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Polarization-sensitive optical coherence tomography (PS-OCT) is a high-resolution label-free optical biomedical imaging modality
that is sensitive to the microstructural architecture in tissue that gives rise to form birefringence, such as collagen or muscle fibers.
To enable polarization sensitivity in an OCT system, however, requires additional hardware and complexity. We developed a deep-
learning method to synthesize PS-OCT images by training a generative adversarial network (GAN) on OCT intensity and PS-OCT
images. The synthesis accuracy was first evaluated by the structural similarity index (SSIM) between the synthetic and real PS-OCT
images. Furthermore, the effectiveness of the computational PS-OCT images was validated by separately training two image
classifiers using the real and synthetic PS-OCT images for cancer/normal classification. The similar classification results of the two
trained classifiers demonstrate that the predicted PS-OCT images can be potentially used interchangeably in cancer diagnosis
applications. In addition, we applied the trained GAN models on OCT images collected from a separate OCT imaging system, and
the synthetic PS-OCT images correlate well with the real PS-OCT image collected from the same sample sites using the PS-OCT
imaging system. This computational PS-OCT imaging method has the potential to reduce the cost, complexity, and need for

hardware-based PS-OCT imaging systems.
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INTRODUCTION

Polarization-sensitive OCT (PS-OCT)" has become an exception-
ally useful imaging technique that complements the scattering
intensity contrast in standard OCT systems and provides
additional diagnostic information and guidance?”. By analyz-
ing the polarizations of the scattered light, PS-OCT imaging
systems measure the birefringence within the imaged tissue
sites, which is largely related to the orientation and organiza-
tion of tissue structures. For example, collagen fibers aligned in
a dominant direction display a high birefringence compared to
randomly aligned collagen fibers®. It has also been shown that
the additional polarization information provided by PS-OCT
facilitates the visualization of unrecognizable features in OCT
4910 | particular, PS-OCT has been used in clinical
applications®®® to effectively differentiate cancer tissue and
connective tissue based on their different birefringence, while
these types of tissues appear very similar in standard OCT
images.

While today’s standard OCT imaging system can fit into a
briefcase'', most PS-OCT imaging systems require the use of
multiple detectors as well as many polarization-manipulating
optical components, which increase the cost and complexity of
the imaging system?™. Handheld probe integration is another
major issue for PS-OCT systems because the bending of the
fiber-optic delivery cable can often alter the polarization state
in unpredictable ways, and introduce artifacts in the images.
The intraoperative use of OCT has been widely explored using
handheld probes so that surgeons can collect OCT images in
real-time to assess tumor margins and lymph nodes in cancer
patients®'?'3, Intraoperative probe-based PS-OCT imaging can
generate images based on the presence and organization of

collagen structures in normal breast tissues, as well as on the
absence or derangement of these structures in cancer®®,
However, the widespread use of handheld PS-OCT may be
limited because of the added complexity associated with these
PS-OCT systems.

Conventional PS-OCT imaging systems typically record multi-
ple OCT images with different polarization states to compute
the two major PS-OCT contrast metrics, the phase retardation
and the degree of polarization uniformity (DOPU). However,
based on our experience with PS-OCT and OCT images of
different tissues, we believe that the birefringence is related to
the reflectance within the tissue. Therefore, the polarization
information should be fundamentally embedded in the OCT
intensity image collected along one polarization and can be
potentially extracted via computational methods. In this study,
we propose and demonstrate the use of deep learning to
synthesize  polarization-sensitive  contrasts with  single-
polarization OCT intensity images, eliminating the extra cost
(thousands of dollars) for multiple detectors and polarization
optics and fiber components used in conventional hardware-
based PS-OCT systems.

Over the past few years, deep learning has been extensively
applied in image contrast translation tasks'*™2". For instance, a
U-Net is a commonly used deep neural network (DNN) for
biomedical image segmentation®?> which converts the origi-
nal image contrast into a binary feature mask. However, when it
comes to generating complex image contrasts instead of only
binary masks, the performance of a U-Net is often compromised
unless large training datasets are used'*'®. In response to this,
the generative adversarial network (GAN)'>?* was adopted to
enable more accurate image translation with small datasets.
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Fig.2 Representative computational PS-OCT images from cancer, adipose, and stroma tissue specimens, compared with the real PS-OCT
images. The noisy areas within the phase retardation images are enlarged to directly compare. The 200 pm scale bar applies to all images.

