
Article

Uncovering Effects from the Structure of Metabarcode
Sequences for Metagenetic and Microbiome Analysis

David C. Molik 1,* , Michael E. Pfrender 1 and Scott J. Emrich 2

1 Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA; mpfrende@nd.edu
2 Electrical Engineering and Computer Science, University of Tennessee—Knoxville, Knoxville, TN 37996,

USA; semrich@utk.edu
* Correspondence: dmolik@nd.edu

Received: 29 September 2019; Accepted: 3 March 2020; Published: 12 March 2020
����������
�������

Abstract: The advent of next-generation sequencing has allowed for higher-throughput determination
of which species live within a specific location. Here we establish that three analysis methods for
estimating diversity within samples—namely, Operational Taxonomic Units; the newer Amplicon
Sequence Variants; and a method commonly found in sequence analysis, minhash—are affected by
various properties of these sequence data. Using simulations we show that the presence of Single
Nucleotide Polymorphisms and the depth of coverage from each species affect the correlations between
these approaches. Through this analysis, we provide insights which would affect the decisions on
the application of each method. Specifically, the presence of sequence read errors and variability in
sequence read coverage deferentially affects these processing methods.
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1. Introduction

Sequencing-based analysis of biological communities, also called metagenomics, is increasingly
popular. One common approach is to “barcode” sequences from organisms found in a specific location.
We define barcoding as the sequencing of a particular genetic locus with the intent of determining
taxonomic identity, much like a barcode scanner determines items at a grocery store. When applied to
a whole community, this approach is often referred to as metabarcoding. Because barcoded sequences
are directly comparable (i.e., are of the same locus), an upfront percent similarity cutoff can be used
with de novo clustering to generate an occurrence table that loosely corresponds to species abundances
at that location. Sequences that are clustered, or binned, by similarity, are commonly called Operational
Taxonomic Units (OTUs). OTUs minimize the effects of slight differences in sequences that may or
may not be of interest, as a slight variation could be capturing actual differences between species.
Alternatively, Amplified Sequence Variants (ASVs), sometimes called exact sequence variants, are
defined as all “unique” reads within a metagenomics dataset and often do not need to be clustered [1].
Because metagenomic data sets are prone to a variety of artifacts resulting from the PCR and sequencing
processes, and naturally occurring variation may affect downstream results, additional analysis of
the sensitivity of these methods to particular error types and sequence properties is needed. Within
studies that do not cluster ASVs, we show that some types of error may become more prominent when
compared to OTU-based studies.

Metabarcoding is currently the most cost-effective approach for environmental and biomedical
taxonomic surveillance. In practice, barcodes are generated from gene regions that are sufficiently
conserved to be PCR amplified across taxonomic groups, but are also variable enough to differentiate
branches of the evolutionary tree [2]. Metabarcoding enables the determination of taxonomic diversity
in environmental samples where sequences often represent a large number of organisms. This approach
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is popular because it is often possible to assign sequence bins/clusters (such as OTUs) to any
geographic area [3,4]. For example, a recent study used metabarcoding to infer species transfers and
inter-relationships in ocean shipping lanes [5]; another used metabarcoding across the Great Lakes to look
for invasive species [6]. Another study showed how it could used to make biodiversity assessments [7].
Broader scale applications of metabarcoding can be used to detect seasonal and temporal patterns
important for ecosystem restoration and analysis [8–10]. We should note that observed differences
can result from both large taxonomic differences and from more slight changes that occur between
co-occurring related species in an environment [11,12].

Metabarcode analysis often consists of generating sample-to-sample similarities in a pair-wise
distance matrix, which can then be processed using either hierarchical clustering [13] or a PERMANOVA
statistical analysis [14,15]. Although ASV and OTU analysis have been compared [1,16], to the best of
our knowledge no one has looked at the potential effects that data generation of barcode sequences,
or their processing from environment to sequencer, have on downstream analysis. Here, we build on
previous work presented at the IEEE International Conference on Bioinformatics and Biomedicine in
2018 [17] and evaluate three distinct methods. We created simulated data that incorporate variables that
affect real metabarcode analysis: size of conserved regions, which may help fuse closely related clusters;
sample depth/coverage, which help detect rare species; and polymorphisms among species that affect
all methods. The properties studied are sequencing platform unspecific. As a concrete example, single
base-pair errors can be introduced by sequencers [18,19]. By using simulations, we can consider each
potential effect independently, and therefore comprehensively test properties that affect environmental
metabarcoding analysis.

