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Abstract

As cellular variability and circadian rhythmicity play critical roles in immune and inflammatory responses, we present in this
study an agent-based model of human endotoxemia to examine the interplay between circadian controls, cellular variability
and stochastic dynamics of inflammatory cytokines. The model is qualitatively validated by its ability to reproduce circadian
dynamics of inflammatory mediators and critical inflammatory responses after endotoxin administration in vivo. Novel
computational concepts are proposed to characterize the cellular variability and synchronization of inflammatory cytokines in
a population of heterogeneous leukocytes. Our results suggest that there is a decrease in cell-to-cell variability of inflammatory
cytokines while their synchronization is increased after endotoxin challenge. Model parameters that are responsible for IkB
production stimulated by NFkB activation and for the production of anti-inflammatory cytokines have large impacts on system
behaviors. Additionally, examining time-dependent systemic responses revealed that the system is least vulnerable to
endotoxin in the early morning and most vulnerable around midnight. Although much remains to be explored, proposed
computational concepts and the model we have pioneered will provide important insights for future investigations and
extensions, especially for single-cell studies to discover how cellular variability contributes to clinical implications.
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Introduction

Systemic inflammation is evoked by many stimuli, including

infection, trauma, invasive surgery and biological stressors in

general; also, it is typically observed in critical illness [1]. While the

host inflammatory response is essential to resolve an infection or

repair damage to restore homeostasis, it also plays a central

pathogenic role in a wide spectrum of diseases [2]. Under normal

circumstances, the inflammatory response is activated, initializes a

repair process and then abates [3]. However when anti-

inflammatory processes fail, an amplified pro-inflammatory signal

can turn what is normally a beneficial reparative process into a

detrimental physiological state of severe, uncontrolled systemic

inflammation [4]. Therefore, to gain a better understanding of the

molecular mechanisms and physiological significance associated

with inflammatory responses, alternative clinically relevant models

have been proposed, including the human endotoxemia model. In

this model, an intravenous administration of E.coli endotoxin

(lipopolysaccharide) is given to healthy human subjects [5,6].

Lipopolysaccharide (LPS), a component of the outer cell

membrane of gram-negative bacteria [7], induces its injurious

effects by a non-cytotoxic interaction with CD14-bearing inflam-

matory cells, such as macrophage-monocytes, circulating neutro-

phils and lung epithelial cells. These effector cells are activated

through a family of Toll-like receptors (TLR) and subsequently

release a network of inflammatory products. While we do not

argue that the human endotoxin challenge model can precisely

replicate an acute infectious or sepsis condition, we believe that

human endotoxin challenge does serve as a useful model of TLR4

agonist-induced systemic inflammation while at the same time

providing a reproducible experimental platform.

The inflammatory response is a complex non-linear process

involving a multi-scale cascade of events mediated by a large array

of immune cells and inflammatory cytokines [8]. At the cellular

level, innate immune cells are activated resulting in the production

and release of pro-inflammatory and anti-inflammatory cytokines

to the systemic circulation for cell communication [9,10]. Anti-

inflammatory cytokines counteract the effects of pro-inflammatory

cytokines and the relative concentration or balance between them

strongly affects to the degree and extent of the response [11,12]. At

a higher level, the hypothalamic-pituitary-adrenal (HPA) axis and

the sympathetic nervous system (SNS) produces stress hormones

[13] whose pattern of release follow broad circadian rhythmicity

which plays critical roles in immune responses [14,15,16,17]. This

rhythmicity is regulated by the 24 hour light/dark cycle, exerting

diurnal effects on numerous inflammatory cytokines [18,19]. The

complexity of the overall response has encouraged the develop-

ment of mathematical and computational models as a means of

exploring the connections between multiple components.

Various modeling approaches have been proposed, but

generally they can be classified into two main categories:

equation-based and agent-based modeling [20,21,22]. In previous
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studies, we developed a mathematical model of the human

endotoxemia using equation-based modeling technique with

ordinary differential equations (ODE) [23,24,25]. However,

deterministic ODE models assume homogeneity and perfect

mixing within compartments, while ignoring spatial effects [21].

Given that stochasticity and heterogeneity have profound effects

on the function of biological systems [26,27,28], agent-based

modeling (ABM) – an alternative, more intuitive, approach has

been explored. ABM is an object-oriented, rule-based, and discrete

modeling method [29,30] where interactions between agents (cells,

molecules) are nonlinear, stochastic, spatial, and are described by

asynchronous movements through multiple compartments. The

usefulness and applicability of ABMs vary but some have been

applied to immunological problems and findings derived from

these models generated a lot of insights into the interactions and

dynamics at the cellular level in immune responses. For example,

Jenkins and colleagues [31] investigated B-T cell interactions in the

absence of directed cell chemotaxis during the first 50 hr of a

primary immune response to an antigen; Gary An and coworkers

have pioneered many ABMs to evaluate the dynamics of the innate

immune response, the efficacy of proposed interventions for SIRS/

multiple organ failure (MOF) [32,33], and the dynamics of the

TLR4 signal transduction cascade to study LPS preconditioning and

dose-dependent effects [34,35]. Furthermore, they also developed a

basic immune simulator (BIS) to qualitatively examine the interac-

tions between innate and adaptive interactions of the immune

responses to a viral infection [36]. In addition, there are a variety of

successful agent-based simulators that have been constructed as

frameworks for immunology/disease understanding and exploration

e.g. IMMSIM [37,38], SIMMUNE [39], CyCells [40].

In this study, we developed an ABM to investigate the cellular

variability through the interactions and dynamics of inflammatory

cytokines in acute inflammatory responses following endotoxin

administration. The model naturally incorporates key biological

features (e.g. stochasticity, heterogeneity, and discreteness) and

physicochemical properties of biological molecules. While in

previous studies [23,24,25] we focused on the possibility of

modeling the transcriptional dynamics of cellular responses, we

here attempt to capture stochastic variation in the transcriptional

process, one of the key factors leading to phenotypic variation in

addition to genetic and environmental variability [41,42,43,44].

Because stochasticity is an inherent property of agent interactions,

non-genetic cell-to-cell variability originated from stochastic

variance is captured by our proposed model. Therefore, elucidat-

ing the relationship between the behaviors measured at the single-

cell level and those measured in a population of cells is among the

aims of our study in order to provide insight into the host

inflammatory response under different external stimuli.

