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Tumor angiogenesis is one of the most important processes of cancer deterioration via
nurturing an immunosuppressive tumor environment (TME). Targeting tumor angiogenesis
has been widely accepted as a cancer intervention approach, which is also synergistically
associated with immune therapy. However, drug resistance is the biggest challenge of
anti-angiogenesis therapy, which affects the outcomes of anti-angiogeneic agents, and
even combined with immunotherapy. Here, emerging targets and representative
candidate molecules from ethnopharmacology (including traditional Chinese medicine,
TCM) have been focused, and they have been proved to regulate tumor angiogenesis.
Further investigations on derivatives and delivery systems of these molecules will provide a
comprehensive landscape in preclinical studies. More importantly, the molecule library of
ethnopharmacology meets the viability for targeting angiogenesis and TME
simultaneously, which is attributed to the pleiotropy of pro-angiogenic factors (such as
VEGF) toward cancer cells, endothelial cells, and immune cells. We primarily shed light on
the potentiality of ethnopharmacology against tumor angiogenesis, particularly TCM. More
research studies concerning the crosstalk between angiogenesis and TME remodeling
from the perspective of botanical medicine are awaited.
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INTRODUCTION

The concept of “angiogenesis switch,” first proposed by Folkman, is traced back to 1971, which depicted
that the imbalance between pro-angiogenesis and anti-angiogenesis determines the survival and
progression of tumors. The former includes VEGF (vascular endothelial growth factor) family,
angiopoietin (Ang), platelet-derived growth factors, fibroblast growth factors (FGFs), neuropilin,
transforming growth factor, insulin-like growth factor, chemokines, and semaphorins/plexins/
neuropilins, while the latter is composed of endostatin, thrombospondin-1, angiostatin, and
interferon-α (Zhou et al., 2017). Beyond the well-known target αvβ3 integrin (Cayrol et al., 2019),
VEGF/VEGFR, FGF/FGFR, and PDGF/PDGFR axes were considered the most common signaling and
pivotal role in tumor angiogenesis. The expression of numerous angiogenesis-related proteins was found
in breast cancer, including VEGF, Ang-1/Tie-2, PDGF, and bFGF(FGF2) (Folkman, 2007).
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Advances toward understanding anti-angiogenic therapy that
blocks neo-angiogenesis and restricts nutrition and oxygen
support have exerted considerable progress against cancer.
More than 14 FDA-approved anti-angiogenic drugs have been
applied in clinical against several cancers, which are mainly
divided into two categories: small molecular tyrosine kinase
inhibitors (TKIs) and monoclonal antibodies, with the
representative bevacizumab (indication: colorectal, non-small-
cell lung, and glioblastoma multiforme) and sorafenib
(indication: renal cell and hepatocellular carcinoma),
respectively (Rajabi and Mousa, 2017). According to molecular
targets, anti-angiogenic drugs were composed of VEGF inhibitor,
PDGF inhibitor, Ang inhibitor, and VEGFR inhibitor (Parmar
and Apte, 2021). It is noteworthy that some TKIs are multi-
targeting and pleiotropic. For example, sorafenib shows multi-
kinase-inhibiting efficiency, including VEGFRs and PDGFR.
Although anti-angiogenic therapy targeting VEGF/VEGFR
prolonged the overall survival of cancer patients, these drugs
lead to untoward side effects, including lethal hemoptysis and
intestinal perforation (Johnson et al., 2004; Jain et al., 2006). It is
reported that the absence of VEGF/VEGFR in normal endothelial
cells is responsible for these adverse effects (Rini, 2007). Beyond
these, drug resistance and vascular toxicity are still prominent
side effects and an insurmountable challenge of anti-angiogenesis
therapy (Neves et al., 2020). A cancer combination therapy that
partially avoids the progression of drug resistance elevates the risk
of hypertension in tumor patients (Guo et al., 2021). The phase II
study provides the clinical basis for the combination of
bevacizumab and trebananib (median OS 31.4 months): no
increase in side effects was observed without chemotherapy
(Mooi et al., 2021). After EGFR-TKI resistance, based on real-
world data, there was no significant difference between
chemoimmunotherapy and chemo-antiangiogenesis in the
prognosis of patients with advanced non-small-cell lung
cancer (Yu et al., 2021). However, the combination of drug
schemes containing anti-angiogenic therapy may cause
embryotoxicity, which needs to be paid attention to in
pregnant female tumor patients (Al-Asmakh et al., 2021). The
single-target mono-therapeutic approaches significantly evoked
TKI-resistances in that molecular signaling compensation and
recruitment of pro-angiogenic cells were two indispensable
causes. Moreover, the phenomenon of the proportion of non-
responder patients toward the anti-VEGF approach remained
high. Therefore, there is an urgency to introduce new therapy to
overcome these shortcomings based on anti-angiogenic therapy.
Recently, the combined approach with anti-angiogenesis and
immune therapy was considered a promising avenue due to it
breaking the mutual support between tumor angiogenesis and
immunosuppressive TME (Song et al., 2020). Worldwide
traditional medicines exert alternative and supplementary roles
in cancer treatment, in all of which traditional Chinese medicine
(TCM) has been investigated in abundant literature. The
mainstream view is that the application of TCM relieves
chemotherapy- and radiotherapy-induced adverse reactions,
containing gastrointestinal reactions, cardiotoxicity, and
peripheral neuropathy, even acneiform eruptions and diarrhea
that are EGFR-TKI related (Zhang et al., 2021a). The traditional

decoction and botanical products from native medicine have been
extensively observed and explored according to modern
pharmacology and molecular sciences in carcinogenesis (Xiang
et al., 2019). TCMs have allowed for anti-tumor effects via
immune enhancement and perform attributes for anti-
angiogenesis, respectively (Zhang et al., 2018a; Wang et al.,
2020a). However, few articles have reported the anti-
angiogenesis potential of native pharmacology, especially the
pleiotropy of candidate molecules toward tumor angiogenesis
and tumor microenvironment (TME) concurrently. Importantly,
traditional and botanical medicines provide a molecule library for
screening candidates against tumor angiogenesis and
immunosuppressive tumor microenvironment. Thus, based on
PubMed, Web of Science, and Google Scholar, this review
selectively introduced dozens of representative candidate anti-
angiogenic agents and enumerated several angio-active molecules
from ethnopharmacology for the aforementioned combined
therapy. More significantly, several candidates with multi-
targeting or pleiotropic attributes performed the potential to
directly realize the synergistic effects between anti-angiogenic
and immune therapy (Figure 1).