While we test five different sequence properties, we also analyze three different bioinformatics
analysis methods used in metabarcoding. The computing of the ASV method is done using the DADA2
package [20]. The OTUs are created with the QIIME package [3]. The k-mer/minhash method, referred
to as the k-mer method, is computed using mash [21]. Because ASVs are determined after sequence
trimming and filtering, the prevailing dogma is that the preprocessing will result in observing only the
true sequence diversity [16]. In contrast, OTU analysis groups roughly similar sequences together, thus
trading some possible species/sequence diversity for higher quality [1]. Lastly, we compare OTUs and
ASVs to an alignment-free based method, and specifically to a sparse, random selection-based approach
that estimates similarities between samples (k-mer). Although alignment-free methods are not currently
utilized in barcoding, they make for an interesting alternative for future studies due to their speed [21].

We show using simulations that the presence of Single Nucleotide Polymorphisms (SNPs) and
the number of sequences obtained from each species have effects on the analysis, and that these
properties affect the processing methods differently. We first establish that each method can recover a
simple simulated structure between samples. Next, we test whether we can recover similar signals
between methods from real-world data. Because we are unable to obtain similar results, we then
simulate samples with and without common real-world properties to look at variations between the
bioinformatics methods considered here. Lastly, we utilize knowledge gained from our initial results in
a hybrid approach to better understand how each method would respond to data with a high number
of sequence errors. Our results demonstrate that when there is a high number of errors, methods
utilizing OTUs or k-mers outperform ASVs.

2. Methods

We set up four analyses: a simplified recovery analysis to reveal a simulated community structure;
three runs of real-world data analysis; a large number of simulated data runs; and a hybrid approach
where SNP errors are injected into real data. Sequences, both simulated and real, are single ended.
We process all of these data, both simulated and real, as follows: First, OTU tables are generated from
the simulated samples with QIIME [3] using the “pick_open_reference_otus.py” tool and the minimum
number of sequences to create an OTU set to one; next we use the ASV method as implemented in the R
package DADA2 [20] using default settings, except real-world and hybrid methods where the expected
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error parameter was reduced to one and all sequences were given high Phred scores. Faked high Phred
scores are used in-order to reduce the complexity of the results of the introduced properties. The R
package Vegan [14] is then used to generate pair-wise Jaccard matrices from OTU tables. Finally, we
consider a sketch-based method based on the “mash” bioinformatics tool, a minhash implementation
designed for fast sequence comparisons. Our “mash” analysis uses the default k-mer size of 21 and the
default sketch size of 1000 [21].

Simulated data are created with Barcode_Simulator, an in-house script that enables the creation of
random DNA sequences, and subsequent species properties (see: Supplement Script 1). The simulated
sequences used in this article are modifications of a 500 bp randomized template sequence.
Barcode_Simulator can be used to mutate generated sequences to create phylogenetically related
sets, change depth of coverage, sequence length, length of conserved regions, and through the use of
Run_Simulation.sh, sequence abundance (see: Supplement Script 2). Run_Simulation.sh is a script
which takes advantage of the features of Barcode_Simulator to build datasets, which are effectively
sets of samples, or sets of sequencing files (see: Supplement Data 1). The simulation pipeline generates
a set of sequences that represents a number of different “species”. Each “species” is made up of a
number of slightly different sequences, depending on the desired properties.

In our downstream statistical analysis, we make extensive use of the Mantel test [22] to find
correlations between distance matrices among samples and among environments [23]. The Mantel test
provides a robust statistical tool for multivariate analysis [24]. Our distances matrices are calculated
with Jaccard’s distance, so as to not confound how our tested properties could be affecting our results
with abundance [25]. We also employ Permutational Multivariate Analysis of Variance (PERMANOVA),
which like the more common ANOVA, is used to test whether any coefficient, or mixed coefficient,
is a source of variation [15]. We utilize PERMANOVAs when looking for multivariate effects on the
differences between samples within real and simulated data sets.

