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Abstract: Due to their high biodiversity and adaptation to a mutable and challenging environment,
aquatic lophotrochozoan animals are regarded as a virtually unlimited source of bioactive molecules.
Among these, lectins, i.e., proteins with remarkable carbohydrate-recognition properties involved in
immunity, reproduction, self/nonself recognition and several other biological processes, are particu-
larly attractive targets for biotechnological research. To date, lectin research in the Lophotrochozoa has
been restricted to the most widespread phyla, which are the usual targets of comparative immunology
studies, such as Mollusca and Annelida. Here we provide the first overview of the repertoire of
the secretory lectin-like molecules encoded by the genomes of six target rotifer species: Brachionus
calyciflorus, Brachionus plicatilis, Proales similis (class Monogononta), Adineta ricciae, Didymodactylos
carnosus and Rotaria sordida (class Bdelloidea). Overall, while rotifer secretory lectins display a high
molecular diversity and belong to nine different structural classes, their total number is significantly
lower than for other groups of lophotrochozoans, with no evidence of lineage-specific expansion
events. Considering the high evolutionary divergence between rotifers and the other major sister
phyla, their widespread distribution in aquatic environments and the ease of their collection and
rearing in laboratory conditions, these organisms may represent interesting targets for glycobiological
studies, which may allow the identification of novel carbohydrate-binding proteins with peculiar
biological properties.

Keywords: rotifera; pattern recognition receptors; microbe-associated molecular patterns; innate
immunity; C-type lectins; C1q domain-containing proteins; galectins

1. Introduction

Lectin-like molecules play a fundamental role in several physiological processes
shared by all animals, including, critically, the discrimination between “self” and “nonself”
through the specific recognition of carbohydrate moieties exposed on cellular surfaces.
These glycans, when associated with microorganisms, are generally referred to as microbe-
associated molecular patterns (MAMPs) or, in the case of potentially pathogenic microbes,
pathogen-associated molecular patterns (PAMPs) [1].

The proteins expressed by the host that are involved in carbohydrate recognition are
collectively known as pattern recognition receptors (PRRs), which may exert their function
at different levels, i.e., in the extracellular environment, at the plasma membrane or within
the cell. In the context of immune response, the activity of a heterogeneous group of
small secretory PRRs usually leads to the coating of invading microbes. This process may
in turn trigger a complex response involving several additional molecular and cellular
players which vary widely along the metazoan tree of life. These include, among others,
the melanization cascade (typically observed in arthropods and other invertebrates) [2],
the production of a large arsenal of antimicrobial peptides [3], the activation of the comple-
ment system (well-described in vertebrates and present in a primitive form also in many
invertebrates) [4] and the recruitment of specialized phagocytic cells [5]. Furthermore, the
ability to recognize MAMPs and to modulate immune responses has been linked with the
maintenance of gut microbiome homeostasis [6], as well as the establishment of beneficial
bacterial symbioses [7], which are particularly relevant in aquatic environments [8].
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Besides their key role in immune recognition, lectins are involved in a number of
other physiological processes, to which they contribute thanks to their remarkable ability
to recognize glycan moieties with high specificity. For example, some lectins play an
important role in reproduction and gamete recognition [9,10], in the clearance of apoptotic
cells thanks to the recognition of damage-associated molecular patterns (DAMPs) [11],
in larval settlement and metamorphosis [12] and in the recognition of food particles in
filter-feeding bivalves [6,13].

Aquatic invertebrates have been a preferred target for lectin identification and purifica-
tion during the past three decades, as revealed by the fact that many of the best functionally
characterized lectins from non-vertebrate metazoans derive from corals, echinoderms and
mollusks [14–16]. Among the Lophotrochozoa, one of the two clades of spiralian animals
together with Ecdysozoa, most glycobiological and immunological studies have been so far
focused on species belonging to the phyla Mollusca or Annelida, amenable for research due
to their relatively large body size and the ease of sampling and laboratory handling [17].
Other lophotrochozoan phyla have been nearly completely neglected up to now, leav-
ing a remarkable gap of knowledge concerning the main molecular players involved in
carbohydrate recognition.

Among these, the phylum Rotifera, which comprises over 2000 described species
with a widespread distribution in freshwater environments, but occasionally found also in
brackish and saltwater habitats, represents a particularly intriguing unexplored resource
for lectin research. Rotifera are classically subdivided between two classes, namely, Mono-
gononta (the most species-rich class) and Bdelloidea, even though phylogenetic evidence
suggests that Seisonidea and Acanthocephala also belong to the very same monophyletic
group. Bdelloids display a few peculiar features compared with all other lophotrochozoans,
such as a remarkable ability to withstand extreme temperatures [18] and ionizing radi-
ations, which is thought to derive from efficient DNA double-strand break repair [19],
and obligatory parthenogenetic reproduction, which results from a long-term asexual
evolutionary history [20]. Another interesting feature of rotifers lies in their remarkable
genetic divergence from the other major lophotrochozoan phyla. Indeed, monogonont and
bdelloid rotifer genomes differ greatly, both in terms of size and architecture, which in
bdelloids is significantly impacted by the presence of transposable elements [21], massive
horizontal gene transfer [22] and signatures of long-term asexual reproduction [23].