POTENTIAL TARGETS OF
ANTI-ANGIOGENESIS

Emerging targets provide more possibilities and a greater
understanding for anti-angiogenesis therapy. It is worth
mentioning that tumor angiogenesis is closely associated with
tumor cells releasing angiogenic factors and endothelial cells
supporting vessel sprouting. As present in Figure 2, several
novel targets with anti-angiogenesis nature were selectively
reported, including PIN1, KDM2A, EDD, CCN4, and even
glycolysis-related PFKFB3. All of these potential targets can be
divided into two types: targets in vascular endothelial cells and
targets in cancer cells.

Targets in Vascular Endothelial Cells
PIN1 (peptidyl-prolyl cis–trans isomerase NIMA-interacting 1)
accelerated tube formation of human umbilical vein endothelial

FIGURE 1 | Potential and promising candidates were revealed for anti-
angiogenic therapy, including traditional Chinese medicine. The attractive
perspective that co-regulating angiogenesis and immunosuppressive tumor
microenvironment via natural products and its derivatives or delivery
system is proposed under the frame of ethnopharmacology.
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cells (HUVECs) and angiogenesis in chick chorioallantoic
membrane (CAM) by stabilizing HIF-2 α and enhancing its
transcriptional activity (Choi et al., 2020). Silencing EDD (E3
isolated by differential display gene) induced the weakening of
migration and tube formation of HUVECs, which was due to the
negative regulation of ACVRL1 (activin receptor-like kinase-1,
ALK1) gene and downstream Smad signal by EDD. In addition,
transcription factor SP1 was partly responsible for the
upregulation of ACVRL1 induced by blocking EDD (Chen
et al., 2013a).

In addition, the type 14 family of C-type lectins have been
considered promising targets for tumor treatment, including
CD93, CLEC14A, and CD248 (Khan et al., 2019). C-type
lectin family 14, member A (CLEC14A), overexpressed in
tumor endothelial cells, promoted sprouting angiogenesis via
VEGF/VEGFR-2/VEGFR-3 pathway (Lee et al., 2017a) and
vascular development (Mura et al., 2012; Noy et al., 2016) and
mediated cell–cell adhesion via its extracellular C-type lectin-like
domain (CTLD) (Rho et al., 2011). HSP70-1A, acting as a
molecular chaperone to stabilize the conformation of
membrane protein CLEC14A, prompted the
CLEC14A–CLEC14A interaction of endothelial cell–cell
contact. These interactions triggered ERK phosphorylation and
endothelial tube formation (Jang et al., 2017). The antibody
deglyco C1 IgG targeting CTLD of CLEC14A was developed
to inhibit CLEC14A expression and VEGF dependent
angiogenesis (Kim et al., 2018).

The 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3
(PFK-2/FBPase 3, PFKFB3), a critical regulator of glycolysis,
catalyzes the conversion of fructose-6-phosphate (F6P) to
fructose-1,6-bisphosphate (F1,6P2), which serves as an
allosteric activator of the rate-limiting enzyme 6-
phosphofructo-1-kinase (PFK-1). While PFKFB3 has been
proved as an oncogene relating to cell proliferation, survival,
and invasion (Shi et al., 2017; Kotowski et al., 2021), it is
important to understand its role in the angiogenesis of TME,
including tumor cells and vascular endothelial cells (ECs).
Knockout of PFKFB3 was conducive to improving
chemotherapy response and weakening tumor invasion and
metastasis by normalizing tumor blood vessels, particularly
converting endothelial barrier dysfunction (Cantelmo et al.,
2016). On the other hand, the deficiency of PFKFB3 impaired
angiogenesis involved with the modulation of tip cell formation
and sprouting, while its overexpression facilitated vessel
branching via the suppression of the pro-stalk activity that
Notch signaling mediated (De Bock et al., 2013). Moreover, 3-
(3-pyridinyl)-1-(4-pyridinyl)-2-propen-1-one (3PO), a
molecular blocker of PFKFB3, inhibited vessel sprouting by
restraining proliferation and migration of ECs and countered
vascular hyper-branching that promoted inhibition of triggered
Notch or VEGFR1 (Schoors et al., 2014). Another in vivo study
found that the pro-normalization effect toward tumor blood
vessels was reversed to vascular fragmentation and
decomposition at high dose (70 mg/kg), compared with a low

FIGURE 2 | Schematic draw of potential targets against angiogenesis.
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dose at 25 mg/kg. The positive correlation between PFKFB3 and
CD163, CD31 suggested that PFKFB3 possibly promoted
angiogenesis through modulating the infiltration of CD163 +
tumor-associated macrophages (TAMs) in oral squamous cell
carcinoma (Li et al., 2019a).

Galectins, cancer-associated and evolutionarily conserved
glycoproteins, have been reviewed as potential targets for anti-
angiogenic intervention (Varinska et al., 2017; Dings et al., 2018).
Globo-H, a hexasaccharide originally found in human breast
cancer cell line MCF-7, is strongly expressed in massive
malignant tumors and involved in the regulation of the tumor
microenvironment (Huang et al., 2020). A large number of
evidences support its importance as an antigen in glycan
localized tumor vaccines (Smith and Bertozzi, 2021). In the
study about the cancer-associated glycans and
glycosphingolipids of Globo-H ceramide (GHCer), cancer cells
derived GHCer through microvesicles were assimilated by
HUVECs, leading to the improvement of the angiogenic
attribute, of which molecular mechanism involving the
interaction between GHCer and TRAX for consequently
inducing the activation of PLCβ1, drivers of early angiogenesis
(Cheng et al., 2014). More investigations are expected to focus on
the potential role of tumor-specific glycans and their related genes
in angiogenesis. Likewise, the potential of glycoproteins in tumor
angiogenesis and carcinogenesis is incomprehensively unmasked,
for instance, Angiopoietin-like (ANGPTL) protein (Carbone
et al., 2018).

Targets in Cancer Cells
KDM2A was reported as a pro-angiogenesis gene in breast cancer
by transactivating JAG1 and PDGFA (Chen et al., 2016). WISP-1/
CCN4, an extracellular matrix-associated protein, promoted
VEGF-A secretion through the integrin αvβ3/FAK/c-Src axis
and the EGFR/ERK/HIF1-α signaling pathway that was
transactivated subsequently, in oral squamous cell carcinoma
(OSCC), and then the VEGF that CCN4 induced mediated the
neovascularization of endothelial progenitor cells (EPCs) trigging
(Chuang et al., 2015).