We first construct a homeostatic model of components involved

in the response to human endotoxemia using the agent-based

approach. Novel heuristics are proposed regarding parameter

tuning with process trending analysis techniques and time-scale

estimation by mapping in silico system behaviors to in vivo

transcriptional responses. Inevitably there is a level of abstraction

in the simulation when representing biological events using the

indirect response modeling technique [45] and thus the model is

validated through its ability to capture in vivo transcriptional

responses and reproduce circadian rhythms. A critical contribu-

tion of our work is the assessment of cellular variability derived

from stochastic variation in biological events, especially in

transcriptional processes. By proposing a novel hypothetical

measurement Fvar derived from the balance distribution of pro-

and anti-inflammatory mediators in the population of leukocytes,

we extract information content conveyed by cell-to-cell variability.

Sensitivity analysis is also performed to explore which model

parameters greatly influence system behaviors. All in all, the main

aim of this study is establishing a multi-scale modeling framework

capable of simulating main characteristics of critical components

in human endotoxemia to examine (i) the balance and distribution

of inflammatory cytokines in a population of heterogeneous

leukocytes and (ii) the interplay between circadian controls and

endotoxin treatments through a novel quantity based on the cell-

to-cell variability.

Model Construction

Assumptions and biological evidence
The model is principally constructed based on our previous

studies [23,24,25]. First of all, high-dimensional transcriptional

profiling data from human blood leukocytes following LPS

administration are decomposed into four significant expression

patterns. These patterns capture the essence of three inflammatory

phases including a pro-inflammatory response (‘early-up’ &

‘middle-up’ expression pattern, P), a counter-regulatory/anti-

inflammatory response (‘late-up’ expression pattern, A), and a

dysregulation in leukocyte bioenergetics (‘down’ pattern, E) [46]

(see Materials and methods). They define the basic elements (state

variables) characterizing how leukocytes respond to endotoxemia.

A number of assumptions have been made to construct the

model, namely: (1) peripheral blood leukocytes can be approximat-

ed as a community of leukocytes whose main behavior is

characterized by asynchronous and stochastic activities without

intra-cellular spatial localization; (2) the dynamics of the pro-

inflammatory response, the counter-regulatory response, and the

dysregulation in leukocyte bioenergetics can be characterized by

patterns of corresponding pro-inflammatory cytokines, anti-inflam-

matory cytokines, and bio-energetic proteins; (3) different types of

pro-inflammatory cytokines, anti-inflammatory cytokines, and bio-

energetic proteins are represented by corresponding average

delegators as P, A, and E, respectively, whose main behaviors are

associated with asynchronous and stochastic activities. Lastly, it has

been observed that after LPS challenge, many pro-inflammatory

cytokines exhibit similar dynamics as is observed in their

corresponding mRNA temporal profiles e.g. TNFa, IL6, IL8, etc

[47]. IL10, an anti-inflammatory cytokine, shows a slight difference

between its mRNA and protein temporal profiles. While mRNA

levels of IL10 dropped during the first hour post-LPS and its protein

levels rose very modestly, both profiles still exhibit up-regulation

overall. Consequently, in this context, we hypothesize that the

common dynamics of pro- and anti-inflammatory cytokines can be

characterized by their average mRNA expression profiles.

Such expression dynamics of inflammatory cytokines are

assumed to be mainly regulated by the activation of relevant

transcription factors (TFs). Nuclear factor-kappa B (NFkB) was

selected as the representative signaling controller underpinning the

manifestation of transcriptional responses due to its essential role

in the immune system [48,49] and extensive prior computational

analyses [50]. Furthermore, NFkB activity is primarily modulated

by the activity of its kinase (IKK) and its inhibitor (IkB) through

the Toll-like receptor (TLR) signaling pathway – a pivotal pathway

subjected to crosstalk from other signals and pathways (e.g. JAK-

STAT [51,52]) [53,54]. Such regulation can be characterized by

the ubiquitous paradigm of a two-feedback mechanism: a positive-

and a negative- feedback [54,55,56,57]. Therefore, we hypothesize

that the dynamics of inflammatory cytokines are mainly regulated

by intra-cellular signaling cascades and transcription factors whose

activities can be characterized by the paradigm of a two-feedback

regulatory mechanism.

Agent-Based Model of Human Endotoxemia
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At the systemic level, pro-inflammatory cytokines released from

the innate immune system induce signals activating the hypotha-

lamic-pituitary adrenal (HPA) axis, thus controlling the secretion

of glucocorticoids (cortisol in primates or corticosterone in rodents)

[58,59]. Of particular interest is the hormone melatonin given its

role as a mediator in the crosstalk between the suprachiasmatic

nucleus (SCN) and the immune system [60,61]. The correspond-

ing hormone levels exhibit a circadian pattern with strong effects

on the production of inflammatory cytokines [18,19]. While

cortisol reaches its peak in the early morning [62], melatonin’s

peak production occurs late at night and remains at a low level for

the rest of the day [61,63]. Therefore, in this model cortisol (F) is

hypothesized to be mainly controlled by the hypothalamus (HPT)

while melatonin (M) is regulated by the SCN. The representation

of the proposed model, including all components and associated

interactions, is shown in Figure 1. This describes how the system

is controlled and provides an intuitive illustration of the entire

model behavior. A snapshot of the implemented model is also

presented. Simulated molecular types and their corresponding

characteristics are shown in Table 1. Details of model compo-

nents, rules, and parameters are discussed as follows.

Agent rules and behaviors
Agents are simulated objects (cells, molecules) that follow

specific instructions on how they behave and interact with other

agents within or between compartments. The rule system is listed

in Table 2 and described briefly as follows. When LPS is

recognized by its receptor TLR-4, a signal transduction cascade

triggers downstream intracellular signalling modules to ultimately

activate the transcription of inflammatory genes. Such transcrip-

tional processes are assumed to be mainly regulated by transcrip-

tion factors for which NFkB serves as a proxy whose activities,

including activities of IKK and IkB in the NFkB-signaling module,

have critical roles in the inflammatory response [64,65]. Following

the activation of NFkB through the phosphorylation of the

inhibitor protein IkB by IKK, NFkB is translocated into the

nucleus to activate the transcriptional processes resulting in the

production of pro-inflammatory cytokines (e.g. TNFa) and IkB

[66,67,68]. After released to the systemic circulation, these pro-

inflammatory cytokines may bind to their corresponding receptors

on the membrane of leukocytes and either further activate the

NKkB-signaling module [67,69] or lead to production of

additional TLR-4 molecules [70,71]. On the other hand, they

also act as hormone-like signals that converge to activate the HPA

axis to stimulate production of glucocorticoids [58,59] or suppress

nocturnal melatonin production [72,73,74]. While glucocorticoids

have critical roles in the anti-inflammatory arm of the host defense

system by inducing the expression of anti-inflammatory proteins

such as IkB and anti-inflammatory cytokines (e.g. IL10) [58,75],

they also act as potential modulators that enhance the production

of melatonin [73,76,77]. Melatonin, in turn, can modulate the

production of pro-inflammatory cytokines [18,61]. In addition, to

establish the relationship between the inflammatory response and

the cellular energetic state, we assumed that there are a number of

bio-energetic molecules (E) in each cell which represent the overall

cellular energetic status. If the number of bio-energetic molecules

is positive, the cell can be able to produce new molecules; and if it

does, the default production of bio-energetic molecules is

inhibited. Since anti-inflammatory cytokines are responsible for

the counter-regulation of the pro-inflammatory responses, it is

hypothesized that they have a role in increasing the amount of bio-

energetic proteins.