2.1. Simulated Community Generation

We generate simulated community samples as a simple basis for assessing metabarcode-based
analysis. We generate these community samples in order to establish that each of the three methods
being tested can return the same structure. We generate a single simulated dataset, in which we control
the relation of samples so that there is an explicit phylogenetic structure (i.e., some samples are more
similar than others). We create 40 samples each containing generalized Next Gen Sequencing (NGS)-like
sequences covering 10 unique sequences from a singular pool; next we split the 40 samples into two sets
of 20 each receiving an additional 453 sequences from their own pool of 10 sequences; and lastly, both
groups of 20 are again split to 10, and each of the four groups receives an additional 453 sequences from
their own group of 10 unique sequences. There are 1360 sequences per sample, because samples were
generated by randomly picking sequences from the possible sequences at that split; there are only 30
possible different sequences per-group. This simulation scheme produces a quadripartite dendrogram
shown in Figure 1.

2.2. Real-World Community Data

We also considered previously published 16S-based microbiome datasets derived from baboons
from the Amboseli national park in Kenya [26], from soil samples from the Atacama desert [27],
and from pitcher plants in the Plumas National Forest in the United States [28]. For these real datasets,
the SILVA bacteria dataset was used for the reference sequences for QIIME. For the simulated datasets,
the original 500 bp template sequence was added into a closed-reference database. The sequences that
did not correspond to a known reference sequence in SILVA were removed prior to further analysis as
a standard quality control step [3]. This closed-referenced approach insures the best probability that
chosen sequences have the lowest amounts of error. These data were then analyzed with available
environmental metadata for the analysis of variance through the use of PERMANOVA.
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Figure 1. Minhash/k-mer, Operational Taxonomic Units (OTUs), and Amplified Sequence Variants
(ASVs)-based dendrograms of simulated “simple” data colored based on source cluster. The groups
“tier 3.0” and “tier 3.1” share 10 OTUs, and 3.2 and 3.3 share 10 OTUs. While the imposed structure is
recovered by all clusters, the gaps between samples varied with minhash estimating all samples are
equidistant, while the most variable is ASV. Mantel correlation between minhash and OTU analysis is
0.97; correlation between minhash and ASV is 0.89; correlation between OTU and ASV is 0.87. While
the Minhash/k-mer may look structurally different, its mantel correlation shows that the k-mer method
is correlated to the OTU and ASV methods.

2.3. Simulations of Metabarcode Data

The basic building blocks of our simulations are 500 bp, randomly generated sequences, which are
in turn put into sequencing files, which then double as samples. By running entire pipelines multiple
times on each dataset, variance resulting from the added properties can be assessed. There are 68
samples in a dataset; each sample is comprised of 136 sequences randomly drawn from a centralized
pool of randomly generated sequences. The length, number of sequences, and number of samples are
roughly based off of averages of OTU number from metabarcode data from the Atacama desert [27],
but are modified later to further explore properties.

Based on an analysis of the Atacama desert microbiome [27], we further explore five specific
properties that might affect metagenomic analysis. These properties included the addition of a conserved
region (C), variable numbers of SNP polymorphisms (E), variation in the lengths of the sequences (L),
variation in the relative abundances of sequences (A), and variation in the total number of sequences
per sample (N). The conserved regions are established by the addition of a 24 bp conserved region
added at the beginning of each sequence. Variation in SNPs is achieved by the inclusion of up to 10
additional SNP variations in the sequence (the random selection of 1 to 10 polymorphisms is equally
likely). The lengths of the sequence recovered are varied from 350 to 500 bp, and variation in the
relative abundances of “core” sequences and in the total number of sequences generated is introduced.
The baseline model, as an example, selects the following properties: length (L) of all sequences set to 500;
0 SNPs (E); coverage (N) of 1360 sequences chosen from the sequence pool; equally abundant sequences
(A); and no conserved sequence (C). The addition of the relative abundance property (A) means that 1

6
of the base sequences would be a high abundance category, 2

6 in a middling abundance category, and 3
6

in a low abundance category (see Table 1 for details). Finally, the number of sequences chosen property
(N) implies that the number actual sequences per simulation would vary at random between 140 to
13,600. The analysis pipeline generates a series of 68 random baseline sequences, which are then used
to generate simulated samples. All sequences are chosen with equal probability. The combination of,
including the absence of, all five properties, produces 32 possible sets for which each has ten simulations,
resulting in 320 simulated datasets in total. All possible combinations of properties are analyzed to
assess if any compound effects exist.

