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ABSTRACT

Ovarian cancer (OC), the deadliest gynecological cancer, results in poor overall survival, 
urgently requiring a novel therapeutic approach. As cumulative exposures to endotoxins 
decreased OC risk epidemiologically, we evaluated if LPS, a Toll-like receptor 4 agonist 
known as active component of endotoxins, could increase survival in the murine peritoneal 
dissemination model of SKOV-3 OC cells. LPS significantly increased the mean survival time 
of more than 116 days compared with 63 days in the control. Furthermore, no tumor burden 
was present in three mice among eight LPS-treated mice. SKOV-3 cells were not responsive to 
LPS and showed unaltered chemokine signature. Rather than direct effects to OC cells, LPS 
was found to increase proinflammatory chemokines and cytokines, such as CXCL1, CXCL8, 
TNF, and IL-1B, in innate immune system. Taken together, LPS is likely to potentiate the 
cytotoxic-related innate immunogenicity via proinflammatory chemokines and cytokines, 
which attenuates the peritoneal dissemination of OC.
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INTRODUCTION

Ovarian cancer (OC) is the fifth leading cause of cancer deaths among women in the US, 
with an estimated 22,240 new cases and 14,070 deaths in 2018 (1). OC alone accounts for 
5% of cancer deaths and has frequently disseminated throughout the peritoneal cavity 
at diagnosis due to asymptomatic early-stage cancer (2). Five-year survival in women 
diagnosed with distant-stage OC is only 29% (3), urgently requiring a new and better 
therapeutic strategy. Epithelial OC occurs in 90% of OC, including the following subtypes: 
serous (68%–71%), endometrioid (9%–11%), clear cell (12%–13%), mucinous (3%), 
malignant Brenner tumors (1%), and mixed histologies (6%) (4). In particular, high-
grade serous ovarian cancer (HGSOC) is highly-aggressive, is diagnosed at the advanced-
stage, and has a poor prognosis compared to other subtypes (4,5). A frequent molecular 
alteration of HGSOC is closely associated with the genetic mutation in the tumor suppressor 
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protein p53 (TP53) (6). We have shown that the frequent mutation of TP53 in OC enhances 
proinflammatory chemokines, leading to an inflammatory tumor microenvironment (7). 
The chemokine network appears to be involved in the progression, metastasis and survival 
of OC (8-10).

Endotoxins are widespread ubiquitously in ambient environmental settings, including air, 
water, and food. Endotoxins are an integral component of the outer wall of Gram-negative 
bacteria, and the active component, LPS, is liberated when the cell walls of bacteria break 
downs (11). LPS, a TLR4 agonist, is a potent inflammatory agent that causes TLR4-mediated 
signaling, inducing acute and chronic effects, such as fever, chills, septic shock, and 
respiratory symptoms (11). Despite these adverse effects, epidemiologic, laboratory and 
limited clinical trial evidence suggest that endotoxins are likely to prevent cancer progression 
(12). Interestingly, monophosphoryl lipid A, a detoxified endotoxin derivative marketed 
in Europe for allergy treatment, and approved by the US Food and Drug Administration 
for use in humans as part of Cervarix® (a vaccine against human papillomavirus 16 and 18; 
GlaxoSmithKline, London, UK) (13), reduces the risk of all site cancers (excluding skin) by 
25% in both smokers and non-smokers, thereby appearing to be a chemopreventive agent 
(14). We demonstrated that LPS-induced proinflammatory chemokines in OC cells via 
TLR4-dependent NF-κB activation (15). Inflammation is a key contributor to OC cell seeding 
(16) and proinflammatory tumor microenvironment contributes to OC metastasis and 
chemoresistance (17).

Based on epidemiological studies revealing a decreased cancer risk, due to cumulative 
exposures of endotoxins and beneficial effects of LPS as a chemopreventive agent in many 
cancer types despite LPS-induced inflammatory reaction, we investigated how LPS could 
affect the murine peritoneal dissemination model of OC using SKOV-3 cells as described 
previously (9).