In our simulations, there are four types of compartments: the

plasma, the brain, the cell cytoplasm, and the nucleus. The plasma

contains the brain compartment and all simulated cells (50 in this

study); each cell contains a cytoplasm and a nucleus. All agents

move in a random fashion following the ‘random walk’ model on a

2-dimensional grid (see Materials and methods). The plasma and

each cell have their own simulating grid while the brain and nucleus

directly occupy a region in the plasma and corresponding cell

simulating grid respectively. There is no special spatial arrangement

for agents. However, there are a number of restrictions on which

compartment a molecule can be in. Specifically, LPS can only move

in the plasma compartment; LPSR, IKK, NFkB.IkB, E, and GR

are only present in the cytoplasm; NFkB, IkB, and FR can be in

both the cytoplasm and the nucleus; M and A cannot be in the brain

compartment and F cannot be present in the nucleus while P can

move between any compartment. TLR4 molecules after produced

are transferred to the cell membrane i.e. when they reach the

boundary of the corresponding cell simulating grid; they are fixed

there until they are destroyed.

Molecules are translocated between compartments based on an

import- and export procedure. In the plasma compartment, if a

molecule has the same position with a cell or reach the region of the

brain, the system will check to determine whether it is imported or

not. Except LPS, other molecule types are imported to the brain

and cells with the approximate probability of LPS-binding TLR4 to

simulate the probability of the binding to receptors. This is

approximately the initial number of TLR4 molecules in a cell

divided by the number of positions on the boundary of the cell

simulating grid, which is about 30%. For LPS molecules, a random

position on the boundary of the cell simulating grid is assigned; if it is

overlapped with the position of some TLR4 molecule, it will be

imported. If imported to a cell, the molecule status is changed to

‘active’. In the cytoplasm compartment, active molecules are simply

translocated to the nucleus compartment when they reach the

nucleus regions in the corresponding simulating grid. On the other

hand, when a molecule reaches the boundary of a compartment, it

is exported to the outer compartment if it is not restricted (see

Materials S1 for details).

Each agent moves in a random direction for a random number

of times with a random delay time for each movement. However,

two interactive molecules X1, X2 with current positions

PX1
x , PX1

y

n o
, PX2

x , PX2
y

n o
respectively will move towards the posi-

tion where an interaction may occur if their distance is less than a

threshold d X1,X2ð Þ~ max PX1
x {PX2

x

�� ��, PX1
y {PX2

y

��� ���n o
ƒt ,t~1.

If two molecules have the same position on the simulating grid of the

corresponding compartment, they will interact (activation, inhibi-

tion, or degradation) following the rules showed in Figure 1a and

Table 2 e.g. A and P with the same status in any compartment,

LPSR and IKK, activated IKK and NFkB.IkB, F and GR in

cytoplasm, and NFkB and IkB in cytoplasm or nucleus. The rule is

also applied to the movement of molecules when adjacent to cells in

the plasma to increase the probability of entering a cell for molecules

in systemic circulation. Although there is no biological assumption

in cell and molecule movements, these movement rules come from

actual experiences in model implementation to increase the

probability of agent interactions and the model performance.

Finally, circadian controls are introduced in an attempt to

simulate the daily patterns of stress hormones [61,62,63]. In our

simulation, these rhythms are produced using sine waves. At every

tick during the time from the onset of the production to the

corresponding peak in a day (e.g. 3:00AM to 9:00AM for cortisol

and 10:00PM to 2:00AM for melatonin), a constant number of F

and M units (cfm) are added to the system where the probability for

each adding such a unit is

Agent-Based Model of Human Endotoxemia
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Figure 1. In silico human endotoxemia model accounting for circadian variability. (a) The rule system representation. At the cellular level,
molecular interactions involve the propagation of LPS signaling on the transcriptional response level (P, A, E) through the activation of NF-kB
signaling module. At the systemic level, circulating stress hormones are released from the neuro-endocrine system coupled with their circadian
rhythms. The dynamics of cortisol (F) and melatonin (M) signaling from the systemic level involve molecular behaviors at the cellular level. The
activities of each agent are characterized by its corresponding color. (b) A snapshot of the implemented model. Molecules are displayed with solid
circles (P: red-; A: magenta-; F: blue-; M: cyan-; NFkB: yellow-; E: green-; TLR & GR: white-; IkB, IKK, NFkB.IkB: black- circles). Cells are displayed with solid
squares where green squares represent for cells with an approximate number of P and A, red squares for those with the number of P greater than 1.5
fold of the number of A and magenta squares for those with A more than 1.5 fold of P.
doi:10.1371/journal.pone.0055550.g001

Agent-Based Model of Human Endotoxemia
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Table 1. Model components.

No. Components Description
Approximate half-life
(hr) Initial population size*

1 LPS Lipopolysaccharide (endotoxin) 1.0 n/a

2 TLR4 Toll-like receptor 4 2.0 40

3 LPSR LPS-TLR4 complex – active form 2.0 n/a

4 IKK I kappa-B kinase complex – actived by LPSR 2.5 50

5 NFkB.IkB NFkB complex – inactive form 2.5 50

6 NFkB NFkB – active form 2.0 n/a

7 IkB I kappa-B – NFkB inhibitors 0.5 10

8 P Pro-inflammatory proteins – active when imported 1.5 30

9 A Anti-inflammatory proteins– active when imported 1.5 30

10 E Bio-energetic proteins 2.0 40

11 F Cortisol– active when imported$ 1.0 n/a

12 GR Glucocorticoid receptors 2.0 40

13 FR Cortisol-receptor complex – active form 2.0 n/a

14 M Melatonin– active when imported 1.0 n/a

*the initial corresponding number of molecules within a cell; $: the status of P, A, F, and M change to active when they are imported to the cytoplasm (cells) or brain
compartment
doi:10.1371/journal.pone.0055550.t001

Table 2. Model rules.