2.4. Simulating Errors in Real-World Data

Utilizing barcoded sequences from the soil samples from the Atacama desert, a random number
of SNP errors are added to each sequence in these data. The number of errors is between 1 to 10 in
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random positions across the sequence. This effect corresponds to the “Added Errors” property of the
simulated barcode step, but on real data. Samples were processed in the same way as described for
the second step; the error-added Atacama and Atacama soil desert data are correlated with a mantel
statistic and PERMONVA applied to see if some analysis of variance can be retained between methods.

Table 1. Simulated barcode properties.

Property Abbv. Description

Differing Abundance A Sequences will have differing abundance in each sample i.e.,: High/Med/Low
Conserved Region C A conserved region is added to every sequence
Added Errors E Errors are randomly added to sequences which make them slightly different
Differing Lengths L Sequence lengths are slightly different
Number Chosen N Total number of sequences changes per sample
Null Set O No properties added

3. Results

3.1. Analysis of Community-Sourced Data

In the initial recovery analysis, in which we simulated inter-related communities, the expected
structure is uncovered using all three methods. As shown in Figure 1, OTU, ASV, and minhash-based
methods produce nearly identical results. This analysis shows that under ideal conditions, all methods
can return similar and expected results.

In the second analysis, when applied to real-world data, these methods are not as well correlated,
indicating that there are differences in datasets, which could result from the structures of sequences,
and not the sample differences. Using three distinct data sets, we find only a moderate correlation
between minhash and more traditional approaches. For example, for the Atacama microbiome dataset
we find a mantel correlation of 0.538 between the minhash and OTU methods, 0.231 between the
minhash and ASV methods, and 0.409 between the OTU and ASV methods. Running PERMANOVA
(see a full list of coefficients used in Table 2, and results in Table 3) indicated that the minhash and
OTU methods are significantly (p-value < 0.001) affected by overall sample coverage (see: “MBases”, a
secondary measure) but the ASV method is not.

The correlation between OTU and ASV is stronger for the other two datasets considered. We
find a mantel correlation for the Baboon data of 0.630 between the OTU and minhash methods, 0.999
between the OTU and ASV methods, and 0.637 between the ASV and minhash methods. (see Figure 2,
coefficients tested in Table A1, and results in Table A2) found that the only detectable latent factor is
the specific baboon that the microbiome sample was obtained from (i.e., host) and only for the OTU
method considered. The Pitcher Plant data analysis is intermediate: the mantel statistic between the
OTU and minhash methods is 0.537, between the ASV and OTU methods it is 0.837, and for the ASV
and k-mer methods it is 0.628. PERMANOVA analysis (see Figure 2, and results in Supplementary
Figures S1–S3).

Table 2. Coeffcients used in PERMANOVA of the Atacama Microbiome dataset.

Coefficient Name Description

MBases_l Megabases Number of nucleotide bases in each sample
MBytes_l Megabytes Disk space of each sample
AvgSpotLen_l Sequence Length Average length of sequences
Air_Relative_s Air Humidity Humidity of air on sampling date
Conductivity_s Soil conductivity Soil conductivity of sample
Elevation_s Elevation Elevation that sample was taken
pH_s Soil Ph pH of soil sample
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Table 3. PERMANOVAs of methods on the Atacama Desert data. Df: degrees of freedom; R2 or Ra2:
the sum of squares divided by the total; F: Pseudo F, F value by permutation; Pr: P values, based on
9999 permutations.

