatic
organisms. A single layer of MoS2 was used as the fluorescence quencher, and the operational principle
was similar to that described above: FITC-labeled ssDNA was absorbed rapidly when approaching
the surface of ultrathin MoS2 and was then quenched owing to charge transfer. An FITC-labeled
Ag+-specific oligonucleotide, rich in cytosine, was employed as the fluorescent probe in sensing targets.
The designed sensor demonstrated high fluorescence quenching efficiency within 5 min, excellent
robustness, selectivity and sensitivity below the maximum limitation guided by the United States
Environmental Protection Agency (EPA) and the World Health Organization (WHO). Further, this new
Ag+ probe was demonstrated in monitoring Ag+ in lake water samples with satisfactory results [59].

However, not only MoS2 layers alone were used, but their combination with graphene or metal
nanoparticles was reported to result in efficient transducer materials. Thus, Su et al. developed
an electrochemical glucose biosensor by immobilizing glucose oxidase (GOx) on a glass carbon
electrode that was modified with molybdenum disulfide (MoS2) nanosheets, decorated with gold
nanoparticles (AuNPs). The synergistic effect the MoS2 nanosheets and the AuNPs resulted in excellent
electrocatalytic activity. The electrochemical performance of the fabricated electrode was studied by
the cyclic voltammetry, and it was revealed that the use of the AuNPs-decorated MoS2 nanocomposite
accelerates the electron transfer from electrode to the immobilized enzyme. This enables the direct
electrochemistry of GOx without any electron mediator. The fabricated sensor was able to detect
glucose with a high sensitivity within the concentration range from 10–300 µM and down to levels as
low as 2.8 µM. The authors acknowledge also the good reproducibility and long-term stability of the
electrode, suggesting that it represents a promising tool for biological assays [60].

Nanocomposites based on MoS2, graphene (Gr) and horseradish peroxidase (HRP) were prepared
by Song et al. [61]. It was demonstrated, that the native structure of the horseradish peroxidase
is maintained after the assembly, implying good biocompatibility of MoS2-Gr nanocomposite.
The fabricated biosensor based on HRP-MoS2-Gr composite displayed electrocatalytic activity to
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hydrogen peroxide (H2O2) with high sensitivity (~680 µA¨mM´1¨ cm´2), a wide linear range
(0.2 µM–1.1 mM), a low detection limit (0.05 µM) and a fast amperometric response. The biosensor
also exhibited high selectivity, rather good stability and reproducibility. The authors attribute the
obtained electrochemical properties to the good biocompatibility and electron transport efficiency of
the MoS2-Gr nanocomposite and the efficient loading of HRP. It was suggested that the fabricated
biosensor is potentially suitable for H2O2 analysis in environmental, pharmaceutical, food or
industrial applications.

Kim et al. demonstrated in situ fabrication of the MoS2-based nanocomposite for biosensing
applications. Thus, the MoS2 was grown by plasma-enhanced chemical vapor deposition (PECVD) on
the Au layer, covering the polymeric printed circuit boards (PCB). The depositing Mo layer first was
mixed with the Au, creating the Au-Mo composite structure. Then, the composite reacted with the H2S
gas in Ar plasma, providing the nanocomposite coating. Via further immobilization of HRP-conjugated
IgG on the Au electrode, modified with MoS2, the nanocomposite electrode was fabricated and utilized
for sensing H2O2 (Figure 9). Trace H2O2 released from IgG-horseradish peroxidase was successfully
detected in the linear range of 0–20 ng/mL [62].
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Huang et al. reported a novel electrochemical sensor for the determination of bisphenol A (BPA)
based on MoS2 and a chitosan-gold nanoparticles composite-modified electrode. First, flower-like
MoS2 sheets were prepared by a simple hydrothermal method and had a lateral size of about 200 nm
and a thickness of several nanometers. The sensing platform, was fabricated based on MoS2 and a
chitosan (CS) mixture with Au nanoparticles (Au NPs), covering the glassy carbon electrode (GCE).
Such a combination of AuNPs/MoS2/GCE caused the electrode to possess low background current,
good conductivity and a large electro-active surface area. The fabricated electrochemical sensor
was used for the determination of bisphenol A (BPA). BPA is a typical endocrine disruptor, which
can increase cancer rate, decrease semen quality, reduce immune function and impair reproduction.
Nevertheless, this chemical is still actively used in the chemical industry for the production of infant
bottles, food packaging and canned soft drinks. The sensor showed an efficient electrocatalytic role
for the oxidation of BPA, and the oxidation over potentials of BPA decreased significantly, which the
peak current increased greatly compared to bare GCE and other modified electrodes. A good linear
relationship between the oxidation peak current and BPA concentration was obtained in the range from
0.05–100 µM with a detection limit of 5.0 ˆ 10´9 M, being followed by long-term sensing stability [63].

