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In the blood of healthy individuals C-reactive protein (CRP) is typically quite scarce,
whereas its blood concentration can rise robustly and rapidly in response to tissue
damage and inflammation associated with trauma and infectious and non-infectious
diseases. Consequently, CRP plasma or serum levels are routinely monitored in inpatients
to gauge the severity of their initial illness and injury and their subsequent response to
therapy and return to health. Its clinical utility as a faithful barometer of inflammation
notwithstanding, it is often wrongly concluded that the biological actions of CRP (whatever
they may be) are manifested only when blood CRP is elevated. In fact over the last
decades, studies done in humans and animals (e.g. human CRP transgenic and CRP
knockout mice) have shown that CRP is an important mediator of biological activities even
in the absence of significant blood elevation, i.e. even at baseline levels. In this review we
briefly recap the history of CRP, including a description of its discovery, early clinical use,
and biosynthesis at baseline and during the acute phase response. Next we overview
evidence that we and others have generated using animal models of arthritis, neointimal
hyperplasia, and acute kidney injury that baseline CRP exerts important biological effects.
In closing we discuss the possibility that therapeutic lowering of baseline CRP might be a
useful way to treat certain diseases, including cancer.
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PREFACE

This article was written for Frontiers in Immunology’s research topic Diagnostic and Therapeutic
Applications of Pentraxin and Pentraxin-Associated Proteins. Our goal was to review the available
evidence - generated by us and by others – that supports targeting of CRP as a therapeutic approach
for the treatment of human diseases including cancer. To provide what we think is necessary context
we include a brief historical overview of CRP and an update on our understanding of CRP’s general
biology and its mode of regulation, and we briefly summarize the use of CRP measurements in
clinical practice (although in full disclosure neither of the authors is a clinician with direct
experience in that realm). We have done our best to be non-partisan, fair, complete, and
balanced, and to give credit to researchers in the field where we think credit is due. Finally, since
this is a review paper of limited length we were necessarily judicious and have not referenced the
entirety of the excellent work done by all the experts in the field. Those caveats notwithstanding, we
sincerely hope that what we have written here stimulates in the reader an appetite for more
org January 2021 | Volume 11 | Article 6195641
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information about CRP. To feed that appetite we encourage the
readers to devour one or more of the many excellent reviews
already written by other experts (1–12).
HISTORICAL OVERVIEW OF C-REACTIVE
PROTEIN