PERMANOVA of k-mer Method on Atacama

Df SumOfSqs R2 F Pr(>F)

MBases_l 1 0.06 0.03 2.69 0.0101
MBytes_l 1 0.04 0.02 1.81 0.0544
AvgSpotLen_l 1 0.09 0.05 4.32 0.0004
Air_Relative_Humidity_s 1 0.44 0.22 20.85 0.0001
Conductivity_s 1 0.06 0.03 2.73 0.0078
Elevation_s 1 0.04 0.02 1.98 0.0367
pH_s 1 0.05 0.02 2.19 0.0244
Residual 59 1.25 0.62
Total 66 2.02 1.00

PERMANOVA of OTU method on Atacama

Df SumOfSqs R2 F Pr(>F)

MBases_l 1 2.15 0.03 2.31 0.0002
MBytes_l 1 1.48 0.02 1.59 0.0068
AvgSpotLen_l 1 2.84 0.04 3.05 0.0001
Air_Relative_Humidity_s 1 4.36 0.06 4.68 0.0001
Conductivity_s 1 1.34 0.02 1.44 0.0222
Elevation_s 1 1.63 0.02 1.75 0.0031
pH_s 1 1.26 0.02 1.35 0.0380
Residual 59 54.92 0.78
Total 66 69.97 1.00

PERMANOVA of ASV method on Atacama

Df SumOfSqs R2 F Pr(>F)

MBases_l 1 1.81 0.01 0.82 0.9996
MBytes_l 1 2.24 0.02 1.01 0.4523
AvgSpotLen_l 1 1.78 0.01 0.80 0.9997
Air_Relative_Humidity_s 1 1.66 0.01 0.74 1.0000
Conductivity_s 1 2.04 0.01 0.92 0.9755
Elevation_s 1 2.17 0.01 0.97 0.8239
pH_s 1 2.14 0.01 0.96 0.8854
Residual 59 131.18 0.90
Total 66 145.01 1.00

Figure 2. Heatmaps of mantel statistics of environmental datasets; included are the Pitcher Plant data,
the Baboon data, and the Atacama data. Generally, the ASV and OTU methods are more correlated to
each other than the mash method. Non-one correlations point to differences in the processing methods.
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3.2. Uncovering Latent Variables

In the third analysis, to help elucidate and further explore variables that may affect these
correlations, but are not uncovered in the real data above, we use simulations. Specifically, we developed
simulated sample data that considered all possible combinations of five properties, including the
presence of conserved regions (C), SNPs (E), variation in lengths (L), differing abundances (A), and the
amount of coverage (N) (see Table 1 in Methods for details.) We find that coverage and SNPs cause
notable differences (see Figure 3 for average similarities).

Figure 3. Property set mean distance by method: The average distance across simulated datasets is
plotted with error bars by the component properties that make up those data (see Table 1). The presence
of E, SNPs, causes distances to go up in ASVs, as expected, and the presence of coverage, N, similarly
affects distances and adds variation in OTUs and ASVs. The k-mer method does not seem to have
much variation, which suggests that this method is relatively unaffected by either SNPs or coverage.

3.3. Adding Errors into Real Data

For our final analysis, in which errors were added to real data, the k-mer utilizing method has a
correlation between the error induced dataset and the unedited dataset of 0.96; for the OTU method,
0.40; and for the ASV method, 0.06. In the PERMANOVA, while p-values changed from processing
without the induced errors (see Table A4), they retained signal with the k-mer method, and the OTU
method, but signal was lost when using ASVs. We conclude that the addition of errors affects the
k-mer and OTU based methods much less than the ASV method.

4. Discussion

Simulation at the sequence level is an underutilized exploratory method for determining the
properties that affect downstream results in bioinformatics analysis. Environmental metadata could
only partially explain the differences observed within real word datasets. More detailed analysis of
real and simulated data suggest errors have a large—although slightly different depending on the
bioinformatics method used—effect on metabarcode analysis. It is for this reason we can clearly see
consistency and expected community structure in our initial simulation, the simplified and induced
structure analysis, but not in any other comparison performed in this study.