3.2. WS2

The application of WS2 for biosensors is somehow less reported in the literature than the MoS2,
despite the materials’ similarity. Nevertheless, the biosensors of both the electrochemical and optical
type were demonstrated, being based on both single WS2 sheets and their nanocomposites.
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Thus, the application of WS2 as a platform in a fluorescence-quenching biosensor was recently
reported by Yuan et al. [64]. The simple and straightforward synthesis route was proposed by a
one-step sonication-assisted exfoliation method to prepare water-soluble WS2 nanosheets. The authors
demonstrated that similarly to the case of MoS2, single-strand DNA (ssDNA) chains can be adsorbed
on the WS2 nanosheet, leading to complete and fast quenching of a fluorescent dye tagged to the
DNA chain upon reaction with the targeted analyte. The process of WS2 isolation and its surface
functionalization with dye-tagged DNA is shown on Figure 10.
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The adsorbed ssDNA is detachable from the nanosheet upon the interaction with other
biomolecules, resulting in the restoration of the fluorescence. The 2D WS2 nanosheet thus acts as an
efficient platform for assembling of bioprobes. Because of the extraordinarily high quenching efficiency,
which is the synergic result of both excited-state energy transfer and static quenching, it is concluded
that the WS2 platform provides minimal background and high sensitivity [64].

The electrochemical type of biosensor, using the nanocomposites comprising the WS2 sheets, was
reported by Huang et al. [65]. The aptamer-based label-free electrochemical biosensor was used for the
detection of 17b-estradiol. The aptamers immobilized on the glassy carbon electrode, modified by WS2

nanosheets and Au NPs through the Au-S interaction. Bovine serum albumin was used for blocking
the free electrode surface. Via the addition of 17b-estradiol, the estradiol/aptamer complex on the
electrode surface was created, resulting in the significant decrease in peak current. The change in the
peak current is a sensor signal and has a good linear relationship with 17b-estradiol concentration for
the range of 1.0 ˆ 10´11–5.0 ˆ 10´9 M, with a detection limit of 2.0 ˆ 10´12 M. The biosensor was used
in a real environment (in serum and water samples) and exhibited high sensitivity and reproducible
analytical performance.

It has been concluded that the layered WS2 nanosheet/Au NPs nanocomposite coating can
therefore act as an efficient electrochemical biosensing platform for the assembling of bio-probes and
will be extended to other analytes, such as protein, DNA and RNA [65].

3.3. VS2

VS2 is one more candidate of layered materials that was reported to be used as a biosensor.
Thus, Yin et al. [66] proposed a novel ultrasensitive sensing system for rapid fluorescence detection of
cytochrome c (cyt c) by combining an aptamer-based bioassay with VS2 nanosheets. VS2 nanosheets
with high fluorescence quenching ability were synthesized by the solution route. A cyt c-binding
aptamer was tagged with the fluorescent dye carboxy fluorescein (FAM), acting as the probe. VS2

nanosheets were able to adsorb the probe and quench its fluorescence efficiently. However, the
fluorescence of the probe was retained when it was incubated with cyt c and then mixed with VS2
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nanosheet solution. The proposed sensing system shows high selectivity and sensitivity, giving a linear
range of 0.75 nM–50 mM and a limit of detection of 0.50 nM [66].