Rotifers often belong to cryptic species complexes, which can only be correctly identi-
fied through DNA barcoding, and have in most cases a cosmopolitan distribution [24,25].
These organisms, which usually have a very small size (100–1000 µm), constitute a sig-
nificant fraction of microzooplankton and their biomass can be particularly relevant in
certain environments, such as coastal lagoons or shallow, acidified, metal-contaminated
lakes [26–28]. During the 1970s and 1980s, some rotifer species, such as the eurhyaline
Brachionus plicatilis, were successfully established as live feeds in marine fish aquaculture,
thanks to their fast population growth and ease of intensive culture [29–31] (i.e., up to two
billion individuals can be obtained in one day per cubic meter of culture [32]). This would
undoubtedly represent an interesting opportunity for glycobiology studies, as a sufficient
biomass could be readily available for lectin isolation and purification.

The successful adaptation of rotifers to a challenging environment, where they are
potentially exposed to a broad range of microorganisms, suggests that these small animals
might have developed carbohydrate-binding strategies similar to those described in other
aquatic invertebrates in which multiple biomolecules with high biotechnological potential
have been previously identified. Moreover, due to their peculiar features and their high
tendency to acquire novel genes by horizontal gene transfer, these small metazoans might
be considered as a potential source of isolation for a number of novel lectins with unusual
and interesting biological properties.

This work preliminarily explores the repertoire of secretory lectins from six rotifer
species belonging to the classes Monogononta and Bdelloidea. The publicly available
genomes of these species were screened to look for annotated genes encoding proteins
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bearing known carbohydrate-binding domains (CRDs). Unlike other lophotrochozoan
phyla, in which lectin-like proteins are often encoded by tandemly duplicated paralogous
genes displaying high pairwise sequence homology, rotifers do not show evidence of
massive gene family expansion events. However, they display a highly diversified arse-
nal of carbohydrate-binding proteins whose biological properties could be explored and
biotechnologically exploited in the near future.

2. Results

The screening of six rotifer genomes allowed the identification of a relatively small
number of secretory lectin-like molecules compared with other lophotrochozoans, which
are often characterized by massive gene family expansion events that involve carbohydrate-
binding proteins, as exemplified by the case of C1qDC proteins in bivalves [33–35]. Based
on available data in the literature, only lectin-like proteins displaying a canonical signal
peptide for secretion and which display no significant primary sequence conservation
among the different lectin families will be here described; the only exception is represented
by galectins, which rely on unconventional secretion.

In the class Monogononta, Brachionus calyciflorus was the species in which the highest
number of lectins was identified (38), followed by the congeneric species Brachionus plicatilis
(25) and Proales similis (14). In the class Bdelloidea, Rotaria sordida and Adineta ricciae
displayed a similar number of lectins (27 and 22, respectively), whereas the third rotifer
species, Didymodactylos carnosus, had the lowest number of associated lectin sequences in
this study (eight) (Table 1; the full list of gene accession IDs is provided in Table S1). Based
on these observations, it can be estimated that just a very tiny fraction of all protein-coding
genes in rotifers (i.e., 0.02–0.15%) encode secretory lectins characterized by the presence
of previously described conserved domains. Nevertheless, despite the lack of evident
lectin family expansions, the lectin-like proteins identified in all rotifer species displayed
a remarkable molecular diversity, as revealed by their classification within nine different
families (Table 1): (i) fibrinogen-related domain-containing proteins (FReDs) (Section 2.1);
(ii) C-type lectins (Section 2.2); (iii) C1q-domain containing (C1qDC) proteins (Section 2.3);
(iv) galectins (Section 2.4); (v) R-type lectins (Section 2.5); (vi) F-type lectins (Section 2.6);
(vii) SUEL-type lectins; (viii) H-type lectins; (ix) jacalin-like lectins (Section 2.7).

Table 1. Number of secretory lectins identified in the six rotifer species analyzed in this study. The
full list of gene accession IDs is provided in Table S1.

Bdelloidea Monogononta

Adineta ricciae Rotaria sordida Didymodactylos
carnosus Proales similis Brachionus

calyciflorus
Brachionus

plicatilis

FReDs 6 6 1 3 2 6
C-type lectins 3 2 1 3 25 17
C1qDC proteins 4 6 2 1 1 1
Galectins 4 8 2 1 1 1
R-type lectins 0 1 0 0 3 0 a

F-type lectins 3 3 1 2 3 0 b

SUEL-type lectins 0 0 0 4 3 0 c

H-type lectins 2 1 0 0 0 0
Jacalin-like lectins 0 0 1 0 0 0
Apextrins 0 0 0 0 0 0
DUF3011 lectins 0 0 0 0 0 0

a Two partial BPBT lectins (see Section 2.5), lacking a signal peptide, likely due to incorrect annotation, were
detected. b A single FTL with three CRDs, lacking a signal peptide, likely due to incorrect annotation, was
detected. c Two short single-domain SUEL-type lectins, encoded by two paralogous genes, were likely incorrectly
fused in a single gene model.