Cyclooxygenase-2 (COX-2) is closely related to cancer
progression such as cancer stem cell-like activity, apoptosis,
proliferation, angiogenesis, inflammation, invasion, and
metastasis, which involves enormous signal pathways for
which there are varieties of transcription factor-binding
sites in its promoter region, including IL-1, IL-6, SP1, AP-2,
NF-κB, c-Jun, and CREB (Hashemi Goradel et al., 2019). The
COX-2/HIF-1a/VEGF-A axis is one of the contributors to
COX-induced angiogenesis. On the other hand, COX-2
mediated arachidonic acid metabolites are conducive to
tumor vascular progression. For instance, prostaglandin E2
(PGE2) participates in the production of VEGF and the
improvement of sprouting, migration, and tube formation
in ECs (Gately and Li, 2004). The expression of COX-2 and
VEGF was inactivated by tanshinone II-A, miR-101, and
andrographolide in tumor cells, while the andrographolide
impaired COX-2 promoter activity and restricted multiple
trans-activators to bind the COX-2 promoter, such as
CREB-2, c-Fos, and NF-κB (Zhou et al., 2012a; Liu et al.,

2018a; Peng et al., 2018). However, mitosis-related centromere
protein U (CENPU) suppressed the ubiquitination-dependent
degradation of COX-2 to maintain angiogenesis through the
activation of the COX-2/p-ERK/HIF-1α/VEGFA signaling axis
(Pan et al., 2020).

Not only angiogenesis but some targets also interfere with
cancer phenotypes, such as proliferation, apoptosis, and even
metabolic reprograming, but in the context the TME regulation is
our interest. ILT3, an immune negative regulator in non-solid
tumors, potentiated tumor metastasis and angiogenesis in non-
small-cell lung cells (NSCLCs). ILT3 recruited SHP2 and SHIP1,
followed by phosphorylation of ERK1/2 to induce angiogenesis
with increased VEGF-A expression (Li et al., 2021a). CCL5/CCR5
signaling mediates signal transduction cascades related to tumor
progression, including PI3K/Akt, JAK/STAT3, MAPK/ERK, and
NF-kB, involving in tumor growth, metastasis, cancer stem cell
expansion, DNA damage repair, and angiogenesis and metabolic
reprograming. It is noteworthy that the axis recruits immune cells
and induces immunosuppressive polarization of macrophages to
modulate TME reprogramming (Aldinucci et al., 2020). Blocking
the CCL5/CCR5 axis induced decreased endothelial cell
migration, which was related to decreased activity of the
mTOR /Akt pathway, while CCL5 promoted tumor
angiogenesis through the PKC δ/c-Src/HIF-1 α/VEGF
signaling pathway (Wang et al., 2015a; Sax et al., 2016). PLD1
deficiency triggered a decrease in tumor growth and angiogenesis
in the xenograft model and also reduced endothelial cell adhesion
by downregulating the phosphorylation of ERK 1/2, p38, and Akt
(Chen et al., 2012). In addition to the involvement of apoptosis
through the downregulation of pro-apoptotic genes, caspase-3
was found to play an important role in angiogenesis by
transactivating pro-angiogenetic genes (VEGFA, ANXA2, and
C1GALT1), showing the crosstalk between apoptosis and
angiogenesis (Bernard et al., 2019). CDK6, as a component of
the transcription complex, induced the expression of P16 and
VEGF-A, which bridged the cell cycle and angiogenesis
(Kollmann et al., 2013). A C-glycosyl flavone was reported to
induce apoptosis, cell cycle arrest, and angiogenesis inhibition via
modulating CDK6, which was consistent with CDK6 blocker
(Bevara et al., 2018).

The endocannabinoid system (ECS) was associated with
declined angiogenesis via downregulating the VEGF/PIGF/
Ang-2signaling axis that was mediated by cannabinoid
receptors CB1R/CB2R, and it was important that ECS induced
TME remodeling for the cannabinoid receptors expressed
extensively (Iozzo et al., 2021). The aforementioned effects of
proteoglycan agrin remained VEGFR2 dependent (Chakraborty
et al., 2020). In addition, perlecan/HSPG2, a heparan sulfate
proteoglycan, gathered in the tumor marginal stromal, was
considered a molecular switch of angiogenesis in TME (Cruz
et al., 2020). The immune checkpoint B7-H3 (CD276) accelerated
immunosuppression of TME and exhibited non-immunological
attributes for participating in angiogenesis (Feng et al., 2021). In
triple-negative breast cancer, targeting B7-H3 led to vessel
normalization and consequently improved PD-1 treatment
response (Cheng et al., 2021). Moreover, CD276 enhanced
the angiogenic function of tumor-associated macrophages,
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TABLE 1 | Anti-angiogenic effects and mechanisms of representative molecules from ethnopharmacology.

Molecule Model Effect Main mechanism Reference

Plant-derived molecules
NLGP Swiss and C57BL/6 mice Normalization of tumor vasculature CD31, VEGF, and VEGFR2 ↓; CD8+

cell ↑
Banerjee et al. (2014)

NLGP B16F10 cells and C57BL/6J mice Decreasing VEGF p-STAT3 and HIF-1α ↓ Saha et al. (2020)
Dolichos lablab L.
lectin (DLL)

HUVECs; CAM, Rat aortic ring assay,
and mice with solid lymphoma or
ascites tumor

Tube formation inhibiting; declining
angiogenesis ex vivo and in vivo

NF-κB, VEGF, MMP-2, and MMP-9 Vigneshwaran et al.
(2017)

Artemisinin HUVECs with CM from osteosarcoma
cell lines MG-63, U2OS; xenografts
mice bearing tumors

Inhibiting migration and tube
formation; reducing MVD

p38 MAPK/CREB/TSP-1 ↑ Li et al. (2019b)

Artemisinin HUVECs; Xenografts mice bearing
mda-mb-231 cells, CAM, Matrigel plug
assay, and rat aortic ring assay

Inhibiting tube formation and
migration; reducing MVD in vivo and
ex vivo

CREB/VEGF in cancer ↓; FAK, AKT,
ERK, p38, and eNOS in HUVECs↓

Tsui et al. (2019)

Dihydroartemisinin HUVECs Suppressing tube formation,
proliferation; inducing autophagy

p-STAT3, FASN ↓, ERK1/2, c-Fos,
and c-Myc ↓; LC3-II↑,
phosphorylation of Akt, mTOR,
p70S6K, and 4E-BP1 ↓

(Dong et al., 2015; Liu
et al., 2019; Gao et al.,
2020)

Tanshinone-1 HMEC-1 cells, CAM, and aortic ring
sprouting assay; breast cancer MCF-7
cells

Inhibiting proliferation, tube
formation, migration, and
angiogenesis; reducing secretion of
VEGF