Huang et al. reported the application of the VS2 nanocomposite with AuNPs as the electrochemical
17β-estradiol biosensor. First, the flower-like vanadium disulfide (VS2) was synthesized by a
simple one-step hydrothermal process. Data from XRD, SEM and TEM demonstrated that the
as-prepared VS2 product has an ordered nanosheet stacking flower structure, which is constructed
with many irregular nanosheets as a petal-like structure with a thickness of several nanometers.
The biosensor was constructed by immobilizing the aptamer on the surface of VS2 nanoflowers and
an AuNP-modified glassy carbon electrode. Differential pulse voltammetry was applied, and a good
linear relationship between the peak current and the logarithm of the 17β-estradiol concentration from
1.0 ˆ 10´11–1.0 ˆ 10´8 M was observed, with a detection limit of 1.0 ˆ 10´12 M. The aptamer sensor
was successfully applied for the determination of 17-estradiol in urine samples with recoveries of
92.0%–105.2%. It exhibited a high sensitivity and remarkable reproducible analytical performance.
The reported results suggest the vitality and prospect of VS2 material in electrochemical biosensing
and catalytic areas [67].

3.4. CoS

Cobalt sulfide nanosheets were recently reported by Huang et al. [68] in the development
of a sensitive sensing platform for 17β-estradiol by combining the aptamer probe and
hybridization reaction.

2D CoS was synthesized by a simple hydrothermal method with L-cysteine as the sulfur
donor. The electrochemical aptamer biosensor was constructed by assembling a thiol group-tagged
17β-estradiol aptamer on CoS and gold nanoparticle (AuNPs)-modified electrode. Methylene blue
was applied as a tracer, and a guanine-rich complementary DNA sequence was designed to bind with
the unbound 17β-estradiol aptamer for signal amplification. The binding of guanine-rich DNA to the
aptamer was inhibited when the aptamer captured 17β-estradiol. Using guanine-rich DNA in the assay
greatly amplified the redox signal of methylene blue bound to the detection probe. The CoS/AuNPs
nanocomposite coating formed on the biosensor surface was reported to be a good conductor for
accelerating the electron transfer.

The biosensor demonstrated a high sensitivity of detection with the dynamic concentration range
spanning from 10´9–10´12 M with a detection limit of 7.0 ˆ 10´13 M. It is noteworthy also that the
fabricated biosensor exhibited good selectivity toward 17β-estradiol, even when interferents were
presented at 100-fold concentrations [68].

3.5. CuS

Huang et al. [69] reported the application of copper sulfide (CuS) nanosheets together with Au NPs
as an efficient nanocomposite electrode for a novel DNA electrochemical biosensor. CuS nanosheets
were synthesized with acetylene black (AB) incorporated via a simple solvothermal route assisted by
ethylene glycol. The electrode surface was DNA labeled using 6-mercapto-1-hexane immobilized on
the CuS-AB/Au nanoparticles through the Au-S interaction. After blocking with 6-mercapto-1-hexanol,
the probe DNA was bound with the addition of target DNA to form the double-stranded structure on
the electrode surface. This led to a significant decrease of the peak current of electrochemical indicator
[Fe(CN)6]3´{4´. Under optimum conditions, the amperometric signals decrease linearly with the
target DNA concentrations ranging from 0.1 pM–1 nM. The detection limit was observed as low as
20 fM with an excellent selectivity, acceptable stability and reproducibility.

The authors concluded that the good analytical performance is attributed to the synergistic
effect of acetylene black and the unique microstructure of CuS nanosheets. This can open up new
opportunities for sensitive and selective detection of specific sequence DNA and provide a promising
platform for biosensor design for other biomolecular detection [69].
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3.6. g-C3N4