2.1. FReD-Containing Proteins

Fibrinogen-related domain-containing proteins (FReDs) share structural similarity
with the C-terminal domain of vertebrate ficolins, i.e., N-acetylglucosamine (GlcNAc)-
specific carbohydrate-binding proteins, which play a key role in the lectin pathway of
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the complement system [36,37]. The fibrinogen C-terminal domain is associated with a
number of metazoan lectins with widespread taxonomic distribution, from cnidarians to
vertebrates, which hold remarkable glycan-binding properties and often play an important
role in the context of immune recognition, as revealed by several studies carried out in
Mollusca [38–40].

A subgroup of FReDs named fibrinogen-related proteins (FREPs), which combine
one or two N-terminal immunoglobulin domains with a single C-terminal fibrinogen
domain, have been implicated in the resistance of snails to trematode infections [41,42].
Comparative immunogenomics studies have previously revealed that bona fide FREPs [43],
as well as GREPs and CREPs (i.e., FReDs associated with galectin and CTL domains,
respectively [44]), are restricted to the gastropod subclass Heterobranchia. Nevertheless,
other mollusks display a high number of proteins with a simpler architecture, comprising
a signal peptide and the fibrinogen-like domain, often paired with a coiled-coil region of
variable length, which may allow their oligomerization, in a similar fashion to collagen
in vertebrate ficolins [45]. Single-domain FReDs, which retain significant glycan-binding
properties in the Lophotrochozoa [46], underwent a significant expansion in bivalves, where
they are often found with hundreds of paralogous gene copies [47] encoding inducible
proteins with marked bacteria-agglutinating properties [48,49]. Similar expansions have
certainly occurred in other lophotrochozoan phyla, such as brachiopods, even though the
functional implications of these events are presently unclear [50].

All the rotifer species analyzed in this study had FReD genes in varying numbers,
ranging from one (in D. carnosus) to six (in R. sordida, B. plicatilis and A. ricciae) (Table 1). The
encoded proteins from bdelloid and monogonont rotifers displayed different architectures:
while all FReDs shared a single peptide and displayed a fibrinogen-like domain in a C-
terminal position, they were characterized by the presence of an N-terminal region of
variable length (Figure 1). This region was markedly shorter in bdelloid FReDs, which
usually displayed a relatively high (55–50%) primary sequence identity with horseshoe
crab tachylectins [39], and much longer in monogonont FReDs, which, on the other hand,
had a lower homology (i.e., 25–35%) with tachylectins. In all rotifer FReDs, this region
lacked detectable conserved domains and structural homologies but displayed a low level
of complexity and the occasional presence of threonine-rich amino acid stretches.
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Figure 1. Schematic representation of the main type of secretory lectin-like molecules identified in
Rotifera. FBG: Fibrinogen C-terminal domain; GLECT: galectin domain; SUEL: D-galactoside/L-
rhamnose-binding SUEL lectin domain; CLECT: C-type lectin domain; FA58C: coagulation factor 5/8
C-terminal domain; EGF: epidermal growth factor domain; Cht BD2: chitin binding domain.
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2.2. C-Type Lectins

C-type lectins (CTLs) are one of the largest and most studied families of lectins in
lophotrochozoans, with several dozen proteins having been functionally characterized in
mollusks and segmented worms [51–53]. Their characterizing CRD, which displays a broad
calcium-dependent binding specificity, is often found in large multidomain membrane-
bound proteins which may or may not have a lectin function [54,55]. Their remarkable
structural diversity has led to the development of a complex classification system, which
has been subjected to multiple updates over the years [54,56,57]. Since such a classification
still appears to be strongly biased towards vertebrates, it is not fully adequate to describe
the variegate domain combinations found in animal CTLs.

Compared with their membrane-bound counterparts, secretory CTLs usually display
a simpler structure, which comprises a signal peptide, followed by either one or two
tandemly repeated CRDs. In addition, the N-terminal region may also include coiled-
coil or collagen repeats with effector functions [58,59]. Besides having a role in MAMP
recognition, the CTLs of invertebrate metazoans can regulate different aspects of the innate
immune response, including microbial opsonization, the activation of the prophenoloxidase-
mediated melanization cascade and possibly also the activation of the complement system,
mirroring the role of the mannan-binding lectin in the lectin pathway of the vertebrate
complement system [52,60,61].

As far as the Lophotrochozoa are concerned, multiple studies have previously revealed
that CTLs belong to highly expanded gene families in Mollusca [33,62], Annelida and
Brachiopoda [50]. The investigations carried out here in Rotifera revealed a highly variable
number of CTLs among species. While CTLs represented the largest group of secretory
lectins in the genus Brachionus (i.e., 25 in B. calyciflorus and 17 in B. plicatilis), only a few
proteins of this type (i.e., one to four) could be identified in the four other species (Table 1).
Most of the proteins identified in Brachionus spp. had a single CRD (Figure 1), which often
followed a relatively long (i.e., ~100 amino acids) N-terminal region with no recognizable
conserved domains. In addition, both Brachionus species displayed a few CTLs with two
consecutive CRDs, whose architecture resembled those of insect immulectins [63]. Another
type of domain combination included the presence of an epidermal growth factor (EGF)-like
domain, placed immediately before the CRD. EGF domains are often found in association
with certain large vertebrate CTLs found in the extracellular matrix or bound to the cell
membrane, such as selectins and lecticans. However, the combination of a single EGF
domain and the CTL CRD has never been described before in the Lophotrochozoa. The
third analyzed monogonont rotifer species, P. similis, only displayed three CTL genes: two
encoded short, single-domain lectins, whereas the third one had an additional EGF-like
domain, as previously described in Brachionus spp. (Figure 1).