HIF-1α and p-705-Stat3 in
endothelial and cancer cells ↓

Wang et al. (2015b)

Tanshinone IIA HUVECs and CAM; colorectal cancer
HT-29 cells and tumor nude mice
bearing the cells

Declining tube formation and
angiogenesis; decreasing VEGF,
bFGF secretion, and MVD

TGF-β1 or HIF-1 mediating β-
catenin/TCF3/LEF1 pathway ↓

Sui et al. (2017)

Tanshinone IIA Endothelial progenitor cells; CAM and
Matrigel plug assay

Inhibition of migration and tube
formation; reduction of angiogenesis

Phosphorylation of PLC and Akt and
JNK ↓

Lee et al. (2017b)

Tanshinone IIA HUVECs, CAM, and rat aortic ring
assay

Suppressing proliferation, migration,
tube formation, and angiogenesis

VEGFR2, CD146, and MMP-2,9 ↓ Xing et al. (2015)

Tanshinone IIA HUVECs and CAM Decreasing tube formation, invasion,
and angiogenesis

MMP-2 ↓; TIMP-2 ↑ Tsai et al. (2011)

Tanshinone IIA HUVECs; colorectal cancer HCT116
cells

Inhibiting proliferation, tube
formation, andmigration; decreasing
VEGF and bFGF

HIF-1α in cancer ↓ Zhou et al. (2020a)

Tanshinone IIA HUVECs; BALB/c nude mice with HT-
29 colorectal tumor

Promoting migration and declining
permeability of epithelial cells;
normalization of tumor vessels

Ang2↓; Tie2-AKT-MLCK pathway ↑ Zou et al. (2021)

Tanshinone IIA Breast cancer MCF-7 and MDA-MB-
231 cells; MDA-MB-231 xenograft
nude mice

Inhibition of HIF-1α and
angiogenesis in vivo

mTOR/p70S6K/4E-BP1 signaling ↓ Li et al. (2015)

Silibinin Cervical HeLa cells and hepatoma
Hep3B cells

Decreasing HIF-1α and VEGF mTOR/p70S6K/4E-BP1 signaling ↓;
p-Akt ↑

García-Maceira and
Mateo, (2009)

Imperatorin HCT116 and its xenograft nude mice Inhibiting HIF-1α in vivo and in vitro;
reducing MVD and VEGF in vivo

mTOR/p70S6K/4E-BP1 signaling ↓;
p-ERK and pJNK and p-p38 ↓

Mi et al. (2017)

Cryptotanshinone HUVECs Suppression of migration, invasion,
and tube formation

VEGF, cyclin D1, β-catenin ↓;
VEGFR2 pathways (p-VEGFR2,
p-ERK1/2, p-p90RSK, p-Src, and
p-FAK)↓

(Chen et al., 2014; Xu
et al., 2017)

Cryptotanshinone HUVECs and aortic ring sprouting
assay

Inhibition of CT26 cell-stimulated
tube formation and vessel sprouting
ex vivo

VEGF, CD31, CD34, VEGFR2, and
HIF-1α ↓; PI3K/Akt/mTOR signaling
in CT26 cells ↓

Zhang et al. (2018b)

Silybin A, silybin B,
isosilybin A, and
isosilybin B

HUVECs, aortic ring sprouting assay;
prostate cancer DU145 xenograft mice

Inhibition of VEGF-induced
proliferation, tube formation,
migration, and vessel sprouting;
downregulating VEGFR1, HIF-1α,
and Akt in xenografts

Akt/HIF-1 α/VEGF axis in prostate
cancer ↓; VEGFR2 and its
downstream Akt/MAPKs/mTOR
axis ↓

Deep et al. (2012)

Silibinin Human endothelial ECV304 cells Induction of apoptosis Bcl-2, P65 ↓; cytochrome c release
and cleavage of caspase-3,
caspase-9, and PARP ↑

Yoo et al. (2004)

Silibinin HUVECs Induction of cell cycle arrest,
apoptosis, and suppression of
migration and tube formation

Survivin, Akt, and NF-κB ↓ Singh et al. (2005)

Silibinin A/J mice with azoxymethane-induced
colon cancer

Decreasing VEGF in vivo IGFBP-3 ↑; β-catenin, IGF-1Rβ,
pGSK-3β, and pAkt ↓

Ravichandran et al.
(2010)

Silibinin HT-29 cells xenograft mice Reducing MVD Singh et al. (2008)
(Continued on following page)
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TABLE 1 | (Continued) Anti-angiogenic effects and mechanisms of representative molecules from ethnopharmacology.

Molecule Model Effect Main mechanism Reference

NOS, COX-2, HIF-1α, VEGF, Ang-2,
and Ang-4 ↓

Silibinin Transgenic mouse model of prostate
cancer

Reducing MVD VEGF, VEGFR, HIF-1α, and iNOS ↓ Raina et al. (2008)

Dioscin C57BL/6 mice bearing B16F10
melanomas; CAM; HUVECs with A375
cells CM

Reducing MVD; decreasing
angiogenesis; inhibiting tube
formation

p-Src/p-STAT3/VEGF/MMP-2,9 in
melanoma ↓

Liu et al. (2022)

Dioscin HUVECs; Matrigel plugs assay; colon
cancer C-26 cells xenograft mice

Inhibiting proliferation, migration,
invasion, and tube formation;
reducing angiogenesis in vivo

VEGFR2 and Akt/MAPK signaling
pathway ↓

Tong et al. (2014)

Moscatilin HUVECs; Matrigel plugs assay; lung
cancer A549 cells xenograft mice

Suppressing proliferation, migration,
and tube formation; reducing
angiogenesis in vivo

p-ERK1/2, p-Akt, and p-eNOS ↓ Tsai et al. (2010)

Luteolin Vascular endothelial cells of NSCLC Suppressing proliferation, migration,
and invasion

VEGF, MMP-2, MMP-9, PURB, and
PI3K/Akt/MAPK axis ↓; miR-133a-
3p ↑

Pan et al. (2022)

Luteolin HUVECs; rabbit corneal
neovascularization assay and A-431
murine xenograft model

Inhibiting proliferation and survival;
decreasing angiogenesis

PI3K/Akt/p70 S6K ↓ Bagli et al. (2004)

Luteolin HMEC-1; aortic ring sprouting assay
and CAM

Inhibiting proliferation, migration,
invasion, and tube formation;
reducing microvessel sprouting and
angiogenesis

Gas6/Axl-mediated PI3K/Akt/
mTOR axis ↓

Li et al. (2017)