Graphite-like carbon nitride (g-C3N4) is a new semiconductor material with p-conjugated
graphitic planes formed by the sp2 hybridization of carbon and nitrogen. The prominent feature
of this semiconductor is that it demonstrates the electrochemiluminescence (ECL). Probably the
first report on the synthesis of g-C3N4 was by Zhang et al. [70]. In this study, the properties of
ultrathin two-dimensional g-C3N4 nanosheets prepared by a “green” liquid exfoliation route from
bulk g-C3N4 in water were investigated. It was found that 2D g-C3N4 demonstrated enhanced
intrinsic photoabsorption and photoresponse compared to the bulk g-C3N4. High stability, good
biocompatibility, superior physiochemical properties and large surface area have triggered interest in
2D g-C3N4 nanosheets as a material for ECL biosensors. Indeed, it was recently reported for biosensors
based on 2D g-C3N4 for the detection of DNA [71], biothiols in biological fluids [72], heparin [73],
2,4,6-trinitrophenol (TNP) [74], concanavalin A [75], dopamine [76] and cancer cells [77].

3.7. BN

Hexagonal boron nitride (h-BN) is a novel semiconductor material with wide band gap
(Eg = 5.2 eV), which makes it almost an insulator. h-BN is usually present in the form of flakes
or sheets and has become widely used recently in the fields of electronics, catalysis and sensing. 2D
nanosheets of BN consist of alternating boron and nitrogen atoms, representing an extra smooth surface.
It has to be noticed that until now, only several applications of h-BN as a biosensor were reported,
while most of them are still in the embryonic stage; while even the nanosheets allotropes—nanotubes of
BN—were reported as promising nanotransducers for functionalization of biosensitive layers [78,79].

One of the first reports that demonstrated utilization of BN nanosheets was by Uosaki et al. [80].
The authors realized the electrocatalyst based on BN nanosheets on gold, thus demonstrating the
ability of inert nanosheets to be functionalized for the oxygen reduction reaction. This discovery
opened up new ways to design effective biocatalysts based on BN nanosheets and paving a novel
route to electroanalysis [80].

Interestingly, that h-BN is initially hydrophobic, which makes it difficult to dissolve in water,
and an additional surface treatment has to be applied. Xu et al. have utilized chitosan to increase the
BN solubility in aqueous solution for further immobilization of catalase, thus designing the enzyme
biosensor for the detection of forchlorfenuron. The fabricated sensor demonstrated linear sensitivity
for the analyte concentration from 0.5–10 mM with a detection limit 0.07 µM [81].

BN was reported for the successful detection of hydrogen peroxide (H2O2), which is a significant
compound involved in many chemical and biological processes. The electrochemical sensor, based
on nanocomposites consisting of BN nanosheets and Au NPs, was reported before [82]. This paves
the way for the detection of other compounds, which dissociate catalytically with creating H2O2 as a
byproduct, like glucose or cholesterol [83], depending on the immobilized oxidase molecule.

Several other reports on biosensors based on BN are focused on the fabrication of a nanocomposite
containing the BN nanosheets. Thus, the novel nanocomposite, formed by h-BN nanosheets and
graphene quantum dots (GQDs) with green fluorescence, was reported. The sensor was proven to be
an efficient platform for cell imaging, due to the nanocomposite’s strong fluorescent intensity, stability,
water solubility, etc. The nanocomposite thus was reported as promising to contribute significantly to
diagnostic or therapeutic needs, for drug delivery, etc. [84].

Another type of nanocomposite was made based on h-BN nanosheets and Au nanoparticles as
a label and applied for an immunosensor for the detection of interleukin-6 by the fluorescence and
electrochemistry approaches. The sensor demonstrated excellent performance, which the authors
attributed to the high surface area and morphology for antibodies’ immobilization [85].
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4. Application of 2D Oxide Nanostructures as Transducers for Biosensors

Another type of inorganic non-graphene 2D material is metal oxides, which have recently stimulated
plenty of interest as immobilizing matrixes for biosensor development. Nanostructured oxides of metals,
such as zinc, iron, cerium, tin, zirconium, titanium and magnesium, have been found to exhibit interesting
nanomorphological, functional biocompatible, non-toxic and catalytic properties [20]. Among the various
immobilizing matrixes that have been developed, such 2D oxide nanosheets have exceptional optical and
electrical properties due to electron and phonon confinement, high surface-to-volume ratios, modified
surface work function, high surface reaction activity, high catalytic efficiency and strong adsorption ability.
For these reasons, oxides, such as TiO2, MoO3, WO3 and ZnO [51,86], have been used for immobilization
of biomolecules, including enzymes, nucleic acids and antibodies.