The three bdelloid species had a smaller number of genes encoding secretory CTLs:
three were identified in A. ricciae, two in R. sordida and a single one in D. carnosus. Two
CTLs from R. sordida and one from A. ricciae were short single-domain CTLs. D. carnosus
and A. ricciae shared the presence of an orthologous sequence with two recognizable CRDs
located at the N-terminal end, followed by a long region with no detectable primary
sequence or structural homologies. The third CTL identified in A. ricciae showed an
unusually long N-terminal low-complexity region, highly enriched in threonine and serine
residues, followed by a C-terminal CRD (Figure 1).

In general, rotifer CTLs only showed a poor primary sequence homology (i.e., 20–30%)
with functionally characterized molluscan CTLs, which prevented the ascertainment of
clear orthology relationships. It is worth mentioning that a single protein belonging to
the CTL family had been previously described and functionally characterized in Rotifera.
Nevertheless, the sequences orthologous with this protein, which serves as the mate
recognition pheromone in the male individuals of Brachionus manjavacas [64], are not
reported in the present study due to the presence of a transmembrane domain.
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2.3. C1q Domain-Containing Proteins

C1q domain-containing (C1qDC) proteins belong to a widespread family of highly
versatile globular proteins with remarkable binding properties [65,66]. Besides their well-
characterized involvement in the vertebrate complement system, C1qDC proteins carry out
important functions in other biological processes which have only recently started to be
unveiled [67]. For example, thanks to the carbohydrate-binding properties demonstrated
in several metazoan phyla [68,69], C1qDC proteins should be regarded as PRRs involved
in immune recognition. This role has been investigated in detail in Mollusca [70,71], where
C1qDC proteins are associated with massive gene family expansions [34,35,72]. In bivalves,
such expansions involve C1qDC proteins that either have a very simple architecture (signal
peptide + C1q domain) or contain an additional N-terminal coiled-coil region. Moreover, in
some gastropod species, such as Littorina littorea, the C1q domain is combined with one or
two immunoglobulin-like domains, originating a small class of proteins known as QREPs,
which are upregulated in response to Himasthla elongata infections [73].

Unlike bivalves but similar to other lophotrochozoan phyla, such as annelids and
brachiopods [50,73], rotifers only display a very few secretory C1qDC proteins (Table 1).
In detail, a single orthologous C1qDC gene could be identified in the three monogonont
rotifer species, whereas the three bdelloid rotifers had a variable number of C1qDC genes,
ranging from two (in D. carnosus) to six (in R. sordida), with evidence of a few nearly
identical paralogs (further supported by phylogenetic evidence; see below). In all cases,
rotifer C1qDC proteins were relatively short (<350 aa) and displayed a single C-terminal
C1q domain (Figure 1). All proteins had a short (~30 aa long) collagen-like region placed
immediately before the start of the C1q domain, which was characterized by the presence
of nine highly conserved glycine residues (Figure 2A). This domain organization denotes
the typical structure of C1q-like proteins, which represent the most common type of C1qDC
proteins in vertebrates [50]. C1q-like proteins are present (but rare) in the lophotrochozoan
species characterized by C1qDC gene family expansions, in which collagen repeats are
usually replaced by coiled-coil regions [34].
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Figure 2. (A) Schematic structure of the C1qDC proteins identified in rotifers, with a zoom on
the collagen region. (B) Bayesian phylogeny of C1qDC proteins from rotifers, obtained with
500,000 generations of an MCMC analysis, run under an LG+I+G model of molecular evolution.
The numbers shown close to each node represent posterior probability support values. Aric: A. ricciae;
Rsor: R. sordida; Psim: P. similis; Dcar: D. carnosus; Bcal: B. calyciflorus; Bpli: B. plicatilis; Lana: Lingula
anatina; Pmax: Pecten maxiumus; Ttes: Testudinalia testudinalis; Hsap: Homo sapiens. Human sequences
were used as an outgroup for tree-rooting purposes; A, B and C indicate the human C1qA, C1qB and
C1qC chains.
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From a phylogenetic point of view, the C1qDC proteins of rotifers were subdivided into
three distinct groups (Figure 2B): the first included the C1qDC proteins from Monogononta,
which were clustered with high support (posterior probability = 0.99) with a few C1q-like
proteins previously identified in other lophotrochozoans and hypothesized to play a key
role in the proto-complement system [73]. The C1qDC proteins from bdelloid rotifers were
clustered in two groups: the first one, which included a few highly similar paralogous genes
in each species (two in D. carnosus and A. ricciae, four in R. sordida), comprised proteins with
high sequence homology relative to the group of C1qDC proteins from Monogononta and
other lophotrochozoans described above. These proteins displayed, as a peculiar feature, an
N-terminal low complexity Ser- and Gln-rich region. The second group of C1qDC proteins
from bdelloids only comprised sequences from A. ricciae and R. sordida, which displayed a
high divergence with all the other sequences mentioned above and may therefore represent
bdelloid innovations.