Luteolin HUVECs; melanoma cells A375 and
B16F10

Inhibiting tube formation;
suppressing HIF-1α /VEGF
expression

p-Akt and p-VEGFR-2 in cancer ↓ Li et al. (2019c)

Timosaponin AIII HUVECs; transgenic zebrafish Inhibiting proliferation, migration,
invasion, and tube formation;
reducing intersegmental vessels and
subintestinal vessels

VEGFR2/PI3K/Akt/MAPK signaling
pathway ↓

Zhou et al. (2020c)

Paris saponin I HUVECs Inhibiting proliferation, migration,
invasion, and tube formation;
inducing apoptosis and cell cycle
arrest

VEGFR2/PI3K/Akt/MAPK, Src/
eNOS, PLCγ/MEK/ERK, and JAK2/
STAT3 ↓

Wang et al. (2020b)

Polyphyllin VII HUVECs; Zebrafish embryo assay Inhibiting viability, migration,
invasion, and tube formation;
reducing angiogenesis

NF-κB/MMP-9/VEGF pathway in
HCC cells

Zhang et al. (2021c)

Farrerol HUVECs Inhibiting proliferation, migration,
invasion, and tube formation;
inducing apoptosis and cell cycle
arrest

Erk, Akt, mTOR, Jak2, STAT3, Bcl-
2, and Bcl-xl ↓

Dai et al. (2016)

Umbelliprenin Breast cancer cells 4T1 tumor-bearing
balb/c mice

Reducing tumor angiogenesis VEGF, CD31, MMP2, MMP9,
VCAM1, and NF-κb ↓

Rashidi et al. (2018)

Gambogic acid Myeloma U266 cells; U266 xenograft
mouse model

Reducing tumor angiogenesis Akt/mTOR/HIF-1α/VEGF ↓ Wang et al. (2014)

Gambogic acid Rat aortic ring assay, CAM, and
C57BL/6 mice bearing lung cancer;
HUVECs

Reducing angiogenesis in vivo and
in vitro; inhibiting migration and tube
formation

Phosphorylation of VEGFR2, ERK1/
2, Akt, and p38 MAPK ↓

Lu et al. (2007)

Gambogic acid C57BL/6 mice with B16F10 melanoma
or MC38 colon cell, CAM, Aortic ring
assay, Spheroid sprouting assay;
HUVECs

Reducing angiogenesis in vivo and
ex vitro; inhibiting proliferation and
migration

YAP and p-STAT3 ↓ Wan et al. (2019)

Traditional Chinese medicine against tumor angiogenesis
Arsenic trioxide

(As2O3)
HUVECs; NCI-H69 cells xenograft
mice

Suppressing tube formation;
decreasing MVD

Dll4, Notch1, and Hes1 ↓ Yang et al. (2019a)

Ethanolic extract of
Artemisia sieberi

HUVECs and CAM Inhibition of tube formation and
angiogenesis

VEGFR-1, VEGFR-2, and CD34 in
transcript ↓

Abdolmaleki et al.
(2016)

Ethanol extract of
Amomum tsaoko

HUVECs with ovarian cancer SKOV3
CM; BALB/c nude mice bearing
SKOV3 tumor

Inhibiting migration, invasion, and
tube formation; reducing MVD

p-STAT3, NF-kB, IL-6, and VEGF ↓ Chen et al. (2020a)

Aqueous extract of Yu
Ping Feng San decoction

HUVECs; orthotopic murine
transplanted model of HCC

Inhibiting proliferation and migration;
reducing MVD

VEGF, TSLP, and p-STAT3 ↓ Yuan et al. (2019)

(Continued on following page)
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and CD276-blocking antibody raised the therapeutic efficiency
of paclitaxel /anti-PD-1 in 4T1 tumor-bearing mice (Cheng
et al., 2021). Diversely, the potential role of semaphorin 4D
(SEMA4D, CD100), glypican-1, Delta-like 1 (DLL1), and
insulin-like growth factor (IGF) in the bi-directional dialog
of angiogenesis and immune regulation is also of significance
(Lee et al., 2015; Wu et al., 2016; Lund et al., 2020; Zhang et al.,
2021b).

THE ROLE OF ETHNOPHARMACOLOGY IN
TUMOR ANGIOGENESIS

Natural products or phytochemicals allow for the activity of
regulating angiogenesis, which has attracted extensive interest.
Some pro-angiogenic molecules have been reported that the
notoginsenoside Ft1 induced angiogenesis by activating the
VEGF/VEGFR2 signaling, while notoginsenoside R1 activated

TABLE 1 | (Continued) Anti-angiogenic effects and mechanisms of representative molecules from ethnopharmacology.

Molecule Model Effect Main mechanism Reference

Aqueous extract of
Shiquan Yuzhen
decoction

Murine xenograft model of Lewis Reducing MVD VEGFA, HIF-1α↓; CD8+ T, and Treg
cells ↑

Sun et al. (2021)

Aqueous extract of
Xiaotan Sanjie decoction

Murine xenograft model of gastric
cancer; HUVECs co-cultured with
gastric cancer SGC-7901 cells

Reducing MVD; inhibiting migration
and tube formation

Notch-1, Hes1, VEGF, and
VEGFR1/2 ↓

(Yan et al., 2014; Shi
et al., 2016)

Ethanol extract of
Jiedu recipe

Endothelial EA.hy 926 cells; HCC Huh
7 cells

Inhibiting proliferation and tube
formation

VEGFR, p-Akt, p-Erk, p- NF-kB, and
HIF-1α in cancer ↓

Lin et al. (2021)

HUVECs, human umbilical vascular endothelial cells; CAM, chick chorioallantoic membrane; MVD, microvascular density; HMEC, human microvascular endothelial; mTOR, mammalian
target of rapamycin; p70S6K, ribosomal protein S6 kinase; 4E-BP1, eukaryotic initiation factor 4E-binding protein-1; CM, conditioned media; NSCLC, non-small-cell lung cancer; HCC,
hepatocellular carcinoma.

FIGURE 3 | Schematic role of ethnopharmacology in tumor angiogenesis.
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the Ang2/Tie2 signaling pathway (Shen et al., 2012; Zhong et al.,
2020). Xue et al. reported six potential tumor angiogenic
inhibitors from Chinese botanical medicine (glycopeptides,
flavonoids, artemisinin, arsenic trioxide, ginsenoside, and
tanshinone) and their pharmacological mechanisms (Yang and
Wu, 2015). As shown in Table 1 and Figure 3, we illuminated the
potential of plant-derived components and traditional Chinese
medicine for anti-angiogenesis therapy: the former mainly
included artemisinin, tanshinone, flavonoids, and saponin,
while the latter is mainly composed of decoction of traditional
Chinese medicine.