MATERIALS AND METHODS

Generation of stable SKOV-3 luciferase (SKOV3Luc) OC cell line and culture
SKOV3Luc cells were generated from parental human SKOV-3 OC cells purchased from the 
American Type Culture Collection (Manassas, VA, USA) by transfecting stably a luciferase 
vector (pGL4.51[luc2/CMV/Neo]; Promega Corporation, Madison, WI, USA) as described 
previously (9). Cells were cultured at 37°C in a water-saturated atmosphere of 95% air and 5% 
CO2 with Roswell Park Memorial Institute 1640 containing penicillin and streptomycin (each 
100 U/ml) and 10% FBS. All liquid culture media were acquired from Invitrogen (Carlsbad, 
CA, USA). D-Luciferin was purchased from Cayman Chemical (Ann Arbor, MI, USA).

Mouse peritoneal dissemination model
A mouse peritoneal dissemination model was performed under guidelines approved by 
the Institutional Animal Care and Use Committee at Meharry Medical College and the 
National Institutes of Health (NIH) Guide for the Care and Use of Laboratory Animals. CD-1 
nude (Crl:CD1-Foxn1nu) mice (stock No: 003814) having T cell deficiency were obtained 
from Charles River (Wilmington, MA, USA) for human cancer cell xenograft research. The 
mice were maintained in a specific pathogen-free animal housing facility at 22°C±2°C and 
40%–60% humidity under a 12:12 light: dark cycle. SKOV3Luc OC cells (3×106 cells/mouse 
in a volume of 0.2 ml PBS) were injected intraperitoneally (i.p.) into mice. Four days after 
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inoculation of OC cells, LPS (0.5 mg/kg of body weight) was administered i.p. 3 times per wk 
for 3 wk. Bioluminescence imaging was monitored for tumor metastasis in the peritoneal 
cavity at termination. Briefly, mice anesthetized with 3% isoflurane were administered 
D-Luciferin (125 mg/kg, i.p.) 5 min prior to the acquisition of images. Next, mice were 
placed in the chamber of an In-Vivo MS FX PRO optical imaging system (Carestream Health, 
Rochester, NY, USA), and photons were collected for a period of 1 min. The luminescent 
intensity of the region of interest were quantified using Molecular Imaging software 
(Carestream Health). We monitored body weights and terminated the mice upon irreversible 
accumulation of ascites (up to 8–10 ml). Mice were monitored three times weekly to assess 
animal health, such as hunched posture, lethargy, and inactivity, impaired ambulation, 
shallow or labored breathing, hair coat condition and change in the body weight. Mice 
showing clinical signs of ascites fluid production with constant increase of body weight and 
changes in appearance and activity were observed daily. When the body weight was increased 
by 20% and extensive ascites accumulation or sluggish activity was evident, animals were 
terminated for humane reasons. The survival time was compared between control and LPS-
treated mice.

Oligo GEArray® microarray
The Oligo GEArray® microarrays for human chemokines (OHS-022) and the TrueLabeling-
AMP™ Linear RNA Amplication Kit were purchased from Qiagen (Frederick, MD, USA) 
(15). The signal intensities were quantified by densitometry using Quantity One (Bio-Rad 
Laboratories, Inc., Hercules, CA, USA). Data analysis was performed based on a Data 
Analysis Center (https://www.qiagen.com/us/shop/genes-and-pathways/data-analysis-center-
overview-page/) provided by Qiagen.

Transient transfection and luciferase assays
SKOV-3 OC cells were transiently transfected with pNF-κB-Luc (Stratagene, Stockport, 
UK), mCXCL1 or hCXCL2 vectors overnight using Lipofectamine solution as described 
previously (7,18). After rinsing cells with ice-cold PBS and adding lysis buffer (Promega 
Corporation), cell lysates were used to determine luciferase activity using a microplate 
luminometer. Luciferase activity, expressed as relative light units, was normalized to 
measured protein levels.

Gene Expression Omnibus (GEO) data analysis
Data analysis was performed on publicly available microarray datasets that were deposited 
in the National Center for Biotechnology Information (NCBI) GEO (http://www.ncbi.nlm.
nih.gov/geo/) database as described previously (9,10). We utilized Gitools 2.3.1 (http://www.
gitools.org), which requires Oracle Java 7, an open-source tool to perform Genomic Data 
Analysis and Visualization for interactive heat-maps (19).

Cell proliferation
Cell proliferation assay was performed using the cleavage of MTT to a colored product as 
described previously (8).