2.4. Galectins

Galectins are taxonomically widespread and structurally well-conserved β-galactosyl-
binding lectins which carry out a multitude of different functions, including cell adhesion,
cellular homeostasis and self/non-self and microbial recognition [74]. Based on their struc-
tural organization, lophotrochozoan galectins can generally be considered as belonging
to the “tandem-repeat” subtype and contain either two or four CRDs [75–78], with rare
occurrences of galectins with three CRDs [50]. Although phylogenetic analyses have previ-
ously revealed a monophyletic origin for all molluscan galectins [79], it is presently unclear
whether this consideration also applies to the galectins from other lophotrochozoan phyla.

This investigation allowed the identification of galectin genes in all the six analyzed
rotifer genomes, even though their number significantly varied among species. While
all Monogononta only had a single galectin, bdelloid genomes encoded multiple galectin
genes, ranging from two (D. carnosus) to eight (R. sordida) (Table 1). All rotifer galectins
displayed two tandemly repeated CRDs, separated by a connecting region of variable
length (Figure 1). No galectins with four CRDs could be identified, confirming the previous
observation that, within the Lophotrochozoa, this subtype is restricted to brachiopods,
phoronids and annelids [50]. Primary sequence homology with other members of the
galectin family from non-rotifer lophotrochozoans was generally in the range of 30–35%.
Consistently with previous observations in other metazoans, the encoded proteins lacked a
canonical signal peptide and might therefore use an alternative secretion route [80].

2.5. Ricin β-Trefoil Lectins

The R-type lectin (RTL) domain, originally described in the plant toxin ricin, is found
in a number of metazoan multidomain proteins with different functions, including hy-
drolases, glycosyltransferases and membrane-bound receptors [81]. Nevertheless, smaller
proteins with no additional domains can serve as lectins in the extracellular environment,
playing a role in PAMP recognition. A number of secretory R-type lectins with different
glycan-binding properties, containing either one or two consecutive CRDs, have been pre-
viously isolated in annelids [82–84] and mollusks [85]. A second family of lectins, named
mytilectins, which share the same β-trefoil three-dimensional structure but do not conform
with the canonical R-type lectin primary sequence signature, show a discontinuous distri-
bution among the Lophotrochozoa and have only been described so far in a few bivalve
mollusks and brachiopods [50,86,87].

While rotifer genomes encoded several proteins with R-type lectin domains, in most
cases these were associated with other domains known to exert catalytic activities (e.g.,
glycosylases, hydrolases, etc.) or with transmembrane domains. Strong evidence in support
of the existence of secretory RTLs could be collected only for two out of the six rotifer
species analyzed in this study, i.e., R. sordida, among bdelloids, and B. calyciflorus, among
Monogononta (Table 1).
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In detail, the three secretory RTLs identified in B. calyciflorus displayed an unusual do-
main architecture, never before reported in other metazoans. Indeed, these proteins showed
the presence of two consecutive VOMI (vitelline membrane outer layer protein I) domains,
followed by a C-terminal ricin-like CRD (Figure 1). Although the VOMI domain is typically
found in proteins found in the outer layer of the egg vitelline membrane [88], it shares a
β-prism fold that has been previously identified in other carbohydrate-binding proteins,
including jacalins, a class of plant-specific lectins [89–91], as well as in the B. thuringiensis
delta endotoxin [92]. Due to the simultaneous presence of these two structurally different
CRDs, which clearly presents an interesting path for exploration in glycobiological studies,
we defined these unusual proteins as BPBT (β-prism, β-trefoil) lectins. Two BTBP lectins,
orthologous to those found in B. calyciflorus but lacking a signal peptide (possibly due to
an incorrect annotation), were also found in the congeneric species B. plicatilis, but not in
the other species, suggesting that this domain combination may be exclusively present in
Brachionus spp.

On the other hand, the single secretory RTL found in R. sordida was unrelated to
BPBT lectins, since this protein was relatively short (i.e., 200 amino acids) and included
a chitin-binding domain in an N-terminal position [93] (Figure 1). This domain is shared
by several chitinases and other smaller chitin-binding proteins, which include some with
demonstrated effector activity in the context of invertebrate innate immunity, such as
horseshoe crab tachycytin [94] and mussel mytichitin [95], and others with presumed
lectin-like functions [96].

No sequence orthologous to brachiopod and molluscan mytilectins could be found in
rotifers, confirming the discontinuous taxonomic distribution of these β-trefoil lectins in
the Lophotrochozoa.