No. Rule definition

1 LPSR and P imported to cells from plasma can activate IKK; activated IKK can activate NFkB.IkB to NFkB

2 An individual NFkB in the nucleus has a probability of kp/ki to produce a new unit of P/IkB respectively

3 IkB inhibits NFkB activity by forming NFkB.IkB complex

4 P, A in the inactive form can be released to plasma if they lie on the membrane (boundary) of cells

5 P, A, F, M can be imported to cells from plasma if they hit a cell when moving in plasma

6 P, A, F, M after imported to cells from plasma will not be released to plasma again

7 An individual P in the nucleus has a probability of pt to produce a new unit of TLR4

8 An individual A in the nucleus has a probability of ae to produce a new unit of E

9 A inhibits P activity; both are degraded when they hit each other

10 An individual FR in the nucleus has a probability of fa/fi to produce a new unit of A/IkB respectively

11 NFkB activity in the nucleus is inhibited if the number of NFkB is less than the number of FR in the nucleus

12 FR inhibits the default system production of GR when in the nucleus

13 An individual F in the brain has a probability of fm to produce a new unit of M

14 An individual M in the nucleus has a probability of mp to produce a new unit of P

15 An individual P in the brain has a probability of pf to produce a new unit of F

16 P in the brain prevents F from producing M if the number of P is two folds more than that of F in the brain

17 NFkB, active P, FR, active M, and IkB can be translocated to the nucleus; they inhibit the default system production of E if they stimulate the nucleus
activity to produce a new unit

18 A constant number of individuals F (Cfm) are added with the probability of sin(0 p/2) for the time from 3:00AM to 9:00AM

19 A constant number of individuals M (Cfm) are added with the probability of sin(0 p/2) for the time from 10:00PM to 2:00AM

20 Molecules are degraded after ,t hr if there is no action except movements where t/2 is defined by the approximate half-life of molecular types

doi:10.1371/journal.pone.0055550.t002
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tF ~Tcur mod Ntpd ; tM~ tF z2|Ntph

� �
mod Ntpd ;

Ntpd~24|NtphprobF ~ sin (tF {3|Ntph)|
2 p

Ntpd

� �
;

probM~ sin tM|
3 p

Ntpd

� �

Simulated time is scaled from ‘ticks’, which is the simulation

counter, to hours. Tcur is the current tick of the simulation counter

which expresses the current simulated time. Ntph is the number of

ticks corresponding to one simulated hour. cfm is selected to have

the peaks of F and M approximately triple their corresponding

homeostatic levels (cfm = 3 in this study). These activities are

assumed to be controlled and taken place in the brain

compartment since they are all associated with behaviors of the

hypothalamus. Definition of the time-scale and the homeostatic

system will be discussed in the following section.

Model parameters
Model parameters are classified into two categories: default- and

production- parameters. Default parameters are those related to

system settings and physicochemical properties of cells and

molecules, such as compartment extensions, simulation scales,

molecule lifetimes, or initial populations. For simplicity, in this

study all compartments are simulated with unitless rectangular

grids. The plasma is represented by an 80 6 50 rectangular

unitless grid and the cell with 40 6 30. The cell nucleus is about

10% of the total cell volume and thus it occupies a region of about

11 6 11 on the cell simulating grid. Similarly, the brain

compartment is also simulated by a region of 11 6 11 on the

plasma simulating grid (Figure 1b).

Since the relationship between the system response time and the

system production rate is still unclear, we thus define two scales (an

approximate number of simulated steps for an hour) in this

simulation: (1) the life-scale Lð Þ that characterizes for the lifetime

of molecules and the system production rate, and (2) the time-scale

Ntph

� �
that characterizes for circadian controls and system

responses. The time-scale is initially equal to the life-scale but

adjusted later to match in silico system responses with in vivo

transcriptional responses. In order to identify the life-scale, the

system is set to have no activity except the default system production

and the protein degradation; thus the number of units of each

molecule type in a cell should be balanced over the time. Given the

default production rate is R%, after an hour a cell will produce R|L
new units for a molecule type and thus there must be R|L units of

this molecule type degraded to keep the cell at homeostasis (R = 50%

in this study). Consequently, if a molecule has a certain lifetime, its

average lifetime will be approximately to its number of units divided

byR|L. In other words, the initial number of units of a molecule

type is set equally to its average lifetime multiplied by R|L.

In this simulation, the average lifetime of a unit is double its

approximate half-life which is listed in Table 1. Specifically, IkB

half-life is about 0.5 hour and the NFkB.IkB complex half-life is

five-fold more than that of IkB [65,78]; inflammatory cytokines

and stress hormones have the average half-life about 1 hour

[79,80]; the largest protein IKK is assumed to have a half-life

equal to that of the NFkB.IkB complex; and the rest are assumed

to have the average half-life about 2 hours. Let f be the initial

number of units of IkB in a cell, and the initial population of

NFkB.IkB, IKK, P, A, E, TLR4, and GR in a cell will be (5f, 5f,

3f, 3f, 4f, 4f, 4f) respectively. Since intracellular protein occupies

15–35% of cell volume [81], we thus assume that the number of

molecules in a homeostatic cell would be about 25% of the cell

volume, which is approximately 300 molecules. Consequently, the

total initial number of units (molecules) in a cell under the

assumption of the homeostatic system will be 29f, resulting in

f ~ 300
29

&10 units. The estimated initial population size of each

molecule type in a cell is given in Table 1. The life-scale L, which

is the number of simulated steps per hour or the number of

simulated steps over the lifetime of an IkB, is therefore equal to f/

R or 20 ticks per hour. Additionally, the initial number of units for

P (or A) in the plasma is initialized by 10% of all P units in all cells

in the system. The default production of F and M is set to be the

activities of the brain compartment (see Figure S1 for the

programming architecture and initial parameter values).

Production parameters are the probabilities of producing new

molecules when some molecule type is involved in the transcrip-

tional process, characterizing by its present in the nucleus or the

brain compartment in this simulation. In order to justify these

parameters, we made use of the hypothesis that in a homeostatic

system there is a balance between protein synthesis and protein

degradation [82]. Thus, without any external stimulation and

circadian influences, production parameters need to be adjusted so

that the number of units of each molecule type in the system does

not change significantly over the time (Table 3). Techniques from

process trending analysis are utilized to obtain the set of adjusted

parameters whose values remain unchanged for subsequently

added mechanisms e.g. circadian rhythms, endotoxin treatments

[83,84] (see Materials and methods). The current configuration of

the homeostatic system, including all agents and their properties, is

saved for further experiments.

Results and Discussion

Qualitative assessment of model behaviors with
experimental observations

Circadian rhythms play an important role in many physiological

and metabolic processes in mammals. It is well established that

there is a bidirectional communication between circadian controls

and the immune system and that glucocorticoids and melatonin

are important hormones with strong circadian expression patterns

and critical roles in mediating cytokine production [60,61,62].

Since melatonin and cortisol are associated with the production of

pro-inflammatory and anti-inflammatory cytokines respectively,

Table 3. Model production parameters.