4.1. MnO2

For the first time, a homogeneous FRET sensing protocol using a MnO2 nanosheet as the energy
acceptor was proposed by Yuan et al. [87]. The biosensors based on fluorescence quenching were
designed for ochratoxin A (OTA) as the sensing target. First, the OTA aptamers tagged to fluorophores
were spontaneously assembled on the flat MnO2 surface. This resulted in the energy transfer from
the fluorophore to MnO2 and the respective quenching of the fluorescence. Exposure of the aptamers
with OTA molecules changes the conformation of the aptamers, which reduces the exposure of the
nucleobases. As a consequence, the physisorption of the aptamers on MnO2 surface is weakened.
Thus, the emission of the fluorophore is expected to be recovered, which enables the recognition and
quantification of the target [87].

Different from those reported for the traditional two-dimensional nanosheets, a sensing
mechanism was reported by Zhai et al. [88] for in vivo sensing of ascorbic acid (AA) in rat brain.
Single-layer MnO2 nanosheets were used for suppressing the fluorescence of 7-hydroxycoumarin. The
mechanism for the fluorescence suppression is attributed to a combination of an inner filter effect (IFE)
and a static quenching effect (SQE). The combination of IFE and SQE leads to an exponential decay
in fluorescence intensity of 7-hydroxycoumarin with increasing concentration of MnO2 nanosheets
in solution. Such a property allows optimization of the concentration of MnO2 nanosheets in such
a way that the addition of reductive analyte (e.g., AA) will to the greatest extent restore the MnO2

nanosheet-suppressed fluorescence of 7-hydroxycoumarin through the redox reaction between AA
and MnO2 nanosheets. Compared to the turn-on fluorescent method through first decreasing the
fluorescence to the lowest level by adding concentrated MnO2 nanosheets, the method demonstrated
here possesses a higher sensitivity, lower limit of detection and wider linear range. Upon the use of
ascorbate oxidase to achieve the selectivity for AA, the turn-on fluorescence method demonstrated can
be used for in vivo sensing of AA in a simple, but reliable way [88].

He et al. reported a facile surfactant-templated synthetic strategy for water-dispersible
nanoplatelets of MnO2 and then established it as a new biosensing platform for probing and
recognizing biomolecular interactions in a homogeneous solution. The sensing strategy is based
on the attachment of the ssDNA on MnO2, with the DNA strand interacting non-covalently with
nano-MnO2 by the van der Waals force between nucleotide bases and the basal plane of MnO2.
This platform possesses three excellent features: (i) MnO2 with an excellent dispersibility in water can
be synthesized in great force at room temperature and used as a quencher without further processing;
(ii) the MnO2-based biosensor is low cost and can finish the biomolecular assay within a few minutes;
(iii) the biosensing strategy can be applied to other types of molecular probes by simply changing the
sequences of the ssDNA to a specific target [89].

4.2. α-MoO3

Balendhran et al. reported a design of FET, using the 2D molybdenum trioxide (MoO3) material.
As a protein model, bovine serum albumin was used. α-MoO3 nano-flakes, with the majority of
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nano-flake thicknesses being equal to or less than 2.8 nm, were stacked in a nanostructured film,
forming the conduction channel. The FET demonstrated impressive response time (ď10 s). The authors
explain this due to the high permittivity of the 2D α-MoO3 nano-flakes. It has been concluded that the
2D α-MoO3 system offers a competitive solution for future biosensing applications [90].