2.6. F-Type Lectins

F-type lectins are characterized by the presence of a β-barrel jellyroll fold which allows
fucose recognition [97] and which is also found in the C-terminal domain of coagulation
factors 5/8. Despite being associated with relatively short secretory proteins with a lectin
function, the typical CRD of FTLs is often found in large multidomain proteins with
different catalytic activities [98]. The frequent combination of this domain with several
other non-lectin domains mirrors the previously mentioned functional plasticity of the
CRDs of CTLs and RTLs. Previous studies have reported that FTLs underwent expansion
in some gastropod species [77], and some functional evidence collected in bivalves has
linked these proteins to bacterial recognition [99], in addition to the well-established role of
the FTL domain-containing proteins bindins in gamete recognition [100]. This observation
is consistent with the detection of the FTL domain in a relatively high number of rotifer
proteins, only a few of which were characterized by the presence of a signal peptide or
displayed a domain organization consistent with a lectin function (Table 1).

Two different types of secretory F-type lectin sequences were detected in rotifers. The
first type, present as a single-copy gene in the three monogonont species but missing in
the three bdelloids, was a protein displaying a low-complexity threonine- and serine-rich
N-terminal region, followed by a single CRD lacking any significant primary sequence
homology with known FTLs but showing high predicted structural similarity with human
coagulation factors [101] and discoidins [102] (Figure 1). The second type, shared by all
rotifer species (even though B. plicatilis only displayed a protein lacking the signal peptide,
likely due to incorrect annotation), displayed three consecutive FTL CRDs (Figure 1). While
the first and the second ones were well recognizable, the third one did not conform with the
canonical F-type lectin signature. These triple-CRD FTLs displayed a relatively high (i.e.,
40%) sequence identity with several proteins encoded by the genomes of other lophotro-
chozoans, including mollusks and annelids, suggesting a high degree of evolutionary
conservation.



Mar. Drugs 2022, 20, 130 9 of 19

2.7. Other Types of Lectins

In sea urchins, a group of lectins, characterized by the presence of a D-galactoside/L-
rhamnose-binding SUEL (acronym for sea urchin egg lectin) domain, carry out egg-
protecting functions [103,104]. While this type of lectins is also found in lophotrochozoan
genomes, they have been better functionally characterized in deuterostome
invertebrates [105–107]. To date, their role in lophotrochozoans remains elusive, even
though a bivalve SUEL-type lectin was shown to promote the agglutination of Gram-
negative bacteria through LPS binding [108]. The SUEL domain was present in some large
multidomain membrane-associated proteins of bdelloids but not in secretory proteins. On
the other hand, the three monogonont rotifer genomes encoded a few short SUEL-type
lectins (Table 1), which lacked accessory conserved domains (Figure 1) and did no bear any
detectable primary sequence homology with other metazoan sequences with known func-
tions. With the exception of two sequences detected in P. similis, these proteins displayed
high pairwise primary sequence homology and clearly belonged to a monophyletic family.

H-type lectins (HTLs) represent a poorly functionally characterized family of N-
acetylgalactosamine-binding lectins, which are believed to carry out a defensive role against
bacterial infections in fertilized snail eggs [109,110]. Although very little information is
available about the involvement of HTLs in lophotrochozoan immunity, comparative
genomics analyses indicate that they do not belong to expanded gene families, neither
in Mollusca [111,112] nor in Brachiopoda [50]. Nevertheless, transcriptome scans carried
out in gastropod mollusks revealed the presence of a novel domain combination between
immunoglobulin-like domains and HTL domains in the so-called HREPs [73]. The analysis
of rotifer genomes revealed the presence of secretory H-type lectins in just two out of
the three bdelloid species (i.e., A ricciae and R. sordida). On the other hand, no HTL was
identified in Monogononta (Table 1). These proteins had a similar simple architecture, with
a single CRD, placed immediately after a well-recognizable signal peptide (Figure 1). Rotifer
HTLs were encoded by open reading frames with a relatively small size (i.e., 120 codons)
and displayed poor sequence homology with other known sequences (i.e., less than 40%
primary sequence homology vs. L. anatina). This may suggest that the apparent lack of
secretory HTLs in four out of six target species derives from missing gene models that
could not be included in the annotation tracks of the respective genomes due to poor
supporting evidence.

Section 2.5 reports the presence of BPBT lectins, which bear a jacalin-like β-prism
structural domain in combination with the RTL CRD, in Brachionus spp. The screening for
additional proteins bearing a canonical jacalin domain led to the identification of a single
protein in D. carnosus with no orthologs in other rotifer species. This lectin, which dis-
played a well recognizable signal peptide for secretion, lacked significant primary sequence
homology with other previously characterized proteins, but displayed a highly significant
structural match with a number of jacalin-like lectins from plants and with a few metazoan
proteins. These included, as the only lophotrochozoan representative, the PPL3 lectin from
the bivalve mollusk Pteria penguin, which is involved in shell mineralization [113]. Other
relevant metazoan proteins which display the same structural fold are the human pancreatic
secretory protein ZG16b, important for the condensation of pancreatic enzymes [114], the
WGA16 protein from boar sperm [115] and the zebrafish pore-forming protein Dln1 [116].