To begin to determine properties of metabarcode data that do have effects, we performed replicate
simulations in which differing coverage could cause differences between methods, especially when
some species were rare and required deeper sampling to ensure recovery. This would affect OTU
analysis when a Jaccard similarity metric was utilized, because the lack of a rare sequence would affect
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the similarity computed. Jaccard was chosen for its use in ecology, and that there some indications it
would have a reduced effect from sampling error [29]. By creating replicates of datasets with different
coverage but the same properties otherwise, we are able to look at how much variation this property
(coverage) can cause.

We also found that the sequence coverage property affects the variance of distance matrices
across replicates and could manifest in real data when, for example, there was notable primer bias.
This is expected: we used Jaccard distance throughout, and this distance metric should affect the
ASV method the most, since it does not consider abundances like an alternative such as Bray–Curtis
would. To partially overcome this limitation, we hypothesized that explanatory PERMANOVA linear
models could help in determining relevant explanatory mixed coefficients, even though there are
some simplifications within this analysis; i.e., the generated sequences that are altered to form OTU
pools are completely random and we know that this is not the case in real data, as sequences often
have some phylogentic relationship to each other. Still, given datasets of sufficient size, the practical
differences between Bray-Curtis and Jaccard distances are minimized due to individual abundances
becoming less important, and individual effects from our tested properties would be evident [25].
The amount that those properties affected the results would vary given abundance, and the distribution
of abundance [29]. Even under simulated conditions, however, we observed a difference of at least
0.06 between computed similarities on the simulated data, on what should be null expectations. While
the baseline difference in similarities is not considered significant, it does represent some bound on
the precision of the simulation method we use. Significantly, these differences existed in null sets,
suggesting that slight differences/induced noise complicate the downstream analysis.

The results of this paper are largely confirmatory; tools that first bin similar sequences, such as
OTU methods, and methods that independently look at each sequence, such as ASV methods, are
different, especially when additional errors are added. Because the k-mer based method (mash) uses
random sampling, it is more resilient to minor differences between sequences. Even though k-mers
that underlie minhash sketches could possibly be used to identify species [30,31], the implication of
this analysis is that further work is required to use them instead of OTUs. However, a k-mer based
or minhash could present a promising tool, and is worth further analysis to determine whether it
is a viable bioinformatic tool; this paper starts that analysis. Therefore which of the three methods
would actually be chosen for the bioinformatic processing of a metbarcoded dataset is dependent on
the analysis desired. Although this paper does not cover any secondary analyses, such as community
assembly or community function, the properties studied here would still have effects. Significantly, we
show that an increase in read errors within the sequences themselves affects ASV analysis, while the
use of OTUs or the k-mer based minhash method is more consistent. While there is some argument into
the utility of elucidating properties of OTUs that currently seem to be less preferred than ASVs [1,16], it
is important to remember that while ASVs may be increasingly preferred, many times these sequences
are grouped into bins of sequences that are representative of different levels of taxonomy, especially for
ecosystem function experiments [32]. Binned sequences at different taxonomic levels are analogous to
OTUs, and under this regime ASVs would behave like a more traditional OTU-based analysis.

Even so, in light of the differences in behavior of ASVs and OTUs, especially when considering
experimental design, the dynamics of ASV and OTU properties should be accounted for in any
future experiment. Special attention should be paid to sequence errors in studies that utilize ASVs in
non-taxonomic groups.

Supplementary Materials: The following are available at http://www.mdpi.com/2409-9279/3/1/22/s1.
Figure S1: PERMANOVA.PitcherPlant.asv.png—PERMANOVA table for Pitcher Plant ASV results. Figure S2:
PERMANOVA.PitcherPlant.kmer.png—PERMANOVA table for Pitcher Plant k-mer results. Figure S3: PERMANOVA.
PitcherPlant.otu.png—PERMANOVA table for Pitcher Plant OTU results. Script S1: Barcode_Simulator— Bash script
for generating barcode sequences. Script S2: Run_Simulation.sh—Bash script for generating sequence files. Data S1:
simulated_data_matracies.tar.gz—Tarball of simulated data.

http://www.mdpi.com/2409-9279/3/1/22/s1
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Appendix A

Table A1. Coeffcients Used in PERMANOVA of Baboon Microbiome Dataset.