A GAN has its unique structure by incorporating a generator
network and a discriminator network®*. While the generator
network is similar to the DNNs used in conventional feature
segmentation like U-Net, the discriminator network scores the
synthetic images to estimate how likely they come from the
training dataset instead of the generator network. With such a
unique network structure, a GAN was used in various synthetic
biomedical imaging applications, such as virtual histology',
digital phase staining'”” and synthetic clinical imaging?®%°.
Based on these demonstrated results, we propose and
demonstrate the use of a GAN as the deep-learning model to
synthesize PS-OCT images.
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RESULTS

Synthetic PS-OCT imaging by GAN

The framework of the training and testing process is shown in
Fig. 1. The collected OCT and PS-OCT images were combined as
pairs to train the GAN. After training, two GAN models were
generated for the DOPU and phase retardation synthesis, two
common image-based representations of polarization information
in PS-OCT images. As shown in Fig. 2, the synthetic contrasts of
DOPU and phase retardation were overlaid with the “jet” color
map on the OCT intensity images that were processed by zeroing
the pixel values under a specified threshold. Figure 2 shows
representative OCT and PS-OCT images from different types of
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Fig.3 ROC curves of cancer/normal classification using real and synthetic PS-OCT images. Classification results trained on (a) DOPU and (b)
phase retardation contrasts. The ROC curves of the synthetic images are largely overlapping with the curves of the real images, and the AUC

of the two curves are also similar.

human breast tissues in the test datasets, including adipose tissue,
stromal tissue, and tumor tissue. The real and synthetic PS-OCT
images look visually similar to one another. Furthermore, to
quantitively evaluate the quality of contrast synthesis, we
calculated the structural similarity index (SSIM) between the real
and synthetic images®®. After omitting the image pixels under the
intensity threshold, the SSIM values of images were calculated to
be 0.8531 + 0.0699 for the DOPU contrast in the test datasets, and
0.6659 £0.0517 for the phase retardation contrast. It is noticed
that the SSIMs of the phase retardation images are relatively low
in contrast synthesis tasks. This is probably because the phase
retardation images intrinsically have a higher level of noise than
the DOPU images, and therefore, a lower signal-to-noise ratio
(SNR)?”28, Due to the low SNR and the random nature of the noise,
the GAN struggled in learning and precisely synthesizing the noise
pattern in the phase retardation images. As shown in the enlarged
phase retardation images (black boxes) in Fig. 2, despite the
overall similar image features, the local noise patterns are very
different between the synthetic and real phase retardation
images.

Validation by deep-learning-based image classification

In addition to evaluating the synthesis quality by SSIM, we also
examined the effectiveness of using the synthetic PS-OCT images
instead of the real PS-OCT images in cancer/normal classifica-
tion?2°, The real and synthetic PS-OCT images in the test datasets
from the GAN were used to train a classification DNN based on
ResNet-18°" that generated two classifiers to differentiate images
collected from cancer or normal tissues. The similarity between
the classification results of these two classifiers can be used to
demonstrate the effectiveness of using synthetic PS-OCT images
for cancer/normal classification. To evaluate the classification
accuracy, the receiver operating characteristic (ROC) curves of the
two classifiers are shown in Fig. 3. In Fig. 3a, the ROC curves from
synthetic DOPU datasets are in close proximity with the real DOPU
datasets. In addition, the area under curves (AUCs) of both ROC
curves in Fig. 3a approach the ideal value of one (0.979 for
synthetic DOPU, and 0.994 for real DOPU). Observing the ROC
curves of the phase retardation datasets in Fig. 3b, the AUCs of the
two curves are slightly lower than the DOPU classifiers (0.952 for
synthetic phase retardation, and 0.975 for real phase retardation),
but the two ROC curves from the real and synthetic datasets are
also largely overlapping. The equally good performance of the
classifiers indicates that the synthetic PS-OCT images can likely be
used interchangeably with the real PS-OCT images for cancer/
normal classification. From the AUC results, we noticed that the
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difference between the real and synthetic datasets is 0.015 for
DOPU images, 0.007 smaller than 0.023 for phase retardation
images. Compared to the relatively large SSIM difference between
the DOPU (0.8531+0.0699) and phase retardation (0.6659 +
0.0517) images, the difference in AUC performance (0.007) is
negligible. As explained in the previous section, the low SSIMs of
phase retardation images can be attributed to the poor prediction
of the noise pattern. In addition, the ResNet-18 classifier can pick
up the useful tissue feature information from the noise. Therefore,
the difference in the noise pattern has little effect on the
classification results, and it is the well-predicted overall tissue
features that contribute to the good classification performance.
This finding indicates that the synthetic phase retardation images,
even with low SSIM, are qualified for various PS-OCT image
processing applications.