No gene encoding proteins homologous to the egg-protecting lectins from Aplysia
dactylomela, characterized by the presence of the orifera lack lectins homologous to her
metazoan sequences with known function.ked significant similarity withology DUF3011
domain [117], could be detected in Rotifera. Likewise, no apextrin-like proteins were
detected in any of the studied species. Proteins carrying an apextrin C-terminal domain
(ApeC) have been previously shown to mediate bacterial recognition in amphioxus [118].
While they are also present in bivalve mollusks and brachiopods [50,62], this study rules
out their possible involvement in immune recognition in rotifers.
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3. Discussion

Genome- or transcriptome-wide screening approaches have previously been success-
fully used to identify lectin-like proteins in several different eukaryote species, both in
the plant and animal kingdoms [77,96,112,119–122], and can be effectively used as a pre-
liminary step to investigate the repertoire of lectin-like molecules present in non-model
species. This approach might be particularly intriguing for understudied animal phyla,
which, despite the lack of previous glycobiological investigations, might be endowed
with a particularly rich repertoire of lectin-like molecules as the result of their adapta-
tion to a challenging environment. Rotifers, like other aquatic organisms, are potentially
highly exposed to ubiquitous waterborne microorganisms, which may in some cases be
pathogenic. Considering the well-described complex innate immune systems of other
lophotrochozoans, such as mollusks and annelids, rotifers appear to be good candidates for
the bioinformatics-assisted discovery of carbohydrate-binding proteins involved in MAMP
recognition. No information is presently available concerning the glycans expressed by
rotifer tissues and only a single membrane-bound C-type lectin has been described in
B. manjavacas [66] prior to this work. Hence, this represents the first investigation of this
type carried out in this relatively large and widespread but poorly studied phylum of small
aquatic animals.

Although this approach obviously suffers from some limitations, which will be de-
scribed in detail below, it has allowed: (i) the identification of the presence of secretory
lectin-like molecules belonging to at least nine different families, characterized by distinct
structural folds (Figure 3), in rotifers; (ii) the highlighting of significant differences in terms
of distribution and domain organization between the two major classes of rotifers, as well
as among species; and (iii) the ruling out of the possibility that known lectin-encoding gene
families underwent significant expansion in Rotifera, marking a clear difference with other
lophotrochozoan phyla.

Even though this in silico screening approach allowed the identification of several
proteins that are likely to be secreted to the extracellular environment and have significant
carbohydrate-binding properties, the list of the putative rotifer lectin-like proteins here
provided (detailed in Table S1) should be considered as strictly preliminary. The glycan-
binding properties of the identified proteins, as well as their possible involvement in
MAMP recognition, should be validated through functional data collected with classical
biochemical, glycobiological and immunological approaches.

Some limitations of this genome-wide bioinformatics screening approach reside in
the fact that the correct identification of lectin-like proteins depends on the accuracy of
gene annotations. While all the genomes analyzed in this work had a high quality, both
in terms of assembly metrics and in terms of BUSCO completeness [123], a few chimeric
gene models, as well as models of ORFs which were clearly subjected to 5’ or 3’ truncation
compared with other full-length orthologs and paralogs, were occasionally observed. For
the sake of consistency, these gene models were disregarded, even though the presence of
incomplete gene models in a given species was reported, whenever relevant, in Table 1. In
addition, some lectin-like proteins identified in this work were rather short, with an ORF
barely exceeding 100 codons, and lacked at the same time significant primary sequence
homology with other known sequences deposited in public databases. These factors might
have negatively impacted the annotation of other orthologous and paralogous genes,
which may therefore be apparently missing in some of the target genomes, as discussed in
Section 2.7. Hence, the completeness of our report may suffer from these uncertainties, and
the number of lectins reported in Table 1 should be considered as inherently subjected to
slight underestimates.
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Figure 3. Three-dimensional folding of the carbohydrate-recognition domains of representative
members of the nine lectin families identified in Rotifera. (A) C-type lectin domain, pdb entry: 1b6e;
(B) fibrinogen C-terminal domain, pdb entry: 1fib; (C) C1q domain, pdb entry: 4ous; (D) galectin
domain, pdb entry: 1a3k; (E) R-type lectin β-trefoil domain, pdb entry: 4iyb; (F) F-type lectin domain,
pdb entry: 1k12; (G) SUEL-type lectin domain, pdb entry: 2jx9; (H) H-type lectin domain, pdb entry:
2ces; (I) jacalin β-prism domain, pdb entry: 3apa. The figures are reproduced courtesy of PDBe
(https://www.ebi.ac.uk/pdbe/, accessed on 20 January 2022).

Another possible limitation of this work was the impossibility of proceeding with
a reliable in silico screening of candidate lectin molecules characterized by the presence
of domains which are not primarily or exclusively linked with a carbohydrate-binding
function. This was the case, for example, for I-type lectins (also known as siglecs), which
share an immunoglobulin-like fold with a very high number of other proteins involved in
a very broad range of functions [124] and which have been previously identified in some
lophotrochozoans [125]. Similarly, some chitin-binding lectins, mostly from plants [126],
are characterized by the presence of a chitinase-like domain that includes a few key muta-
tions that ablate its catalytic function. However, since these two lectin families are either
membrane-bound (siglecs) or uncommon in metazoans (chitinase-like lectins), their exclu-
sion from the set of domains included in in silico searches was unlikely to have an impact
on the identification of secretory lectins in rotifers.