C-Reactive Protein Gained Acceptance as
a Non-Specific Biomarker of Disease Soon
After Its Initial Discovery
C-reactive protein (CRP) was discovered during the seminal
studies of pneumococcal pneumonia being performed in the
laboratory of Oswald T. Avery (1877-1955). There in 1930 in the
blood of pneumonia patients, William S. Tillett (1892-1974) and
Thomas Francis, Jr. (1900-1969) identified high titers of a
substance that was reactive with (and could precipitate from
solution) the carbohydrate-rich “C fraction” of S. pneumonia (i.e.
the fraction containing pneumococcal C-polysaccharide) (13).
Today we call this precipitating substance C-reactive protein or
CRP. Tillett and Francis also observed the drastic decline and
eventual disappearance of the precipitin from patient’s sera
coincident with resolution of their febrile period – the first
report of CRP’s characteristic rise and fall during what later
became known as the “acute phase response” (APR). At the time,
to detect CRP Tillett and Francis and their contemporaries relied
on a flocculation reaction, wherein CRP in the serum reacted
with C-polysaccharide in solution to form a visible precipitate.
This assay requires high amounts of CRP and consequently, CRP
could only be detected in the serum of patients experiencing
severe disease; thus at the time CRP was thought to be absent
from the serum of healthy people. Soon thereafter it was
recognized that monitoring CRP blood levels might have
clinical utility, and this was solidly established by a trio of
papers published by Avery’s group in 1941 (14–16). Still today
elevation of blood CRP is recognized as a useful “biomarker of
inflammation”, and so CRP blood levels are incorporated into
numerous disease assessment guidelines. With the eventual
development of more accurate and more sensitive techniques
for its measurement, CRP was found to be present in normal
serum too (17–19) and the first rigorous study of normal CRP
values soon followed (20). These findings challenged the earlier
status quo that CRP was a precipitin present only during
infection and raised the possibility that CRP plays a role in
normal homeostasis. Recognizing that assays of CRP were of
increasing clinical diagnostic value, in 1987 the World Health
Organization spearheaded the development of an International
Standard for Human CRP. That standard (coded 85/506),
comprised of an extract of freeze-dried pooled human serum
to which a quantity of human CRP has been added, is stable and
is available in ampoules and was shown to be suitable for use as a
standard in seven different immunoassays [(21), pp. 21-22].
Preparation 85/506 was meant to be the gold standard against
which all national and international secondary CRP standards
are meant to be calibrated.
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Blood CRP levels in populations of ostensibly healthy people
have a positively skewed log-normal distribution, and baseline
blood CRP levels in individuals can vary with age, sex, race,
genetics, and obesity (22–25). Consequently, even in people
whose CRP levels fall within the reference ranges first
established by Shine et al. (20) (median 0.8 mg/L with 90%
under 3.0 mg/L and 99% under 10 mg/L), CRP values can still
vary widely from one healthy person to another. The range of
values deemed normal for a physiologic measurement in healthy
persons is further complicated by the fact that blood CRP
concentrations between 3 and 10 mg/L are considered by some
to be indicative of ‘low-grade’ inflammation, i.e. mild
inflammation resulting from a variety of persistent metabolic
stresses (e.g. atherosclerosis, obesity, obstructive sleep apnea,
insulin resistance, hypertension, type 2 diabetes, etc. (4). There
is similar wide variability in CRP levels among those whose
values are above the normal range; with levels greater than 10
mg/L generally considered to indicate clinically significant
inflammation (i.e. the type accompanied by rubor, calor, dolor,
and tumor) and levels above 100 mg/L considered indicative of
infection. As mentioned above baseline CRP values are now
included in a variety of clinical guidelines for disease assessment.
Perhaps the best known example of this is the reference ranges
for serum CRP now articulated by the Centers for Disease
Control and Prevention and the American Heart Association
to estimate cardiovascular risk in otherwise healthy individuals:
low-, average-, and high-risk values defined as < 10, 10 – 30, and
> 30 mg/L (26). Indeed according to some reports, high baseline
CRP is a more robust predictor of future adverse coronary events
than is dyslipidemia (27, 28). From cardiovascular disease to
cancer to acute kidney injury high CRP levels have been shown
to correlate with worse prognosis, and recent evidence indicates
CRP is a very good predictor of adverse outcomes for COVID-19
patients (29). Interestingly, animal studies indicate that CRP’s
association with autoimmune diseases might be reversed, i.e. the
onset of multiple sclerosis, arthritis, and lupus, is delayed in CRP
transgenic mice (3, 30, 31). Whether higher baseline CRP
predicts later onset of autoimmunity in patients remains to be
ascertained. CRP thus has a long history and its elevation in the
blood above the normal range has well-established utility as a
biomarker of inflammation and disease. As will be discussed
later, emerging new evidence indicates that blood CRP can also
actively participate in physiological processes when it is in the
range deemed normal.