Plant-Derived Molecules Against
Angiogenesis
MicroRNAs played a crucial role in ginsenoside-mediated anti-
angiogenesis (Ashrafizadeh et al., 2020). For instance, the
ginsenoside Rg1 downregulated miR15-b to induce
angiogenesis in an increased VEGFR-2 manner (Chan et al.,
2013). Notwithstanding the double-edged sword role of
ginsenoside Rg3 in tumor angiogenesis is worth discussing, it
was broadly considered an anti-angiogenic agent by modulating
pro-angiogenic factors VEGF, FGF, and MMP (Nakhjavani et al.,
2020; Liu et al., 2021a). Most recently, Rg3 was reported to induce
angiogenesis inhibition in precancerous lesions of gastric cancer
through lessening GLUT1 and GLUT4 (Zeng et al., 2022).
Interestingly, the optimized combination of Rg3 epimers
(50 μM S-Rg3 + 25 μM R-Rg3) more effectively suppressed
tube formation, migration, and proliferation of HUVECs than
S-Rg3 and R-Rg3, respectively (Nakhjavani et al., 2021). Although
several ginsenosides active components of ginseng, including
Rb1, Rg3, and Rd served as tumor angiogenesis inhibitors (Li
et al., 2021b), it is noteworthy that the angiogenic modulation of
the rest of the ginsenosides, containing protopanaxadiols,
protopanaxatriols, and oleanane types (Zhou et al., 2022), were
incompletely investigated. In addition, neem leaf glycoprotein
(NLGP), a natural immune-modulator obtained from the leaves
of neem (Azadirachta indica A. juss), balked M2 polarization of
TAMs and HIF1α/VEGF signaling with STAT3-dependent
manner and induced tumor vessel normalization with CD8+

T cells dependence by downmodulating VEGF and VEGFR2
(Banerjee et al., 2014; Goswami et al., 2014; Saha et al., 2020). As a
part of the anti-tumor mechanism of legume lectin proteins, its
anti-angiogenesis effect has been reported that Dolichos lablab L.
lectin (DLL) protein weakened the expression of pro-angiogenic
factors encompassing NF-κB, HIF-1 α, MMP-2 and 9, and VEGF,
while the concanavalin A exhibited anti-angiogenic action via
targeting IKK-NF-κB-COX-2, SHP-2-MEK-1-ERK, and SHP-2-
Ras-ERK cascade (Li et al., 2011; Vigneshwaran et al., 2017).
Another study on Lectin from Laetiporus sulphureus (LSL)
revealed the LSL effects of anti-angiogenesis in zebrafish and
migration inhibition in endothelial cells (Petrović et al., 2020).

Beyond antimalarial drugs, traditional Chinese medicine-
derived artemisinin (ART) and its derivatives have attracted
emerging concern for the promising potential in cancer
therapy (Crespo-Ortiz and Wei, 2012; Li et al., 2020a).
Tianshu et al. implied that attributes of artemisinin and its

analogs against angiogenesis were associated with PI3K/Akt/
mTOR axis, JNK, and p38 MAPK (Wei and Liu, 2017).
Dissimilarly, artemisinin facilitated TSP-1 release to inhibit
osteosarcoma-induced angiogenesis by activating the
phosphorylation of p38 MAPK/CREB (Li et al., 2019b). In
HUVECs, dihydroartemisinin (DHA) impaired proliferation
and loop formation by inhibiting ERK signaling, p-STAT3 and
its downstream fatty acid synthase (FASN) expression, and
triggered autophagy via Akt/mTOR pathway (Dong et al.,
2015; Liu et al., 2019; Gao et al., 2020). DHA attenuated
HUVECs-mediated angiogenesis by modulating IκB-α/NF-κB/
VEGFR2 axis (Dong et al., 2014), while DHA promoted VEGFR1
expression via upregulating ETS-1 (Dong et al., 2014; Niu et al.,
2018). Unexpectedly, the ethanolic extract of Artemisia sieberi
Besser performed stronger antiangiogeneic properties in tube
formation and CAM assay in contrast to ART, which was
attributed to the discordantly reduced VEGFR-1, VEGFR-2,
and CD34 in the transcript (Abdolmaleki et al., 2016).

Tanshinone IIA (Tan IIA) is one of the main active
components of Salviae miltiorrhizae radix et rhizome (Salvia
miltiorrhiza Bunge) and is famous for its effectiveness in the
treatment of cardiovascular diseases (Guo et al., 2020; Zhong
et al., 2021). Its broad-spectrum pharmacological activities
include but are not limited to anti-tumor, while there are few
literatures concerning angiogenesis in tumors. Tan IIA
suppressed β-catenin/TCF3/LEF1/VEGF by TGF-β1 at
normoxia while by HIF-1α at hypoxia to astrict angiogenesis
in colorectal cancer (Sui et al., 2017). Regardless of at hypoxia or
at normoxia, tanshinone I subdued angiogenesis in epithelial cells
(HMEC-1) and the secretion of VEGF from tumor cells (MCF-7)
by the common mechanism: deduction of p-STAT3 and HIF-1α,
and also inhibited VEGF against lung carcino-angiogenesis
(Tung et al., 2013; Wang et al., 2015b). The angiogenesis
EPCs-mediated was diminished by tanshinone IIA in vitro and
in vivo by ruling the VEGF/PLC/Akt/JNK signaling axis (Lee
et al., 2017b). The VEGF/VEGFR2 pathway and MMP-2/-9 and
TIMP-2 expression were downregulated by Tan IIA in HUVECs
for countering angiogenesis, while Tan IIA could bind the
VEGFR2 kinase domain to inhibit the VEGF/VEGFR axis in
lung cancer A549 cells (Tsai et al., 2011; Xie et al., 2015; Xing
et al., 2015). Tan IIA also repressed the expression of pro-
angiogenic factors (VEGF and bFGF) and HIF-1α in colorectal
cancer (CRC) HCT-116 cells and adversely regulated
proliferation and tube formation of HUVECs (Zhou et al.,
2020a). Moreover, Tan IIA opposed angiogenesis with COX-2
and VEGF dependent in mice xenograft model of CRC and
ovarian cancer (Zhou et al., 2012b; Zhou et al., 2020b). The
mTOR/p70S6K/4E-BP1 and MAPK signaling pathway involved
the anti-angiogenic activity that induced VEGF/HIF-1α
suppression of silibinin and imperatorin in cervical and
hepatoma cancer cells and colon cancer, respectively (García-
Maceira and Mateo, 2009; Mi et al., 2017). Uniformly, Tan IIA
weakened VEGF/HIF-1α expression by controlling the mTOR
/p70S6K /RPS6 /4E-BP1 axis in breast cancer (Li et al., 2015). It
was of importance that Tan IIA caused vascular stability and
vascular normalization via downregulating Ang2-Tie2-AKT-
MLCK axis in colon cancer (Zou et al., 2021). The anti-
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angiogenic properties of tanshinone VI were attributed to its
downregulation of adhesion molecules ICAM-1 and VCAM-1 in
epithelial cells (Nicolin et al., 2013). Moreover, the angiogenesis
inhibition of cryptotanshinone (CPT) was implicated in multi-
signaling, including Wnt/β-catenin/VEGF axis, VEGFR2 and its
downstream Src/FAK, ERK1/2 in HUVECs, while it leads to the
downregulation of PI3K/Akt/mTOR signaling and HIF-1α in
CT26 colon cancer cells (Chen et al., 2014; Xu et al., 2017; Zhang
et al., 2018b).