In addition, to visualize the distribution of the classified real and
synthesis images as two-dimensional data points, we ran t-SNE
analysis on the last activation map generated in the classifier
network®?. The data distribution visualized in Fig. 4 is used to
study the relationship of the synthetic and real PS-OCT images in
the image vector space. Each data point in Fig. 4 represents one
PS-OCT image in the test datasets, and each is colored by the
classification result. The scatter map of the colored data points
shows how these PS-OCT images are distributed in their
transformed vector space. As shown in Fig. 4a and b, the
distribution of the synthetic DOPU images is similar to the
distribution of the real DOPU images, in which the true positive
data points are located in the lower-left region of the map. The t-
SNE results of the classified phase retardation images are shown in
Fig. 4c and d, and the distributions of the real and synthetic phase
retardation images are also similar.

Testing on OCT images from a separate OCT-only system

The ability of the GAN model for contrast synthesis was further
tested on OCT images collected from a separate standard OCT
imaging system that did not have any PS-OCT hardware or
processing components. We imaged fresh chicken tissues with
both the PS-OCT system and a standard OCT system that used
similar imaging wavelengths. The model was re-trained on the PS-
OCT images of chicken tissues and applied to the OCT images
from the OCT system. In Fig. 5, the synthetic PS-OCT images from
the OCT system were compared with the real PS-OCT images. For
image correlation, two unique structures (red lines in Fig. 5) are
identified in images collected from the OCT and PS-OCT systems,
confirming that the two imaging systems collected images from
the same tissue sites. Figure 5a shows the real and synthetic
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Fig. 4 t-SNE representation of the last activation map in the classification models. The t-SNE data distribution is included for (a) synthetic
retardation, (b) real retardation, (c) synthetic DOPU, and (d) real DOPU images. The distribution of the classified synthetic PS-OCT images

resembles the distribution of the real PS-OCT images.
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Fig. 5 Application of the prediction models on images collected by a standard OCT-only imaging system with the same wavelengths as
the PS-OCT imaging system. By imaging the same tissue sites from (a) chicken skin and (b) chicken muscle, the synthetic PS-OCT images from
the OCT system were directly compared with the real PS-OCT images collected by the PS-OCT system. Similar features are encircled by the red

lines. The 200 um scale bar applies to all images.

PS-OCT images of chicken skin tissue, while Fig. 5b shows the
images collected from chicken muscle tissue. The trained GAN
models of DOPU and phase retardation gave reasonable synthetic
contrasts on the images collected by the OCT system. Despite
some local discrepancies due to the challenge of imaging the
same location with two different systems with micron-level
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precision, the real and synthetic PS-OCT images correlate well
on a larger scale.