No. Parameters
Initial probability
(%)

Adjusted
probability (%)

1 kp (NFkB P)* 70.00 69.44

2 ki (NFkB IkB) 70.00 70.08

3 fi (F IkB) 70.00 70.08

4 fa (F A) 70.00 74.77

5 fm (F M) 70.00 27.48

6 mp (M P) 70.00 69.44

7 pf (P F) 70.00 24.98

8 pt (P TLR4) 70.00 70.00

9 ae (A E) 70.00 75.72

*x (Y Z): x is the probability that a single unit Y can produce an individual unit Z
when Y is in the nucleus (or brain) compartment.
doi:10.1371/journal.pone.0055550.t003
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their expression rhythms contribute to the dynamic patterns of

cytokine expression [17,18,19,62], resulting in the rhythms of P

and A as observed in Figure 2.

Pro-inflammatory cytokines (e.g. TNFa, IL6, IFNc) are

regulated in part by melatonin, reaching a maximum in the early

morning and subsequently subsiding as cortisols induce the

production of anti-inflammatory cytokines (e.g. IL10). As pro-

and anti-inflammatory cytokines have opposing effects on cellular

immunity, changes in their concentration and thus their balance

would be anticipated to influence the host fitness. Additionally,

since transcription in the nucleus requires energy, each time a

nucleus produces a new molecule besides the default system

production, the corresponding cell will exhaust some unit of

energy, representing by the deletion of one bio-energetic molecule

(E) in this simulation. Consequently, energy balance and/or

energetic protein abundance relevant to metabolic processes also

exhibit daily circadian variations [85]. These observations provide

a validation for our model’s behaviors.

In silico administration of endotoxin is simulated by ‘injecting’ a

number of new LPS molecules into the system at tick T which is

corresponding to time T mod Ntpd

� ��
Ntph of the day. In order

to simulate in vivo endotoxin administration at 9:00am, we

introduce 1000 LPS molecules randomly to the plasma compart-

ment at the corresponding tick and track the cellular responses.

Due to lack of information to evaluate the corresponding dose and

influence of other system factors (e.g. cell density) to the actual

effects of those LPS molecules, we measure the effective

concentration of LPS in our system by a definition as follows:

Ceff ~
1

VC
max

t

P
i

LPSi tð Þ

NC

( )
, i~1,:::,NC , t~T ,:::,Tz2Ntph. NC

is the total number of simulated cells (50 in this study) and

LPSi tð Þ is the number of LPSR molecules in cell i at time t. VC is

the volume of cells which is equal to 30 6 40 = 1200 in this

context. The effective concentration of this experiment is about

0.33%. The current default time-scale Ntph is 20 ticks per hour as

discussed in the ‘Model parameters’ section. Since this time-scale

calibration does not provide a corresponding mapping of the times

between in vivo and in silico inflammatory responses, we vary Ntph

to search for a timing match between in vivo and in silico patterns by

gradually increasing the number of ticks per hour to 30, 40, 50,

etc. The search ends up with a new time-scale Ntph = 50.

The main inflammatory responses of in vivo and in silico human

endotoxemia are presented in Figure 3. Following endotoxin

treatment, the pro-inflammatory response exhibits a fast and

robust increase, peaking between 2 and 4 hr after treatment and

eventually resuming normal rhythms. The anti-inflammatory

response, normally down-regulated around mid-day, keeps

increasing following LPS administration. The systemic energy

balance is also suppressed for around 2 hr more before returning

to its normal rhythm (see more in Figure S2). The system resumes

normal daily rhythms about 24 h post LPS administration.

Patterns and implications of cellular variability
Since stochasticity is an inherent property of our individual-

based simulation, stochastic transcriptional activities, especially

those relevant to the NFkB-signaling module, have large impacts

on cellular variability [86,87,88]. Simulated cells behave differ-

ently from one to another and no individual cell behaves like the

average one. For example, dynamics patterns of pro- and anti-

inflammatory protein levels oscillate stochastically between differ-

ent cells and even different days although their average patterns

exhibit some common daily patterns (Figure 4a, b). In general,

these average patterns are similar to corresponding system

responses. Specifically, the average level of pro-inflammatory

cytokines is induced early due to the increasing level of melatonin

at the onset of the day and then gradually abates while the level of

cortisol increases. The average level of anti-inflammatory

cytokines is transiently down regulated and then starts increasing

to restore the balance between pro- and anti-inflammatory

cytokines under the opposing effects and acutely altered patterns

of melatonin and cortisol. From a system-level perspective, we

assume that a cell will be (1) in the pro-inflammatory state

(displayed by red squares) if the level of pro- is much greater than

the level of anti-inflammatory cytokines (P.1.5A), (2) in the anti-

inflammatory state (magenta squares) if A.1.5P, and (3) otherwise

in the homeostatic state (green squares). Interestingly, the status

change of the cellular system also follows a common daily pattern

although the status of a single cell is always dynamic over time,

even for the same time the next day (Figure 4c). At the beginning

of a day, pro-inflammatory cells predominate and then make room

for anti-inflammatory cells in the late morning. Since the status of

the cellular system is in some part associated with the protein

abundance level of corresponding cytokine types, the balance

between pro- and anti-inflammatory cytokines is anticipated to be

dynamic over time but follow some common daily pattern.

Recent studies have implied that there is an association between

patient fitness and the balance between the levels of pro- and anti-

inflammatory cytokines [89,90]. However, the protein abundance

level in a population of genetically identical cells is proportional to

the expression variance of the corresponding protein [91,92,93].

Consequently, the cell-to-cell variability potentially conveys

information beyond the simple mean level of protein abundance

in characterizing the dynamic kinetics of the entire system at the

single cell level. Cellular variability can account for the stochastic

transcriptional activities and thus not only the consequence but

also the mechanisms that lead to the fluctuation of a protein

between cells. As a result, we hereby define a novel quantity to

characterize the entire status of the system in homeostasis or under

treated conditions, so-called the variability-based fitness (Fvar),

based on the ratio between the expression variance of anti-

inflammatory cytokines and pro-inflammatory cytokines from the

population of simulated leukocytes. In order to characterize the

Figure 2. Dynamics patterns of selected components under
circadian control. Circadian control is regulated by the rhythms of
cortisol (F) and melatonin (M), which in turn drive the patterns of other
components in the system. Pro-inflammatory cytokines (P), driven by
melatonin secretion, are up-regulated to peak around ,4:00AM
whereas anti-inflammatory cytokines (A) are down regulated due to
the increase of pro-inflammatory cytokines and then up-regulated
under the effects of cortisol rhythms. These behaviors result in the
circadian variation of bio-energetic proteins (E) and others.
doi:10.1371/journal.pone.0055550.g002
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cytokine expression variance among cells, we utilize Shannon

entropy to estimate the cellular variability based on the

distribution of pro- or anti-inflammatory cytokines through the

cell population (see Materials and methods). This measurement

somewhat reflects change in the host fitness, since the anti-

inflammatory arm characterizes for the ‘fitness’ restoration and the

pro-inflammatory arm serves as the ‘fitness’ dysregulation. In

homeostasis, the ratio is anticipated to remain at some optimal

level while its normal rhythm has some daily common fluctuations

in the first half of a day due to the circadian secretion of melatonin

and cortisol (Figure 5-top). Following endotoxin treatment (at

9:00AM in this case), the variability-based fitness immediately

reduces to the minimum point around 3-4 hr post injection and

then gradually returns to the optimal level when the systemic

manifestation of endotoxin abates, implying that the effect of

endotoxin treatment can be quantified through this method.