The silymarin, silibinin (SB), and thalidomide attenuated
proliferation in endothelial (EA.hy 926) and colon cancer
(LoVo) cell lines and also reduced the LoVo-secreting VEGF
(Yang et al., 2003). The two pairs of flavonolignan
diastereoisomers (silybin A, silybin B, isosilybin A and
isosilybin B) isolated from Silybum marianum (L.) exerted
similar effectivity against angiogenesis via downregulating
Akt/HIF-1 α/VEGF axis in prostate cancer, and
simultaneously modulated VEGF-induced signaling,
encompassing VEGFR and its downstream Src, Akt, MAPKs,
mTOR and so on in HUVECs (Deep et al., 2012). Hyeon et al.
deemed that the anti-angiogenic effect of silibinin in endothelial
cells depended on the regulation of NF-κB and apoptosis
induction with the Bcl-2 family and Caspases involved (Yoo
et al., 2004). Rana et al. found SB-induced cell cycle arrest,
apoptosis, and suppression of migration and tube formation to
perform anti-angiogenic efficacy in HUVECs, with survivin,
Akt, and NF-κB were decreased (Singh et al., 2005). In addition,
it reduced iNOS, COX-2, and VEGF expression in colon cancer
mice, with the decreased levels of β-catenin, IGF-1Rβ, p-GSK-
3β and p-Akt, and enhanced expression of IGFBP-3
(Ravichandran et al., 2010). Research on colon cancer
suggested that the downregulation of NOS, COX-2, HIF-1α,
VEGF, Ang-2, and Ang-4 was the result of SB treatment (Singh
et al., 2008; Sameri et al., 2021). The SB lessened tumor
angiogenesis in pancreatic cancer and prostate tumor
xenograft (Singh et al., 2003; Nambiar et al., 2013), while SB
inhibited tumor angiogenesis via restricting VEGF, VEGFR2,
HIF-1α, and iNOS expression in a transgenic mouse of prostate
cancer (Raina et al., 2008).

Luteolin’s effect against angiogenesis in vascular endothelial
cells was ascribed to multiple mechanisms, such as the inhibition
of MAPK and PI3K/Akt pathways that miR-133a-3p/PURB-
mediated, repression of the PI3K/Akt/p70 S6K signaling and
Gas6/Axl axis (Bagli et al., 2004; Zhu et al., 2013; Li et al., 2017;
Pan et al., 2022). In addition, luteolin impaired HIF-1α/VEGF
and Notch1-VEGF signaling in melanoma and gastric cancer
individually (Zang et al., 2017; Li et al., 2019c). The luteolin
showed better attributes in the suppression of blood vessels in
CAM assay, cell proliferation and cell migration assay in HT-29
cells than lupeol and lectin (Ambasta et al., 2015). HIF-1 α was
considered as a pro-angiogenic factor to facilitate tumor
angiogenesis by activating PI3K/MAPK pathway and inducing
VEGF release. The combination of asparagus polysaccharide
(IC50 ~ 10 mg/ml) and HIF-1α RNAi significantly inhibited
the tube formation in HUVECs under HCC cells (SK-HEP
and HEP-3B) induced and tumor angiogenesis in a
xenotransplantation mouse model (100 mg/kg by gavage), and

reduced the expression of VEGF and HIF-1α by suppressing Akt/
Erk axis in vivo and in vitro (Zhu et al., 2021a).

Xanthomicrol, a flavone extracted from Dracocephalum
kotschyi Boiss leaf, showed an antiangiogeneic effect in mice
melanoma (B16F10) model (50 mg/kg) through negatively
regulating the expression of VEGF, HIF-1α, and p-Akt
(Ghazizadeh et al., 2020). Curcumin downregulated NF-κB
and FAK/P38 MAPK and reduced the expression of VEGF,
MMP-2, MMP-9, and COX-2 to exert the anti-tumor
angiogenesis attribute in vivo and in vitro (Kumar et al., 2016;
Hosseini et al., 2019). Compared with curcumin,
bisdemethoxycurcumin is more effective to downregulate
angiogenetic makers NF-κB, COX-2, MMP-9, and VEGF in
Hep-2 cells (Mohankumar et al., 2021). However, curcumin
promoted endothelial progenitor cells (EPCs) to participate in
angiogenesis and conduced to neovascularization in animal
models in vivo (Wang and Chen, 2019). In addition, VEGF-A
and COX2 mRNA was downregulated by umbelliprenin (UMB, a
coumarin from Ferula species) in 4T1 tumor mice (2.5 mg/d),
with the protein expression of NF-κB and VCAM1 decreasing
(Rashidi et al., 2018). The prior review has depicted the anti-
angiogenic function of gambogic acid (GA) against tumors
depending on the obstruction of HIF-1α/VEGF and prolyl
hydroxylase-2 (PHD2)–von Hippel-Lindau gene (VHL)–HIF-
1α, along with EGFR2 pathway (Liu et al., 2020). Moreover,
GA mediated the inhibition of HIF-1α/VEGF through the
downregulation of PI3K/Akt/mTOR in myeloma cells (Wang
et al., 2014). After GA treatment, YAP/p-STAT3 and
phosphorylation of VEGFR2 (KDR/Flk-1) signaling axis was
suppressed in HUVECs (Lu et al., 2007; Wan et al., 2019).