4.3. ZnO

Zinc oxide is a semiconducting material with plenty of advanced properties, such as high
catalytic efficiency, biocompatibility, chemical stability in physiological environments and low toxicity.
It possesses a high isoelectric point (IEP) of about 9.5, which makes it a rather prospective candidate
for biosensing applications [91]. 2D ZnO is an expected crystal modification, where the original
wurtzite crystal is transformed in the stacking of layers of Zn and O atoms, weakly related between
the layers (so-called hexagonal film). It should be noticed that until now, 2D ZnO was only initially
demonstrated in scales far away from those applicable for biosensing. Nevertheless, we focus our
attention on the report of ZnO nano-flakes, which were in fact wurtzite ZnO, but at the same time
extremely thin and demonstrated an unambiguous advantage over other morphologies, i.e., bulk or
nanostructures. Thus, Vabbina et al. reported label-free, highly sensitive and selective electrochemical
immunosensors based on 2D ZnO nano-flakes (ZnO-NFs) which were synthesized on Au-coated
substrates using a simple one-step sonochemical approach. Selective detection of cortisol using
cyclic voltammetry (CV) is achieved by immobilizing anti-cortisol antibody (Anti-Cab) on the ZnO
nanostructures (NSs). 2D ZnO-NFs provide unique sensing advantages over bulk materials. 2D-NSs
with a large area in the polarized (0001) plane and a high surface charge density could promote
higher Anti-Cab loading and, thus, better sensing performance. Beside a large surface area, ZnO-NSs
also exhibit higher chemical stability, high catalytic activity and biocompatibility. The measured
sensing parameters are in the physiological range with a sensitivity of 7.74 mA/M with the lowest
detection limit of 1 pM, which is 100-times better than the conventional enzyme-linked immunosorbent
immunoassay (ELISA). ZnO-NS-based cortisol immunosensors were tested on human saliva samples,
and the performance were validated with a conventional (ELISA) method, which exhibits a remarkable
correlation. The developed sensors can be integrated with a microfluidic system and a miniaturized
potentiostat for point-of-care cortisol detection, and such a developed protocol can be used in
personalized health monitoring/diagnostics [92].

4.4. CuO

Copper oxide being a narrow gap semiconductor with p-type conductivity (Eg = 1.2 eV in bulk
crystal) has been used in many electronic applications and sensors. Such a metal oxide can have many
well-defined nanostructures with different dimensionalities, possessing unique electronic and optical
properties. For instance, due to the size confinement effect, the 2D CuO has an enhanced optical
band gap (Eg = 2.15 eV) [93]. Recently, 2D CuO has been reported as a promising material for the
development of non-enzymatic sensors [94,95]. Most of the reports on 2D CuO up to now deal with
an investigation of the properties of nano-leaves of copper oxide grown by chemical methods [96,97].
In particular, Bhattacharjee [96,97] reported the successful synthesis of 2D CuO nano-leaves with
average dimensions of ~350–450 nm in length and ~60–90 nm in width by the green method using
NaOH and L-arginine. Zhao et al. [94] designed a non-enzymatic glucose sensor based on 2D CuO
nano-leaves. These authors showed the good electrocatalytic activity of the 2D CuO-containing
electrode. The observed enhancement of peak current for the oxidation of glucose was attributed to
(i) the increase in the electroactive surface area and (ii) the electron transfer ability of the electrode
based on 2D CuO nano-leaves. Sun et al. [95] have studied the glucose sensors based on 2D hierarchical
nanoporous CuO ribbons. It was reported that the designed sensors demonstrate a high sensitivity
of 2241 µA¨mM´1¨ cm´2, a fast response time of „2 s, a relatively wide linear dynamic range of
0.1–4.0 mM, a low detection limit of 50 nM and good anti-interference ability.
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5. Conclusions and Outlook

It is revealed that the family of 2D non-graphene inorganic materials is undeniably forthcoming
for the application as a transducer material in biosensors. This is indirectly proven by the growing
research interest, reflected in a rising number of papers during the last few years. The scientific reports
clearly demonstrate the certain advantages of 2D non-graphene materials over graphene (direct band
gap in 2D vs. no band gap in graphene) or bulk crystals (the highest surface-to-volume ratio in 2D).
Using the 2D non-graphene materials, the biosensors can be designed for different types, mainly
electrochemical (where the 2D material is a regular electrode or serves as a channel in FET design) or
optical (by quenching the fluorescence or retaining it via aptamers use).