The Advent of Molecular Biology Ushered
in a Deeper Understanding of C-Reactive
Protein Structure, Regulation, and
Biological Activity
Not only is CRP the prototypical human acute phase protein (32,
33) it is also the prototypical pentraxin (34), an evolutionarily
highly conserved class of pattern recognition molecules with the
same or highly similar primary, secondary, tertiary, and
quaternary structures; human CRP being composed of five
globular monomers of 206 amino acids each, non-covalently
bound together into a planar ring with a central pore (Figure 1)
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(34, 35, 41). As mentioned earlier the first known biological
activity of CRP identified was its ability to bind to and precipitate
with the pneumococcal C-polysaccharide (13). This action was
later found to rely on CRP binding to phosphocholine (a major
constituent of C-polysaccharide) in a Ca2+-dependent manner
(42–44). While C-polysaccharide/phosphocholine is the
canonical and most well-studied ligand for CRP, it is likely not
the only ligand to which CRP can bind. For example numerous
different groups have reported that CRP also binds to apoptotic
cell membranes (45), to various nuclear antigens (46–48), to the
oxidized LDL receptor (49), and to many other ligands (9, 12, 50,
51), although some of these reactivity’s have been disputed (52).
Additionally, CRP is known to activate the classical pathway of
complement by binding and thereby activating C1q (53–55), and
to activate numerous myeloid, lymphoid, and endothelial cell
responses by binding to a variety of Fc receptors (10, 56). In
general it is most likely that by binding one or more of these
ligands, by activating complement, and by engaging Fc receptors
that CRP mediates its well-described protective influences
against bacterial infection (57–61). As will be detailed later,
these varied ligand and receptor interactions also support
CRP’s participation in various non-infectious diseases. Insofar
as is known, the CRP’s of different species share the same or
similar ligand binding profiles as human CRP (12).

Seminal studies conducted using both rabbit and human cells
showed that the hepatocyte is the main site of CRP synthesis and
assembly (62, 63). That finding and the subsequent mapping of
the human CRP gene to chromosome 1 (64) led to more detailed
studies of the control of CRP expression. While a few studies
have reported that some pre-assembled CRP is kept in
intracellular pools – from which it is expeditiously released
during the APR (65, 66) – the overwhelming evidence from
human cells and transgenic mice (67) has solidly established that
CRP expression – and thus CRP blood levels - is controlled
mainly at the transcriptional level. Today, transcriptional
Frontiers in Immunology | www.frontiersin.org 3
regulation of CRP is known to be coordinated by a host of
cytokines and hepatic transcription factors, with IL-6 and IL-1b
being the main cytokines regulating CRP blood levels during
inflammatory episodes (68–70). The latter have been shown to
bind to various overlapping transcription factor binding
elements in the CRP promoter, in a region proximal to its
coding sequence (Figure 2). It is now certain that the levels of
blood CRP in healthy individuals is influenced by genetic
variation in this promoter region (6, 24), but it is still
uncertain whether genetic variation in these or other
regulatory elements contributes to differences in the ability to
upregulate CRP during inflammation. Notwithstanding the latter
gap in knowledge, the available evidence indicates that in the
absence of inflammation baseline CRP expression can be
maintained by the transcription factors hepatic nuclear factor
(HNF) 1 alpha (HNF1a) and 3 (HNF3) (69). In contrast
during inflammation, the increased availability of IL-6 and/or
IL-1b supports increased production of the transcription factors
C/EBP, STAT3, cFos, and NF-kB, which act synergistically with
the CRP promoter-bound HNFs to drive high levels of CRP
transcription (68, 69, 71–73). There is also some evidence that
the proximal promoter of CRP, perhaps in conjunction with the
CRP 3’UTR and the downstream pseudogene CRPP1 can
assemble into an enhanceosome (Figure 2) that favors more
prolonged transcription of CRP (67, 74–76). Thus it is most likely
that during an APR, the increased quantity and variety of
transcription factors available (coupled with their increased
nuclear residency?) supports more efficient transcription of
CRP, thus accounting for the dramatic increase in circulating
CRP levels (from ~1 mg/L to upwards of ~200 mg/L) that can be
seen within hours during the acute phase response. Presumably
when inflammation is resolved and the availability of cytokines
and transcription factors is lowered, transcriptional control of
CRP is handed back to HNFs (69).
TARGETED LOWERING OF C-REACTIVE
PROTEIN