Finally, it needs to be stressed that rotifer genomes are extremely gene-rich and encode
several thousand proteins which lack any significant primary sequence homology with
other sequences deposited in public databases and which have no detectable conserved
domain. We cannot exclude that some as yet uncharacterized protein families may carry out
important carbohydrate-binding functions in these animals. Nevertheless, the combination
of classical biochemical and glycobiological approaches with bioinformatics approaches

https://www.ebi.ac.uk/pdbe/
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should enable the identification of the full-length sequence of the lectins isolated from ro-
tifers starting from small peptide fragments, as previously carried out on several occasions
with other aquatic invertebrates [68,85,127].

In summary, this work allowed the confirmation of the potential interest of rotifers
as future targets for glycobiological studies focused on the identification of novel lectins.
These, based on the significant diversity of the associated structural folding, might be
endowed with different carbohydrate-binding properties, which may support the de-
velopment of new biotechnological tools, such as lectin-based biosensors with potential
applications in cancer research. Besides the interest that such molecules might have in terms
of biotechnological applications, another aspect that remains to be clarified is whether these
rotifer secretory lectins carry out biological functions similar to those previously described
in other lophotrochozoan phyla.

4. Materials and Methods
4.1. Identification of Lectin-Like Molecules

Six rotifer species with a publicly available fully sequenced genome and an associated
gene annotation track were selected (Table 2). Didymodactylos carnosus Milne 1916 [21],
Rotaria sordida Western, 1893 [21] and Adineta ricciae Segers & Shiel, 2005 [21] were selected
for the class Bdelloidea; Brachionus plicatilis Müller, 1786 [128], Brachionus calyciflorus Pal-
las, 1776 [129] and Proales similis de Beauchamp, 1907 [130] were selected for the class
Monogononta.

Table 2. List of the six rotifer species analyzed in this study, with genome size and number of
annotated protein-coding genes.

Species Name Class Genome Size (Mb) Protein-Coding Genes

Adineta ricciae Bdelloidea 173 49,015
Rotaria sordida Bdelloidea 361 61,901

Didymodactylos carnosus Bdelloidea 356 46,863
Proales similis Monogononta 33 10,785

Brachionus calyciflorus Monogononta 30 24,328
Brachionus plicatilis Monogononta 107 52,502

The proteome of each of the six target species was screened and a search was made for
secretory proteins, i.e., those including either a highly supported canonical signal peptide,
detected with SignalP v.5.0 [131], or, in the case of galectins, which are known to use a non-
canonical secretion signal, with SecretomeP v.2.0 [132]. At the same time, candidate proteins
needed to lack transmembrane regions, which were detected with TMHMM v.2.0 [133].
Signal peptide and transmembrane region predictions were further checked with Phobius
v.1.01 [134]. Putative lectins were identified based on the presence of the following PFAM
conserved domains, detected with HMMER [135] based on default threshold e-values:
fibrinogen beta and gamma chains, C-terminal globular domain (PF00147), C-type lectin
domain (PF00059), C1q domain (PF00386), galactose-binding lectin domain (PF02140),
ricin-type beta-trefoil domain (PF00652 and PF14200), F-type lectin/discoidin domain
(PF00754), galactoside-binding lectin domain (PF00337), H-type lectin domain (PF09458),
jacalin-like lectin domain (PF01419), DUF3011 (PF11218) and the C-terminal domain of
apextrin (PF16977).

The presence of other conserved domains was checked with InterProScan v.5 [136] and
the possible presence of conserved structural folds in regions lacking conserved domains
was investigated with HHpred [137]. To avoid the inclusion of proteins carrying lectin-
like domains but likely involved in non-lectin functions, sequences displaying conserved
domains with known catalytic action (e.g., glucanases, hydrolases, kinases, peptidases, etc.)
were disregarded. Protein sequences deriving from gene models annotated as “partial”, as
well as those that displayed obviously truncated characterizing domains and which might
therefore derive either from pseudogenes or from mis-annotations, were disregarded.
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4.2. Bayesian Phylogenetic Inference

All rotifer C1qDC proteins were included in a multiple sequence alignment (MSA),
prepared with MUSCLE [138], together with three selected lophotrochozoan C1q-like
sequences (i.e., XP_013399541.1 from Lingula anatina, QBA18422.1 from Testudinalia tes-
tudinalis and XP_033760315.1 from Pecten maximus). The human C1qA (NP_057075.1),
C1qB (NP_000482.3) and C1qc (NP_758957.2) chains were also added to the alignment
for tree-rooting purposes. The MSA was refined with Gblocks v.0.91b [139] to remove
unalignable, poorly informative regions. Bayesian phylogenetic analysis was carried out
with MrBayes v.3.2.7a [140], running two parallel MCMC analyses for 500,000 generations
each, sampling one tree every 1,000 generations. The analysis was run under an LG+G+I
model of molecular evolution, which was estimated to be the best fitting for this dataset,
with ModelTest-NG [141]. Run convergence was checked with Tracer v.1.7.1 [142] by de-
termining that all estimated parameters reached an effective sample size value higher
than 100.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/md20020130/s1, Table S1: List of the gene accession IDs of
secretory lectin-like sequences identified in Rotifera.
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