Thus, the biosensors based on 2D non-graphene materials demonstrate a unique combination of
high sensitivity, selectivity and dynamic characteristics (response and recovery time). It is shown that
many different biological agents can be successfully immobilized on the surface of 2D non-graphene
materials, providing sensing ability for a wide range of biological targets, as is demonstrated in Table 1.
It is noteworthy that the potential of 2D non-graphene materials can be further extended via the
fabrication of nanocomposites with graphene or noble metal nanoparticles.

Table 1. Example of non-graphene 2D materials’ application in different types of biosensors (2014/2015).

2D Detection
Type Purpose Sensitivity: Detection

Range and Threshold Comment Reference

MoS2

electro-chemical Determination of
glucose 2.8 µM–300 µM

Biosensor was developed by immobilizing
glucose oxidase (GOx) on a glass carbon
electrode that was modified with MoS2
nanosheets that were decorated with Au NPs

[60]

electro-chemical Detection of
dopamine 1.0 mM DA/pH 7.4

MoS2 sheet-based electrodes were employed
for the electrochemical detection of an
important neurotransmitter, namely dopamine
(DA), in the presence of ascorbic acid (AA)

[54]

FET Detection of
proteins

713 for a pH change of
1 unit

Biosensors based on field-effect transistors
(FETs); specific detection of protein is also
demonstrated, and an extremely high
sensitivity of 196 was achieved, even at a 100
femtomolar concentration

[53]

fluorescent Detection of Ag 25 mg/mL

The developed sensor with high sensitivity and
selectivity may be an alternative method for
Ag ion detection in lake water samples and
other applications

[59]

fluorescent,
microfluidic

Fluorescent DNA
detection 0.2 µL

MoS2 nanosheets are able to quench most of
the fluorescence in a very short time (~min)
and possess different affinities towards ssDNA
versus dsDNA

[57]

electro-chemical

Immobilization
horseradish
peroxidase
conjugated IgG

0–20 ng/mL

The cyclic voltammetry results showed that the
sensor of Au-MoS2 conjugated with IgG-HRP
thus exhibited excellent analytical responses to
H2O2 with a wide linear range

[62]

fluorescent
Detection of
prostate specific
antigen

0.2 ng/mL

The binding of the aptamer to the target PSA
induces a rigid aptamer structure, which
makes the integration with the MoS2
nanosheet very weak

[58]

electro-chemical DNA analysis 1.0 ˆ 10´16–1.0 ˆ 10´10 M
The tlh gene sequence assay can be performed
label-freely with a detection limit of
1.9 ˆ 10´17 M

[55]

electro-chemical Determination of
bisphenol A

0.05–100 mM,
(5.0 ˆ 10´9 M)

Biosensor based on MoS2 and chitosan-gold
nanoparticle composite-modified electrode [63]

MnO2

fluorescent In vivo sensing of
ascorbic acid (AA) 2.7–25.9 mM´1

The authors investigate the mechanism of
single-layer MnO2 nanosheets suppressing
fluorescence of 7-β hydroxycoumarin

[89]

fluorescent DNA hybridization 0–5 nM
Probing DNA hybridization and
aptamer-target interactions in a
homogeneous solution

[90]
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Table 1. Cont.

2D Detection
Type Purpose Sensitivity: Detection

Range and Threshold Comment Reference

VS2

fluorescent Detection of
cytochrome c 0.75 nM–50 mM

VS2 nanosheets with a high fluorescence
quenching ability were synthesized by the
solution route

[66]

electro-chemical Determination of
17β-estradiol

1.0 ˆ 10´11–1.0 ˆ 10´8 M
(1.0 ˆ 10´12 M)

VS2 nanoflowers and gold
nanoparticle-modified glassy carbon electrode [67]

WS2

fluorescent
Platform for
biosensing
(ssDNA)

1´80 ng/mL

The adsorbed ssDNA is detachable from the
nanosheet upon the interaction with other
biomolecules, resulting in the restoration of
the fluorescence