Blood C-Reactive Protein Lowering as a
Therapeutic for Cardiovascular Disease?
The association of CRP blood levels with cardiovascular disease
(CVD) has been of keen interest for many decades, and today
baseline CRP is recognized both as an independent marker and
predictor of myocardial infarction (MI), stroke, and death from
coronary heart disease in ostensibly healthy people. Conclusive
evidence for CRP causality in human CVD is still lacking [for
more insight see the comprehensive critical reviews by (5, 7)] and
the entire issue remains hotly debated, but the results of at least
four different clinical trials suggest a role for CRP in the
atherogenic process (27, 77–79). Also there is indirect evidence
from many different groups suggesting that CRP is causally
related to CVD. For example CRP is detected in human
atherosclerotic lesions (80–84) and it can activate human
endothelial cells (82, 85, 86). The evidence from transgenic
animals is equally confusing, with some studies (including
FIGURE 1 | C-reactive protein (CRP) is a pentamer with two distinct faces.
(A) On the A face each CRP monomer displays an a-helical stretch of
residues (fuchsia) adjacent to the C1q and FcR binding sites and on the
opposite B face (B) each monomer displays residues that help coordinate
two Ca2+ ions (green spheres) that assist with binding to ligands
(phosphocholine shown in gray, red, and orange spheres). The image is a
reproduction of structure 1B09 as reported by (35, 36) and was created
using NGL (37) accessed on PDB (38–40).
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some of our own) indicating human CRP might be pathogenic in
CVD (87–90) whereas others indicating it is not (91, 92). While
the exact contribution of CRP to human CVD remains equivocal
and the debate still rages (93), the current authors will not be
surprised if future placebo-controlled double-blind studies
showed that CRP contributes to the pathophysiology of
human CVD.

Causal or not, it has long been accepted that elevated CRP
marks the presence of disease. If in certain cases elevated CRP
worsens disease, then lowering CRP levels might lead to
improvement. CRP lowering can be achieved by lifestyle
changes (94) or by targeting inflammatory cytokines [e.g. see
(28, 95)], but until recently there was no way to directly and
selectively target CRP. This was the major impediment to clinical
trials designed to directly test the possible benefits of CRP
lowering. Over the last decades several groups have developed
approaches to overcome this nagging problem. For example
Pepys’ group developed a small molecule inhibitor of CRP
(1,6-bis(phosphocholine)-hexane) that they tested in a
preclinical rat model (96). The compound works by
crosslinking two CRP molecules, thereby blocking its ability to
bind endogenous ligands while increasing its clearance from the
blood. In rats that had received injections of human CRP prior to
ligation of their coronary arteries, the signs of subsequent MI
were worsened, indicating that human CRP exacerbates MI. Co-
administration of human CRP plus 1,6-bis(phosphocholine)-
hexane ablated the exacerbating influence of human CRP (96).
This study underscored for the first time the promise of
inhibiting CRP as a new approach for cardio-protection in
acute MI. Our own group also recently tested a different
Frontiers in Immunology | www.frontiersin.org 4
method of CRP lowering that relies on an antisense
oligonucleotide (ASO) (3). ASOs have been shown to be highly
effective at promoting the selective degradation of their target
mRNAs and to have minimal off-target effects, and several ASOs
have already been approved by the United States Food and Drug
Administration for use in a variety of disease settings (97, 98).
Since CRP is synthesized in the liver and ASOs have a propensity
to accumulate in the liver (99), we designed ASOs to selectively
target CRPmRNA and thereby efficiently reduce blood CRP. We
showed that a human CRP-specific ASO was effective at lowering
baseline CRP and was well-tolerated in healthy volunteers (100),
and subsequently others showed that a human CRP-specific ASO
attenuated CRP elevation (up to 69% compared to placebo) in
humans challenged with endotoxin (101). Using species-specific
CRP-targeting ASOs we showed the approach was also
efficacious in rats and mice subjected to experimentally
induced MI (89, 90, 102). Specifically, the rat CRP-specific
ASO achieved a >60% reduction of rat blood CRP levels and
improved their heart function and pathology following MI, and
treating human CRP transgenic mice with a human CRP-specific
ASO reduced blood human CRP by >70%. A third approach to
CRP lowering is selective apheresis, which has recently been
tested with some success in a small number of patients suffering
from MI (103, 104) and with mixed results in patients with
COVID-19 (105).