Even in the presence of large variability in some molecule types

within the population of cells, external stimulus signals (e.g. TNFa) can

cause cell synchronization for a short period of time [86,87]. The

synchronization behavior of cellular responses is therefore examined to

get an insight into how pro- and anti-inflammatory cytokines act under

endotoxin treatments. Quantitatively, the synchronization level of a

response (e.g. a molecule type) is defined as the average correlation

coefficient between all individual response patterns of cells and the

average response pattern of the cell population in a period of time (e.g.

3 hr in this study) (see Materials and methods). LPS-induced cell

Figure 3. Correspondence between in vivo- and in silico- system responses to endotoxin. The left-panel presents average expression
patterns of critical inflammatory responses under endotoxin treatment at 9:00AM. Early-up (red) and middle-up (black) patterns are characterized for pro-
inflammatory responses, late-up pattern (magenta) for anti-inflammatory responses, and down pattern (green) for energetic responses. The right-panel
displays corresponding simulated responses. The patterns between in vivo- and in silico- responses are matched to define the time-scale for the system.
doi:10.1371/journal.pone.0055550.g003

Figure 4. Stochastic dynamics in cell population. The stochastic behaviors of pro-inflammatory cytokines (a) and anti-inflammatory cytokines
(b) in three different cells are shown in the top-panel. Although cellular patterns are different from cell to cell and from day to day, the average
pattern still exhibits some daily common pattern. The dynamics of the homeostatic system in a simulated day are present in (c). Cells are displayed
with solid squares where green squares represent for cells with an approximate number of P and A, red squares for those with the number of P much
greater than the number of A and magenta squares for those with A .. P.
doi:10.1371/journal.pone.0055550.g004
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synchronization has been examined for pro- and anti-inflammatory

responses (Figure 5-bottom). Although the cellular pro-inflammato-

ry responses are different from cell to cell, under an external stimulus

their responses become more similar in the first time period directly

after LPS treatment. However, anti-inflammatory responses among

cells do not lead to a significant trend of synchronization. This

phenomenon results from the fact that all cells follow the only path that

activates the NFkB-signaling module to produce pro-inflammatory

cytokines under the primary stimulus signal, while the path to produce

anti-inflammatory cytokines is secondary and set under the effects of

pro-inflammatory inhibitors. After the first period, stochastic oscilla-

tions resume in the population of cells although the systemic

manifestation of inflammation does not quite abate.

Time-dependent effects under endotoxin treatment
As observed in previous studies, there are clearly significant

effects of circadian rhythms on the dosing time in therapeutic

treatments. For instance, ‘‘low dose prednisolone has more effect

on rheumatoid arthritis at 2:00AM than at 7:00AM’’ [17,19] and

‘‘bedtime dosing with nifedipine gastrointestinal therapeutic

system for antihypertensive medications is more effective than

morning dosing’’ [94,95]. We therefore explore the time-

dependent effects of endotoxin administration by executing in

silico experiments with endotoxin injection at different times of the

day (3 hr intervals from 0 to 24 hr). We quantitatively examined

the peaks of inflammatory responses following endotoxin admin-

istration at different times throughout the day. Results are

characterized by the maximum numbers of pro- and anti-

inflammatory cytokines as well as the peak of the variability-based

fitness versus the treated times of endotoxin (Figure 6) (see more

details in Figure S2). Simulation shows that endotoxin admin-

istrated in the morning (around 9:00AM) has the least pronounced

effect, while the largest response occurs around midnight.

Although the maximum numbers of anti-inflammatory cytokines

in different cases seem to be approximately equal, there is a

significant trend in the effects of administration times of endotoxin

on the production of pro-inflammatory cytokines. Characterizing

these phenomena is the change of the variability-based fitness

versus the administration time, implying somehow the loss of the

host fitness. Periods of highly vulnerable effects are those around

the midnight peak of melatonin secretion where the production of

pro-inflammatory cytokines is regulated by two pathways, NFkB-

signaling and the melatonin-induced pathway. On the contrary,

high concentration of plasma cortisol in the morning provides an

inhibitory effect on the activation of the NFkB-signaling module,

resulting in reduced effects of endotoxin administration.

Sensitivity analysis
Sensitivity analysis was performed to explore how perturbations

in production parameter values affect the overall system behavior,

as characterized by the variability-based fitness. Following previous

studies [25,50], we sequentially perturbed each production param-

eter and estimated the sensitivity coefficient which is defined as the

percentage change of the fitness (DFvar) over the percentage change

of the parameter (Dp~dp=p where dp is the changing amount of

parameter p) (see Materials and methods). In this case, 75% is

selected as the cutoff to have a clear impact on the percentage

change of the fitness, which is estimated from 10 simulated days

with circadian controls and no external stimulus. Results are showed

in Table 4. The two parameters that have great impact are ki and

fa respectively, where ki is responsible for IkB production from the

NFkB activity and fa is directly responsible for the production of

anti-inflammatory cytokines. Since the sensitivity coefficient is

mainly dependent on the change of the variability-based fitness

where the dynamics of pro- and anti-inflammatory cytokines take

place, parameters relevant to the production of these cytokines

should have large impact. However, since ki affects IkB production

from NFkB activity in the nucleus which in turn directly control

back NFkB activity in regulating the production of pro-inflamma-

tory cytokines, a small change on the value of ki can have a large

impact on the regulation of pro-inflammatory cytokine production.

Therefore, kp and mp, two parameters directly relevant to the

production of pro-inflammatory cytokines, have lesser impacts on

the variability-based fitness than ki does.