DISCUSSION

We developed a computational method to synthesize PS-OCT
images by deep learning, aiming to eliminate the need for
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multiple detectors and polarization optics in conventional PS-OCT
imaging systems. While conventional hardware-based PS-OCT
requires at least two OCT images with different polarizations to
obtain the DOPU and phase retardation contrasts, our method
managed to extract the polarization-sensitive information from
single-polarization intensity images from a standard OCT system.
The computed SSIMs of the synthetic PS-OCT images are
reasonably high to accurately represent the real PS-OCT images,
especially for the DOPU contrast. Besides the mathematical
similarity between the synthetic and the real images, we were
also particularly curious about how these synthetic images
perform in common applications of PS-OCT imaging and whether
they can substitute the real images in these applications to
achieve similar results. The promising results of the classification,
including the largely overlapping ROC curves and comparable
AUCs, confirmed that the synthetic PS-OCT images serve equally
well as the real PS-OCT images in cancer/normal classification
applications. Furthermore, t-SNE analysis showed that the
classified synthetic PS-OCT images distribute in their vector
space in a similar way as the real PS-OCT images. Therefore, the
similarities between the real and synthetic PS-OCT images were
examined not only by SSIM, but also in the perspective of deep-
learning-based applications of PS-OCT. Finally, effective PS-OCT
synthesis with OCT images from a separate OCT-only system
signifies the robustness of this model and the potential for
applying it on images collected from different types of OCT
systems, such as the ultra-compact and economical OCT system
that can fit into a briefcase'’.

It has been demonstrated in this study that the GAN model
trained by OCT and PS-OCT images can synthesize PS-OCT
images that can be used in cancer/normal classification.
However, there are still several issues in our work to explain
further. First, the average 0.6659 SSIM of the synthetic phase
retardation images is relatively low among deep-learning-based
contrast synthesis studies'>™'’. For instance, the work of MRI
image synthesis gave an SSIM ranging from 0.877 to 0.926>. It
has been explained that the phase retardation images have a
significantly higher level of noise, and subsequently, a lower
SNR. We expect this issue to be overcome by applying noise-
suppression methods in the calculation of the Jones-matrix,
such as the adaptive Jones matrix averaging method?’. With a
lower level of noise, the quality of synthesis and the SSIM
should be greatly improved. The second issue lies in the
correlation between the real PS-OCT images and the synthetic
PS-OCT images generated from another OCT system. With the
tissue being inevitably perturbed and distorted when trans-
ferred from one imaging system to another, it becomes
impractical to directly compare on the micron scale the
synthetic PS-OCT images with the real ones. To demonstrate
the robustness of the GAN model, we need another PS-OCT
system to provide the co-registered PS-OCT images that work as
the ground truth. Furthermore, to improve the robustness of
the model and make it more universal, the GAN should be
trained by images collected from many different kinds of PS-
OCT systems.

In conclusion, synthetic PS-OCT imaging by deep learning was
demonstrated to address many of the common limitations of
current PS-OCT imaging. The quality of synthetic PS-OCT imaging
was evaluated by conventional image quality metrics SSIM as well
as the outcome of cancer/normal classification. The evaluation
results demonstrated that the synthetic PS-OCT images can
potentially serve as substitutes for real PS-OCT images. Finally,
the use of this PS-OCT synthesis model on images from an OCT-
only system suggests that synthetic PS-OCT imaging can replace
hardware-based PS-OCT imaging systems to reduce cost and
complexity and to potentially resolve the problems of artifacts
associated with handheld fiber-delivered probe-based PS-OCT
imaging.
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METHODS

Image acquisition

The PS-OCT images for training and testing the GAN model were acquired
from fresh human breast tissue specimens with a portable PS-OCT imaging
systemz. A total of 22,072 PS-OCT images (256 x 512 pixels) were collected
from seven subjects with breast cancer and four normal subjects
undergoing breast reduction surgery with no history of breast cancer.
Each PS-OCT image includes the OCT intensity, DOPU, and phase
retardation contrasts. Human tissue specimens were obtained from
subjects at Carle Foundation Hospital, Urbana, IL, who preoperatively
provided written informed consent permitting the investigational use of
their tissue. Imaging of these specimens was conducted under a protocol
approved by the Institutional Review Boards at the University of lllinois at
Urbana-Champaign and Carle Foundation Hospital, Urbana, IL. Additional
human breast tissue specimens were obtained from the Cooperative
Human Tissue Network (CHTN), established in 1987 by the National Cancer
Institute in response to an increase in the demand for high-quality
biospecimens for cancer research.