Blood C-Reactive Protein Lowering as a
Therapeutic for Other Diseases?
Using our human CRP transgenic (CRPtg) and CRP knockout
(CRP−/−) mice we have investigated the contribution of CRP in a
A

B

C

FIGURE 2 | The human C-reactive protein (CRP) gene. (A) Downstream of CRP is the CRP pseudo-gene (CRPP1, lilac box), that is likely involved in cis-acting
regulation of basal CRP expression. (B) The proximal promoter of CRP (light blue box) is typically mapped as the region ~300 nucleotides upstream of the
transcription start site, including the TATA binding site at −29 to −26 (red ×). The short 5’ untranslated region (5’UTR; light gray box) precedes the coding sequence
for the 18 amino acid-long leader peptide (dark gray box). Exon 1 encodes the first three amino acids of mature CRP (thin black vertical line) and is immediately
followed by the intron. The remainder of CRP is encoded by exon 2 (black box). CRP has a long 3’UTR sequence (light gray box) with a poly(A) signal (♦). Each
region is drawn approximately to scale. (C) The relative locations in the CRP promoter of binding elements for hepatic nuclear factor (HNF) 1a and HNF3 that
contribute to regulation of constitutive expression of CRP (gray boxes) and for C/EBP (yellow boxes), NF-kB (black boxes), and STAT3 (blue box) that contribute to
regulation of expression of CRP during the acute phase response. Note that C/EBP and NF-kB and the repressor OCT-1 (red box) utilize overlapping elements.
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wide variety of other diseases and, as in the case of CVD, have
often observed a beneficial effect of CRP lowering. For example,
in mice subjected to surgery-induced bilateral renal ischemia/
reperfusion (I/R) injury, a procedure that faithfully mimics acute
kidney injury (AKI) in humans receiving kidney transplants, we
showed that CRP contributes to the pathogenesis of AKI.
Essentially compared to wild type mice, CRPtg had worse
outcomes after renal I/R whereas CRP−/− were relatively
resistant (106). Following I/R surgery CRPtg showed more
disruption of their renal tubules and they had increased urine
albumin and serum creatinine compared to wild type. To our
surprise these exacerbating effects of CRP were accompanied by
increased renal infiltration of myeloid derived cells with
suppressor functions (MDSCs; primarily polymorphonuclear
PMN-MDSCs) (106, 107). In contrast in the kidneys of CRP−/−

that had undergone renal I/R only a few PMN-MDSCs were
found. In other experiments we established that CRP can
selectively promote the expansion of MDSCs from mouse bone
marrow progenitors and increase their suppressive function (i.e.
their ability to inhibit T cell proliferation) (31). We conducted
other experiments and found that MDSCs directly impact
primary renal tubular epithelial cells (RTEC), i.e. in co-cultures
MDSCs impaired the ability of RTECs to cycle through S-phase
even in the absence of cell-cell contact (unpublished data). The
combined findings suggest that CRP potentiates the expansion of
MDSCs during AKI, likely by selectively promoting their
expansion from bone marrow progenitors. By suppressing cell
cycling, the kidney infiltrating MDSCs initiate a deleterious
progression of events: the impairment of RTEC proliferation
consequently impedes RTEC recovery and thus the restoration of
normal tubular architecture, ultimately setting the stage for
maladaptive repair and chronic kidney disease. Importantly,
we also showed that treating CRPtg mice with the human
CRP-specific ASO prior to I/R surgery lowered CRP, drastically
reduced renal MDSC infiltration, and alleviated AKI (107).
Subsequently we established that CRP also enables human
neutrophils to manifest T cell suppressive actions (31). Based
on these translational findings we think it is likely that
therapeutic lowering of CRP might be of benefit in recipients
of kidney transplants. We also tested the influence of CRP
lowering therapy in the context of an animal model of
rheumatoid arthritis (RA), i.e. collagen-induced arthritis (CIA).
Thus Jones et al. (108) showed that development of CIA is
delayed in CRPtg and accelerated in CRP−/−, suggesting that
during onset and development of disease CRP plays a protective
role. On the other hand, when CRPtg with established CIA
(clinical score of ≥ 2) were treated with the human CRP-specific
ASO they showed less inflammation and improvement of CIA
symptoms (100). The protective effect of CRP during onset of
disease might reflect the ability of CRP to impair dendritic cell
functions while at the same time promote MDSC suppressive
activity (30, 31), culminating in a delayed autoimmune response.
Conversely, the detrimental effect of CRP seen during active CIA
is likely because of its complement activating potential (1). These
observations underscore that if CRP lowering is used as a
therapy, the timing of CRP lowering will likely be of
Frontiers in Immunology | www.frontiersin.org 5
paramount importance. Indeed this ‘timing effect’ may be the
reason why, despite effective CRP lowering, no improvement in
symptoms was observed in patients with active RA treated with a
CRP-specific ASO (109).