In summary, we have proposed a multi-level homeostatic system

of human endotoxemia using the individual-based simulation. The

model is used to examine the dynamic kinetics of the

inflammatory response at the single cell level under circadian

control and endotoxin treatment. Physicochemical properties of

biological molecules and cellular properties have been incorpo-

rated to construct the model. Novel solutions for parameter

tuning and time-scale estimation are also proposed to refine the

parameters. Although the model is able to reproduce in vivo

homeostatic circadian rhythms and key inflammatory responses

under endotoxin treatment, limitations still remain. One of the main

issues is the proper identification of parameters associated with the

simulated compartments (e.g. compartment dimension, cell density)

Figure 5. Cellular variability and synchronization behaviors.
The top-panel displays the pattern of variability-based fitness of a
simulated day in the homeostatic system and of the day where
endotoxin is treated at 9:00AM. Two parallel curves present corre-
sponding standard errors of N simulations (N = 100 in this study). The
bottom panel shows the synchronization level of specific behaviors
among all cells of the system in the interval [t – 3 hr, t], t = 3, 6…24 hr.
The error bars are corresponding standard errors of N simulations.
doi:10.1371/journal.pone.0055550.g005
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and the import/export rate. Also, we have to accept a level of

abstraction in our model where only key components and behaviors

in the signaling cascade and the transcriptional process are captured

while ignoring a lot of biological processes. There is still lack of

understanding of mechanisms relevant to melatonin and cortisol

activities. More importantly, there are a variety of leukocytes with

multiple pro- and anti-inflammatory cytokines. Each may have

different regulatory mechanisms but in this study we assumed they

act similarly. Finally, another weakness is that our current approach

relates to our limited ability to quantify the magnitude of the

inflammatory responses as well as other marker levels. These

limitations present key targets in our future studies.

However, one of the most critical questions raised in this study is

to what extent cellular variability can contribute to systemic

outcomes. By defining novel hypothetical quantities such as the

variability-based fitness and the synchronization level, we provided

a step forward to the exploration of cell-to-cell variability and

stochastic dynamics of inflammatory proteins. Daily common

patterns of such measurements in homeostatic and LPS-treated

systems are examined. Furthermore, the effects of time-dependent

endotoxin administration characterized by the variability-based

fitness and the synchronization level of inflammatory cytokines are

also studied. Although a full understanding of how cell-to-cell

variability impacts clinical symptoms and pharmacological treat-

ments is beyond the scope of this manuscript, proposed concepts in

this study may actually be applicable in the near future as single-

cell studies become increasingly common. Also, the proposed

framework provides an effective model to generate testable

hypotheses for a number of ‘what if’ scenarios to understand the

connectivity of critical components in the immune system and the

interplay between circadian controls and endotoxin treatments.

Materials and Methods

Human endotoxin model and data collection
The data used in this study were generated as part of the

Inflammation and Host Response to Injury Large Scale Collabo-

rative Project funded by the USPHS, U54 GM621119 [96]. Human

subjects were injected intravenously with endotoxin (CC-RE, lot 2)

at a dose of 2-ng/kg body weight (endotoxin treated subjects) or

0.9% sodium chloride (placebo treated subjects). Following lysis of

erythrocytes and isolation of total RNA from leukocyte pellets,

biotin-labeled cRNA was hybridized to the Hu133A and Hu133B

arrays containing a total of 44,924 probes for measuring the

expression level of genes that can be either activated or repressed in

response to endotoxin. Subsequently, ANOVA test (p,10-4) was

applied to filter significantly differentially expressed probesets,

resulting in 3,269 selected probesets [46]. Average expression

profiles of probesets over replicates for each time-point were used

as the final input data for further analyses. The data are publicly

available through the GEO Omnibus Database under the accession

number GSE3284. The data have been appropriately de-identified,

and appropriate IRB approval and informed, written consent were

obtained by the glue grant investigators [96].

Model implementation.. The in silico human endotoxemia

model is implemented in Java language, using the Repast

Simphony toolkit and Eclipse environment.

Clustering
Utilizing the concept of the agreement matrix (AM) in

consensus clustering, we recently proposed a novel method to

identify the core set of probesets showing most agreeable that

they belong to the same or different patterns of gene expression

[46]. In order to produce the agreement matrix, a number of

different clustering methods along with different metrics

(Euclidean, Manhattan, and Pearson correlation) were used to

reduce the bias inherent in the assumption of any specific

clustering method. After identifying the core set of probesets, the

AM is reduced correspondingly to those selected probesets and

Figure 6. Time-dependence system responses to endotoxin
administration. The strength of the inflammatory response or the
vulnerability of the host fitness is characterized by (a) the maximal peak
of pro-inflammatory cytokines (Pmax) and (b) the minimum peak of
variability-based fitness versus the time of endotoxin treatment. The
error bars are corresponding standard errors of N simulations (N = 100).
doi:10.1371/journal.pone.0055550.g006

Table 4. Effects of production parameters on system
behaviors.

No. Parameters Change* DFvar/Dp Change* DFvar/Dp

1 kp Q 0.2085 q 0.2461

2 ki Q 0.4481 q 0.2679

3 fi Q 0.1861 q 0.2520

4 fa Q 0.3260 q 0.3485

5 fm Q 0.1560 q 0.1440

6 mp Q 0.1883 q 0.2452

7 pf Q 0.1607 q 0.1585

8 pt Q 0.1391 q 0.1429

9 ae Q 0.1425 q 0.3303

*decrease/increase 75% of the current value; if greater than 1.0, set to 1.0.
doi:10.1371/journal.pone.0055550.t004
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then the hierarchical clustering is applied on the reduced AM to

obtain significant patterns of gene expression. Four patterns of gene

expression which characterize critical dynamics of acute human

inflammation are obtained [46]. The ‘early-up’ (182 probesets) and

‘middle-up’ pattern (119 probesets) consist of genes that are involved

in critical pro-inflammatory signaling pathways including apoptosis,

Toll-like receptor (TLR) signaling, and cytokine-cytokine receptor

interaction. The ‘late-up’ pattern (284 probesets) characterizes for

anti-inflammatory processes with enriched inflammatory relevant

pathways e.g. TLR signalling, JAK-STAT cascade. Finally, the

‘down’ pattern (1118 probesets) is the most populated expression

motif characterized by genes involved in cellular bio-energetic

processes e.g. oxidative phosphorylation, ribosome, TCA cycle,

purine and pyruvate metabolism.

‘Random walk’ model
Agents (cells, molecules) move on a 2-dimensional grid in a

random fashion depending on two main factors: the time agents

wait before each movement and the number of times agents move in

a direction. For a specific agent U, at time t, let c tð Þ be the time

(number of ticks) U has to wait before moving and l(t) be the

number of times U will move in direction D, we have

c tz1ð Þ~
c tð Þ{1 if c tð Þw0

rand 0, 1f gzstatus (U) if c tð Þ~0

(
;

l tz1ð Þ~

l tð Þ if c tð Þw0 and l tð Þw0

l tð Þ{1 if c tð Þ~0 and l tð Þw0

rand 2, 3, 4f g| Ncompz1
� �

if l tð Þ~0

8>><
>>:

where status Uð Þ~
rand 1, 2f g initial valueð Þ

0 if U is in the active form

(

Ncomp~ 0, 0, 1, 2f g

if U in nucleus, brain, cell, plasmaf g respectively

Each compartment or each cell has its own 2-dimensional

simulating grid. When c tð Þ is zero, U will move to the next grid-

space in the Moore neighbourhood of the corresponding simulating

grid which consists of 8 spaces immediately adjacent to and

surrounding the current position based on the current direction D.