Coefficient Name Description

MBases_l Megabases Number of nucleotide bases in each sample
MBytes_l Megabytes Disk space of each sample
host_age Host Age Baboon’s age at time of sampling
host_sex Host Sex Baboon’s sex
host_subject_id Host UID & Baboon unique identifier

Table A2. PERMANOVAs of methods on Baboon Data.

PERMANOVA of K-mer Method on Baboon

Df SumOfSqs R2 F Pr(>F)

MBases 1 0.03 0.00 0.89 0.8486
MBytes 1 0.03 0.01 0.95 0.6047
host_age 1 0.03 0.01 0.97 0.5068
host_sex 1 0.04 0.01 1.18 0.0851
host_subject_id 76 2.81 0.44 1.05 0.0084
Residual 97 3.43 0.54
Total 177 6.37 1.00

PERMANOVA of OTU method on Baboon

Df SumOfSqs R2 F Pr(>F)

MBases 1 0.64 0.01 0.98 0.4800
MBytes 1 0.59 0.00 0.91 0.6727
host_age 1 0.66 0.01 1.01 0.3945
host_sex 1 0.77 0.01 1.18 0.1324
host_subject_id 76 53.00 0.45 1.07 0.0057
Residual 97 63.39 0.53
Total 177 119.06 1.00

PERMANOVA of ASV method on Baboon

Df SumOfSqs R2 F Pr(>F)

MBases 1 0.10 0.01 0.96 0.5867
MBytes 1 0.12 0.01 1.16 0.4252
host_age 1 0.09 0.01 0.90 0.6504
host_sex 1 0.06 0.00 0.59 0.8271
host_subject_id 76 6.25 0.38 0.80 0.9982
Residual 97 9.97 0.60
Total 177 16.60 1.00
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Table A3. Coeffcients Used in PERMANOVA of Pitcher Plant Microbiome Dataset.

Coefficient Name Description

bp.count number of base pairs Number of base pairs in sample
seq..count number of sequences Number of sequences in sample
lat*long latitude and longitude Latitude and longitude of sample

Table A4. PERMANOVAs of methods on Mutated Atacama Desert Data.

PERMANOVA of k-mer Method on Mutated Atacama

Df SumOfSqs R2 F Pr(>F)

MBases_l 1 0.06 0.02 1.82 0.0229
MBytes_l 1 0.05 0.02 1.55 0.0479
AvgSpotLen_l 1 0.10 0.04 3.09 0.0005
Air_Relative_Humidity_s 1 0.42 0.15 12.71 0.0001
Conductivity_s 1 0.07 0.02 1.98 0.0141
Elevation_s 1 0.05 0.02 1.50 0.0581
pH_s 1 0.05 0.02 1.54 0.0527
Residual 59 1.97 0.71
Total 66 2.78 1.00

PERMANOVA of OTU method on Mutated Atacama

Df SumOfSqs R2 F Pr(>F)

MBases_l 1 1.33 0.02 1.23 0.0140
MBytes_l 1 1.33 0.02 1.23 0.0144
AvgSpotLen_l 1 1.80 0.02 1.65 0.0001
Air_Relative_Humidity_s 1 2.95 0.04 2.72 0.0001
Conductivity_s 1 1.12 0.01 1.03 0.3207
Elevation_s 1 1.66 0.02 1.53 0.0002
pH_s 1 1.03 0.01 0.95 0.7059
Residual 59 64.18 0.85
Total 66 75.42 1.00

PERMANOVA of ASV method on Mutated Atacama

Df SumOfSqs R2 F Pr(>F)

MBases_l 1 2.29 0.01 0.97 0.8383
MBytes_l 1 2.36 0.02 1.00 0.7373
AvgSpotLen_l 1 2.39 0.02 1.01 0.3308
Air_Relative_Humidity_s 1 2.33 0.01 0.99 0.7348
Conductivity_s 1 2.36 0.02 1.00 0.5685
Elevation_s 1 2.34 0.02 0.99 0.7867
pH_s 1 2.22 0.01 0.94 0.9822
Residual 59 139.38 0.90
Total 66 155.67 1.00
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