Statistics
Data were analyzed using Student's t-test and one-way ANOVA as appropriate. If statistical 
significance (p≤0.05) was indicated by ANOVA, data were further analyzed using Tukey's 
pairwise comparisons to detect specific group differences.
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RESULTS AND DISCUSSION

First, we evaluated epidemiologic links between endotoxins and OC through literature 
reviews. There were intense studies on relationship between exposure of endotoxins and lung 
cancer risk. Several occupational groups, including agricultural and cotton textile workers 
exposed to organic dusts contaminated by endotoxins, showed a reduced lung cancer risk 
(Fig. 1) (12,14,20-40). On one hand, some reports on lung cancer indicated no change (41), 
while other reports indicated increased cancer risk (42,43). Epidemiologic evidence in OC 
revealed that cumulative exposures to endotoxins in textile workers reduced the risk of OC 
(Fig. 1) (20,21,44). Despite these limited data, endotoxins appear to reduce OC progression. 
We selected LPS, an active component of endotoxins, to clarify inhibitory effects of LPS on 
the progression of OC using the peritoneal dissemination model of SKOV3Luc OC cells as 
described (9). No differences in body weight between control and LPS-treated mice were 
noted (Fig. 2A). LPS-treated mice had significantly increased survival time of more than 116 
days compared with 63 days in the control mice (Fig. 2B). Although detoxified Salmonella 
endotoxins had no effect on tumor growth, extracted fraction of cell-free Propionibacterium 
acnes, followed by detoxified endotoxins, resulted in long-term survival in a murine OC 
model (45). Further study requires clarifying whether anti-tumorigenicity between detoxified 
and toxified endotoxins is differential. Interestingly, there was no tumor burden in three 
mice out of eight LPS-treated mice, while all control mice showed peritoneal dissemination 
(Fig. 2C). No significant differences in spleen and tumor weight between control and LPS-
treated mice were noted (Fig. 2D and E), which was expected at the terminal stage of OC. 
As CD-1 mice used in the present study are T cell-deficient, the antitumor effect of LPS is 
likely to involve directly an innate immune system rather than an adaptive immune system. 
Alternatively, addition of LPS as an adjuvant for dendritic cell immunotherapy of mouse 
ID8 OC had no survival benefit in C57BL/6 mice (46). These different results may be due 
to LPS-TLR4-dependent signaling in OC cells, as ID8 cells showed LPS-induced NF-κB 
activation, but not in SKOV-3 cells (15). In addition, differential immune response between 
CD-1 (defected adaptive immune system) and C57BL/6 mice (intact immune system) in OC 
may be responsible for causing the different LPS-responsive results. We analyzed chemokine 
signatures in human OC cell lines based on NCBI GEO dataset (GSE29175, GSE34615, 
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Figure 1. Negative association between exposure to endotoxins and cancer risk. Summarized data are from 8 
cohort, 1 case-cohort, and 2 case-control studies of cotton textile workers, and 15 cohort and 2 case-control 
studies of agricultural workers. 
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GSE43765, and GSE53418). Chemokines, such as CXCL1, CXCL8, and CXCL16, highly expressed 
in a panel of 76 human OC cell lines (Fig. 3), indicating that proinflammatory tumor 
microenvironment may occur easily in OC.

We discovered controversial reports in SKOV-3 cells, showing TLR4-positive (47) and 
-negative expression (15). We investigated LPS-induced chemokine signature in SKOV-3 
cells compared with TNFα-induced effects as a positive control. While LPS had no effects on 
the chemokine signature in SKOV-3 cells (Fig. 4A), TNFα induced CXCL1, CXCL2, CXCL3, and 
CXCL8 (Fig. 4A), which is consistent with our previous study (18). LPS did not induce NF-κB 
promoter activity, whereas TNFα induced the activity (Fig. 4B). Promoter activity of CXCR2, 
one of highly-responsive TNFα-induced chemokines (Fig. 4A), was not affected by LPS but 
was induced by TNFα (Fig. 4C). Furthermore, we confirmed that TNFα-induced mouse 
CXCL1 promoter activity was NF-κB-dependent in SKOV-3 cells. Promoter activity of the 
mouse CXCL1-containing intact NF-κB was induced by TNFα, but its mutant promoter had 
no effects (Fig. 4D). Differential effects between LPS and TNFα in the chemokine signature 
may be due to expression levels of their receptors in SKOV-3 cells. Further, we confirmed that 
SKOV-3 cells expressed low levels of TLR4 but high levels of TNFRSF1A (Fig. 4E), resulting in 
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no LPS-induced, but TNFα-induced, effects on chemokine signature (Fig. 4A). These findings 
indicate that LPS-induced anti-tumorigenicity in OC cells may be indirect effects through 
innate immune cells rather than direct effects to OC cells.