GAN training

Each raw image was first cropped to remove the dark margins and
separated into two square-shaped images (each 202 x 202 pixels) that
better fit into the GAN network. Then, the original 16-bit images were
converted into 8-bit to meet the network requirement. The entire image
dataset, composed of 44,144 images, was divided into the training, test,
and validation datasets under the ratio of 8:1:1. Because the total number
of images was sufficiently large, a smaller number of images were assigned
for the test dataset. Here we chose to split the dataset on the image basis
to ensure that there are a sufficient number of patients/cases in the test
dataset for subsequent image classification. The case-based data splitting
strategy was also investigated by including six cancer cases and four
normal cases in the training datasets and equally splitting the remaining
one cancer and one normal case into the test and validation datasets. The
SSIMs of the synthetic PS-OCT images under the case-based splitting
strategy is 0.65 + 0.049 for the phase retardation images, and 0.87 £ 0.53
for the DOPU images, very close to the SSIMs under the image-based data
spitting strategy. Therefore, our method of using a GAN for PS-OCT
synthesis is robust against the case variances.

The GAN used in this study was modified from the pix2pix GAN'* by
adding the SSIM into the loss function. In doing so, the loss function of the
modified GAN was composed of the discriminator loss, the L1 distance,
and the SSIM. The modified loss function helps to improve the SSIM of the
synthetic images by at least 20% under the same training conditions. We
chose the U-Net as the generator network, and a three-layer discriminator
network was used to evaluate the synthetic PS-OCT image generated by
the U-Net generator. The selection of the generator and discriminator
network is based on the experiments using different networks. In
particular, the deeper discriminator networks with more layers did not
improve the synthesis quality, but rather delayed the convergence.
Therefore, we chose the simple three-layer discriminator network. For the
training process, we used an Adam optimizer with a learning rate of 2 x
107° and a batch size of 1. The learning rate of 2 x 10~ ensures a quick
and optimal convergence, and the batch size of 1 is set under the instance
normalization. Training of the network was run on a Linux machine
(Ubuntu 16.04) with GPU acceleration (Nvidia GTX TITAN). With the current
data size, 50 epochs of training required about 16 h.

Classification of computational PS-OCT images by deep
learning

The synthetic and real PS-OCT images in the test dataset of the GAN
were used to train an image classifier based on ResNet-183'. The test
dataset of the contrast-predicting GAN (4,414 images) was further
separated into the training, test, and validation datasets for the classifier
network with the ratio of 6:3:1. In each dataset of the classifier, all the
images were labeled by their categories, which were either cancer or
normal. To adapt to the number of classes in this study, the dimensions
of the final fully connected layer were changed from 512X 1000 to
512x2. To shorten the training time and improve classification
accuracy, we adopted the concept of transfer learning®* by initializing
the network using pretrained weights that were obtained by training on
images from ImageNet®®. After initialization, all the weights in the
classifier network except for the last fully connected layer were fixed
during the training process. By doing so, the extraction of spatial
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features by the pretrained network were retained, while the training
process of the PS-OCT images only modified the last fully connected
layer that determined how the extracted spatial feature was incorpo-
rated into the calculation of the final score of each class. This way, the
training time is reduced, and the classification accuracy is higher than
the trained network with all weights updatable (AUC~0.85). The
classifier was trained for 24 epochs, and the model giving the best
accuracy in the validation dataset was used for classification. The
trained classifier was applied to the test datasets with 350 images to
generate the ROC curve. The calculation of the ROC curve and
corresponding AUC was implemented using Python codes.

Visualization of classified data by t-SNE

Similar to the generation of the output score array by the final fully
connected layer, all the layers in the classifier network produce an
activation map that is passed to the next layer. The last activation map
generated by the second-to-last layer in the network is a 512-elements
array. This array was extracted from the network to represent the image
with a compressed size. t-SNE analysis was performed on these arrays
under standard Euclidean distance, a perplexity of 30, and a random
initialization of embedding®2.

Reporting summary

Further information on research design is available in the Nature Research
Reporting Summary linked to this article.
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