Something to Think About: Blood C-
Reactive Protein Lowering in Cancer?
Despite the success of immunotherapies (e.g. checkpoint
inhibitors) to treat solid tumors, there still is a significant
fraction of cancer patients that experience no benefit or only a
short remission after immunotherapy. Immunotherapy is based
on a two pronged approach: 1) boosting the endogenous T cell
anti-tumor response to overcome antigen escape and T cell
exhaustion (110) and 2) modulating intra-tumoral MDSCs
(111). Population studies have established that high CRP levels
associate with increased cancer risk (112–114), increased cancer
progression (8), and increased cancer mortality (115, 116), and
in many cases CRP has been shown to be an independent
prognostic factor for cancer (117–122). Given our finding that
CRP reprograms myeloid cells we therefore think that cancer
might represent a promising opportunity for beneficial
CRP lowering, i.e. reducing blood CRP levels should
result in fewer MDSCs and a less immunosuppressive tumor
microenvironment, thereby potentiating anti-tumor T cell
responses. As discussed earlier, our data showed that CRP is
an enhancer of MDSC generation and suppressive function and
CRP can also inhibit dendritic cell function; therefore we predict
that compared to wild type mice, CRPtg should have more
MDSCs and more tumor burden while the inverse should be
seen in CRP−/− mice. Indeed in pilot studies (unpublished data)
using an E0771 orthotopic breast cancer model, we observed
CRP−/− had lower tumor burden and lower frequencies of
tumor- and spleen-infiltrating MDSCs compared to CRPtg and
wild type. These preliminary observations hint at the possibility
that CRP contributes to MDSC generation and their eventual
infiltration into tumors. Yet to be explored is whether CRP
within the tumor microenvironment impedes the anti-tumor
response directly (i.e. by inhibiting T cells per se) or indirectly
(i.e. by promoting MDSCs). However, based on our previous
observations that the CRP ASO decreased MDSC infiltration
into I/R injured kidneys and that tumor challenged CRP−/− mice
had decreased intra-tumor MDSCs, we predict that a CRP-
specific ASO should decrease CRP-driven MDSC infiltration
into tumors. Targeted lowering of CRP should simultaneously
allow for the maturation of tumor-reactive dendritic cells, which
in turn would stimulate tumor-reactive T cell responses.
SUMMARY

Since its discovery nearly a century ago much has been explored
and written about CRP’s association with disease, and
consequently CRP’s role as a marker of inflammation is solidly
established. That being said, CRP is more than just a marker of
inflammation, i.e. it did not evolve nor was it maintained by
natural selection to provide a faithful indication that something
January 2021 | Volume 11 | Article 619564
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is amiss with a patient. In the last decades evidence has steadily
been building that CRP contributes to the maintenance of health
and the propagation of some diseases, and for the first time
specific CRP lowering is achievable. Therefore the time has come
we think, for the biological activities of CRP and therapeutic
lowering of CRP to be brought to the forefront in the clinical care
setting. Like any therapy CRP lowering might have some
untoward effects (e.g. it might increase the risk of infection),
Frontiers in Immunology | www.frontiersin.org 6
nevertheless the time for a placebo-controlled double-blind case-
controlled clinical trial of CRP lowering therapy may have
finally arrived.
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