D is one of 8 directions N, NE, E, SE, S, SW , W , NWf g (N:

north, E: east, S: south, and W: west). Let Px(t), Py tð Þ be the

current position of U in a 2-dimensional simulating grid, its next

position is defined as follows

Px tz1ð Þ~Px tð ÞzHx c tð Þ, D tð Þð Þ;

Py tz1ð Þ~Py tð ÞzHy c tð Þ, D tð Þð Þ

where

D tz1ð Þ~
D tð Þ if l tð Þw0

rand N, NE, E, SE, S, SW , W , NWf g if l tð Þ~0

(

Hx c tð Þ, D tð Þð Þ~

0 if c tð Þw0 or D tð Þ[ N, Sf g

z1 if c tð Þ~0 and D tð Þ[ NE, E, SEf g
{1 if c tð Þ~0 and D tð Þ[ NW , W , SWf g

8>><
>>:

Hy c tð Þ, D tð Þð Þ~

0 if c tð Þw0 or D tð Þ[ E, Wf g

z1 if c tð Þ~0 and D tð Þ[ NW , N, NEf g

{1 if c tð Þ~0 and D tð Þ[ SW , S, SEf g

8>><
>>:

Parameter tuning
Based on the trend of the dynamics of each particular molecule

type X , we adjust the probability of the associated production

parameter pX (Table 3) so that the total number of X in the

system does not change significantly over time. For each simulated

day (24Ntph ticks), we sample the level of X each hour and

determine whether there is a significant change based on the

sample vector using ordinary least square regression and

significant mean difference [83].

Let xj be the number of molecules X in the system at hour

j, j~1, . . . J, J~24. The regression model used in this approach

is xj~azbjzej where a is the intercept, b is the slope, and ej are

random errors which are assumed to be independent and

identically distributed. The estimates of the slope and intercept

are given by

b̂b~

P
j

j{j
� �

xj{x
� �

P
j

j{j
� � 2

; âa~x{b̂b j; x~
1

J

X
j

xj

The standard error of the slope will be

SE b̂b
� 	

~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
j

xj{âa{b̂b j
� 	 2

J{2ð Þ
P

j

j{j
� � 2

vuuuuut
A 95% confidence interval for the slope b is

b̂b+t0:975, J{2 SE b̂b
� 	

. If zero is not contained in the interval, we

conclude that the trend of change is significant.

Let m1, m2 be the means of the first and last half of the sample

vector

m1~
XJ=2

j~1

xj ; m2~
XJ

j~J=2z1

xj

If the percentage change between the first and last half of the

sample vector
m2{m1

m1
is more than 10%, we conclude that the

change is significant and adjust the corresponding production

parameter. If the trend of the dynamics is increasing, the

parameter value pX will be decreased. Otherwise, if the trend of

the dynamics is decreasing, we increase pX . In order to estimate

the changing amount of pX , we assume that the percentage change

of the parameter would be approximately to the percentage

change of the molecule level between the first and last half of the

sample vector but set under the opposite effect. Therefore, the

estimate for the adjusted parameter value will be

p 0x{px

px

~{
m2{m1

m1
[ p 0x~px 1{

m2{m1

m1

� �

In the case that there are two associated production parameters,

the amount each parameter is changed will be half of that in the

normal case. The process is repeated until there is no change of all

production parameters in three consecutive simulated days.

Variability-based fitness
Given NC cells, let xi tð Þ be the number of molecules X in cell

i, i~1,:::,NC at a specific time t. Since the distribution of xi tð Þ
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values may be sparse, we first contract the range of xi tð Þ by a

whole number division of r for all xi tð Þ (r~5 in this study).

yi~
xi tð Þ

r

� �
, i~1, . . . ,NC

Let p yið Þ be the probability of the presence of yi value in the

contracted array y~ yi, i~1, . . . ,Ncf g. The variability-based

fitness Fvar at a specific time t is defined as follows

Fvar tð Þ~ VA
C2C

VP
C2C

where VX
C2C~{

XNC

i~1

p yið Þ ln p yið Þ, X~ A,P½ �

Synchronization
Let xi(t) be the number of molecules X in cell i and xx(t) be the

average number of molecules X from NC cells at time t. The

synchronization level of molecule X in the population of cells for a

period of time from 0:00 to 3:00AM is

Syn 0?3AMð Þ~ 1

NC

X
i

w xi(t), xx(t)ð Þ

where w xi(t), xx(t)ð Þ~

P
t

xi(t){xð Þ xx(t){xxð ÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
t

xi(t){xð Þ2
P

t

xx(t){xxð Þ2
r

xx(t)~
1

NC

X
i

xi(t) ; x~
1

T

X
t

xi(t); xx~
1

T

X
t

xx(t)

i~1, . . . ,NC , t~1, . . . , T~3Ntph

Percentage change of the fitness
In order to evaluate how a change impacts to the system

behaviors, we define a so-called percentage change of the fitness as

a ratio of the total changing amount between the variability-based

fitness of the original system and that of the new system over the

total amount in the original system during a period of time

(nday~10 in this study)

DFvar~

P
t

F
0
var tð Þ{Fvar tð Þ

��� ���P
t

Fvar tð Þ ; t~1, . . . ,nday|Ntpd

where Fvar(t) and F
0
var(t) are the variability-based finesses at

time t of the original system and the new system (i.e. the system

with new parameter values).

Supporting Information

Figure S1 Model architecture of the programming.
There are two general classes (SimpleAgent and SimpleCompartment)

which are inherited by other classes in the system. Connecting

lines ending with the empty triangle reflect the inheritance

between the general class and a specific class while those ending

with the solid parallelogram exhibit an aggregation of containing

relationships. Initial parameters are also showed in the right table.
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Figure S2 System responses under a bolus injection of
endotoxin at different times of the day. Each case includes

the average system behaviors of inflammatory cytokines and stress

hormones from N simulations (N = 100 in this study), the

corresponding pattern of variability-based fitness, and the

synchronization level of pro- and anti-inflammatory responses

following intervals [t – 3 hr, t], t = 3, 6…24 hr. The error bars (or

two parallel curves) are corresponding standard errors of N

simulations.
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Materials S1 Pseudo-code of the implemented model.
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