[88]

electro-chemical Determination of
17β-estradiol

1 ˆ 10´11–5.0 ˆ 10´9 M
(2.0 ˆ 10´12 M)

Aptamers immobilized on the WS2
nanosheets/AuNP-modified glassy
carbon electrode

[65]

CoS electro-chemical Determination of
17β-estradiol

1.0 ˆ 10´9–1.0 ˆ 10´12 M
(7.0 ˆ 10´13 M)

Thiol group tagged 17β-estradiol aptamer on
CoS and AuNP-modified electrode [68]

CuS electro-chemical Detection of DNA 0.1 pM´1 nM (20 fM)
DNA labeled at 5 end using
6-mercapto-1-hexhane immobilized on the CuS-
acetylene black (AB)/Au-modified electrode

[69]

h-BN electro-chemical Detection of
forchlorfenuron 0.5 to 10 mM (0.07 µM)

The fabricated enzyme-based sensor
demonstrated linear sensitivity for range
0.5–10 mM with a detection limit 0.07 µM

[81]

CuO electro-chemical Glucose 2241 µA¨ mM´1¨ cm´2,
0.1–4 mM

Glucose level was detected by a fast (~2 s) and
precise technique [96]

ZnO electro-chemical Detection of
cortisol 7.74 mA/M Immunosensor based on 2D ZnO nano-flakes

synthesized on Au-coated substrates [93]

Chalcogenides are the dominant materials among the non-graphene 2D, reported in biosensors’
design (MoS2, WS2, VS2, CoS, CuS). Specifically, MoS2 is the most reported non-graphene 2D material
in the biosensing area. This may be explained by its several advantages, including comparatively
simple synthesis procedure and possibility of direct (CVD) growth. Another important advantage of
MoS2 for biosensors is that it has polarized planes, which favors the van der Waals interaction
and promotes the biosensitive layers’ immobilization, for both enzyme-based and non-enzyme
electrochemical biosensors. The realization of the FET-based biosensing device with MoS2 as a channel
results in obtaining a highly sensitive, single-molecule detection compatible sensor. Eventually, the
performance/sensitivity of the MoS2-based FET biosensor was reported to be 74-fold better than
that one of the graphene-based one. In the optical type of biosensors, MoS2 has high fluorescence
quenching ability, good detection limits and fast response time. Via functionalization of MoS2 by
aptamers, the optical biosensor demonstrates high sensitivity with a simple design and low cost. Finally,
nanocomposites containing MoS2 together with graphene and/or metal nanoparticles were reported
to be efficient transducers for the electrochemical type of biosensors of a wide range of analytes.

Among the 2D nitride materials, g-C3N4 was reported to have intense electrochemiluminescence,
which can be used for the detection of DNA, cancer cells, dopamine, concanavalin, heparin and
biothiols; while h-BN nanosheets can be functionalized for electrocatalysis and further detection of
hydrogen peroxide, forchlorfenuron, interleukin-6, etc.

While 2D metal oxides are represented mainly by MnO2, MoO3, CuO and, lately, ZnO, 2D oxides
are explicitly promising due to their exceptional optical and electrical properties, which offer excellent
prospects for interfacing of biological recognition events with electronic or optical signal transduction
and for designing of a new generation of bioelectronics devices. Specifically, MnO2 is a transition-metal
oxide with good water-solubility, excellent biocompatibility and easy modification, which is important
for sensor fabrication; while CuO has been reported as a promising material for the development of
non-enzymatic sensors, mainly glucose.

Another intriguing oxide is ZnO, due to its wide band gap, high catalytic efficiency,
biocompatibility and chemical stability in physiological environments, low toxicity and a high
isoelectric point (IEP) of about 9.5. All the above makes 2D ZnO therefore extremely promising
for biosensing applications. This, however, is still compromised by its practical unattainability, which
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will be an exciting materials researcher’s task for the next few years. Finally, we would like to conclude
that the present tendency of growing the 2D materials library will result in the appearance of new
candidates, which will definitely join the biosensing area soon.
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