As CD-1 mice used in the present study were T cell-deficient, we analyzed LPS-induced 
chemokine signature in an innate immune system rather than adaptive immune system. 
High expression of LPS-induced chemokine signature in an innate immune system showed 
as follows: CCL3, CCL4, and CXCL10 in dendritic cells (DCs); CCL3, CCL4, CCL20, CXCL1, 
CXCL2, CXCL3, CXCL8, and CXCL10 in macrophages (Mφ); and CCL3, CCL4, CXCL1, and CXCL8 
in neutrophils (Fig. 5). These results indicate that LPS may increase proinflammatory 
chemokines in an innate immune system, appearing anti-tumorigenicity via LPS-enhanced 
activation of innate immune cells. These LPS-induced proinflammatory chemokines are 
primarily regulated by IL-1- and TNFα-activated NF-κB in OC (7,15,18). Furthermore, we 
analyzed the LPS-induced TLR family and proinflammatory cytokine signatures in innate 
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immune cells. DC, Mφ, and neutrophils expressed high levels of TNF, IL1A, and IL1B in 
response to LPS (Fig. 6A). Interestingly, IL6 was expressed highly in DCs and Mφ, but had 
low levels in neutrophils (Fig. 6A). These proinflammatory cytokines may be involved in 
antitumor effects of LPS, but not IFNG and PRF1 (Fig. 6A). As OC cells (Fig. 3), TNFα-treated 
SKOV-3 cells (Fig. 4A), and LPS-treated innate immune cells (Fig. 5) highly expressed CXCL1 
and CXCL8, we investigated whether these chemokines could affect cell viability in SKOV-3 
OC and THP-1 monocyte cells. Cell viability assay revealed that CXCL1 and CXCL8 had no 
effects on SKOV-3 cells but increased cell viability in THP-1 cells. CXCL8 antagonist (G31P) 
decreased cell viability, and LPS-induced CXCL8 protein, TNF, IL-1B, and IL6 mRNA in THP-1 
cells (48), indicating the significant role of CXCL8 in THP-1 cell viability. LPS may activate 
an innate immune system by potentiating proinflammatory cytokines, such as TNFα, IL-
1, and IL-6, which stimulate proinflammatory chemokines, such as CXCL1, CXCL2, and 
CXCL8, even in LPS-nonresponsive OC cells, and additionally increase CCL3, CCL4, CCL20, 
and CXCL10 in innate immune cells in an autocrine manner (Fig. 6C). Our current model 
indicates that the LPS-enhanced innate immunogenicity may exert anti-tumorigenicity to 
attenuate the peritoneal dissemination of OC in a cytotoxic-related proinflammatory tumor 
microenvironment.
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CXCL2 promoter activity in SKOV-3 cells. (D) Critical role of NF-κB on TNFα-induced CXCL1 promoter activity in SKOV-3 cells. (E) Expression intensity of TLR4 and 
TNFRSF1A in SKOV-3 cells. Data values were expressed as the mean ± SEM. 
Con, control. 
*Indicates significant increase (p<0.05) compared to its own control as calculated by the paired Student's t test, Student's t-test (D and E, n=3), and ANOVA using 
Tukey's pairwise comparisons (B and C, n=3).
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The present study has several limitations. As CD-1 mice are T cell deficient, antitumor effects 
of LPS in this study may not reflect the intact immune system, including T cell-mediated 
immunity, but mainly the innate immune system. In addition, as SKOV-3 cells are human 
OC and LPS-nonresponsive, antitumor effects of LPS in mice may have different roles in 
LPS-responsive human OC cells and in human beings. LPS used in this study may activate 
the cytotoxic immune system to kill OC cells (i.e., M1-like Mφ dominant), which may be 
disrupted in long-term cancer situation with loss of cytotoxic immune activity (i.e., M2-
like Mφ dominant). As LPS induces side effects, such as fever, chills, septic shock, and 
respiratory symptoms (11), safety issues in using LPS may be a concern, requiring alternative 
agents, such as detoxified endotoxin derivatives. Further studies and additional data will be 
warranted to overcome these limitations.

In conclusion, LPS is likely to induce proinflammatory chemokines and cytokines in the 
innate immune system to establish a cytotoxic-related tumor microenvironment, followed 
by attenuated peritoneal dissemination of OC, thereby leading to LPS-based therapeutic 
potentials for OC.
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