The antiangiogeneic effect of Dioscin, a steroid saponin mainly
appearing in Dioscorea opposita Thunb, involved the
downregulation of p-Src/p-STAT3/VEGF/MMP-2,9 in melanoma,
and attenuated VEGFR2 and Akt/MAPK signaling axis in colon
cancer, while led to the constraint of VEGF/VEGFR pathway in
ovarian cancer cells (Tong et al., 2014; Guo andDing, 2018; Liu et al.,
2022). Similar in mechanism, moscatilin, a bibenzyl derivative
isolated from TCM Orchidaceae Dendrobii Caulis (Dendrobium
loddigesii Rolfe), exerted antiangiogeneic attribute in vitro via
repressing ERK1/2, Akt, and eNOS axis in HUVECs (Tsai et al.,
2010). Anemarrhena saponin AIII, extracted from Anemarrhena
asphodeloides Bunge a traditional Chinese medicine, inhibited the
formation of internode vessels and subintestinal vessels in zebrafish
(0.five to two µM), and significantly decreased the activity (more
than 4 uM), migration, invasion and tube formation of HUVEC cells
(0.5–4 µM) through attenuating VEGF/PI3K/Akt/MAPK signal
transduction (Zhou et al., 2020c). Also, in HUVECs, Farrerol, a
natural flavonoid from Rhododendron dauricum L. exerted similar
mechanisms against angiogenesis by downregulating Akt/mTOR,
ERK and JAK2/STAT3 signal pathway (Dai et al., 2016). Paris
saponins I (polyphyllin D), existing in the Chinese herb Paris
polyphylla var. yunnanensis, showed excellent anti-angiogenesis
on HUVEC cells through downregulation of VEGFR2, JAK2/
STAT3 pathways, and VEGFR2 and its downstream PI3K/Akt/
MAPK, Src/eNOS, and PLCγ/ERK/MERK (Wang et al., 2020b). The
role of Polyphyllin VII and Paris saponin II (formosanin C) against
tumor angiogenesis involved NF-κB/VEGF axis on Hepatocellular
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carcinoma cells and ovarian cancer cells, respectively (Yang et al.,
2015; Zhang et al., 2021c).

Traditional Chinese Medicine Against
Tumor Angiogenesis
As2O3, a toxic traditional Chinese medicine, inhibited tumor
growth and microvessel density by downregulating Notch
pathway-related proteins Hes1, Dll4, and Notch1 in the
small-cell lung cancer (SCLC) mouse model (2.5 and
5 mg/kg), and As2O3 restrained with the tube-forming ability
of endothelial cells through the expression of Notch 1 and Hes1
in HUVECs (Yang et al., 2019a). Indeed, the thymic stromal
lymphopoietin (TSLP) protein elicited immune-suppressive
TME via interacting with TSLP receptor in CD4+ T cells to
promote production of immunosuppressive factors, including
IL-10 and IL-13 (Sims et al., 2000). Yu Ping Feng San, a famous
decoction in TCM and comprised Astragali Radix (Huangqi, the
root of Astragalus membranaceus (Fisch.) Bunge or Astragalus
membranaceus (Fisch.) Bunge var. mongholicus (Bunge) P. K.
Hsiao), Atractylodis Macrocephalae Rhizoma (Baizhu, the
rhizomes of Atractylodes macrocephala Koidz.), and
Saposhnikoviae Radix (Fangfeng, the roots of Saposhnikovia
divaricata (Turcz.) Schischk.) reduced MVD and VEGF via
downregulation of the TSLP /STAT3 pathway in
hepatocellular carcinoma and HUVECs (Yuan et al., 2019;
Du et al., 2021). The ethanol extract of Amomi Fructus (the
fruit of Amomum villosum Lour.) had no influence on the
viability of vascular endothelial cells. But it inhibited
angiogenesis by restricting the p-STAT3 and NF-κB
expression and reducing IL-6 and VEGF secreted by ovarian
cancer cells (Chen et al., 2020a). Freshly, Shiquan Yuzhen
Decoction, consisting of Ginseng Radix et Rhizoma,
Astragalus membranaceus (root of Astragalus membranaceus
(Fisch.) Bge. var. mongholicus (Bge.) Hsiao or A.
membranaceus (Fisch.) Bge.), Dioscoreae Rhizoma (rhizome
of Dioscorea opposita Thunb.), Anemarrhenae Rhizoma
(rhizome of Anemarrhena asphodeloides Bge.), radix
scrophulariae (root of Scrophularia ningpoensis Hemsl.), Os
Draconis, Ostreae Concha, Salviae Miltiorrhizae Radix et
Rhizoma (root and rhizome of Salvia miltiorrhiza Bge.), and
Curcuma zedoariae (rhizome of Curcuma phaeocaulis Val. or C.
kwangsiensis S. G. Lee et C. F. Liang or C. wenyujin Y. H. Chen et
C. Ling), triggered the inhibition of tumor angiogenesis via
restricting HIF-1α/VEGFA release, recuperated the immunity
with the enhancement of CD8+ T and Treg cells, TNF-α level,
and the abatement of IL-6 in lung cancer-bearing mice (Sun
et al., 2021). The attenuated angiogenesis mediated by Xiaotan
Sanjie decoction that comprised eleven herbs (including
Pinelliae rhizome, Rhizoma arisaematis, and Poria cocos) in
gastric cancer was related to the Notch-1/VEGF and IL-8/
VEGF/VEGFR signaling axis (Yan et al., 2014; Shi et al.,
2016). Jiedu Recipe, consisting of Pleiones Pseudobulbus
(pseudobulb of Cremastra appendiculata (D. Don) Makino or
Pleione bulbocodioides (Franch.) Rolfe or P. yunnanensis Rolfe),
valvate actinidia (root of Actinidia valvata Dunn.), suppressed
hypoxia-induced angiogenesis via restricting IL-8/HIF-1α/PI3K

and MAPK/ERK pathways in endothelial EA.hy 926 cells, and
inhibited the expression of VEGF, HIF-1α, and IL-8 under
hypoxic conditions in HCC Huh-7 cells (Lin et al., 2021).

THE ANALOGS FROM MEDICAL
CHEMISTRY

Based on the reported molecules with vascular regulatory activity,
the development of new candidates is still the dominant method,
while physiological molecular mimics and receptor blockers also
deserve attention, as shown in Figure 4 and Table 2. These
candidate molecules primarily consisted of physiological
molecular mimics, heterocyclic compounds, flavonoids,
anthrone, phenanthraquinones, and polyphenols. After a
structure–activity relationship (SAR) investigation, the
molecular candidates performed potent anti-cancer effects in
tumor angiogenesis and improved pharmacokinetics
properties, including but not limited to aqueous solubility and
bioavailability.

To avoid the side effects caused by poor selectivity of drugs
against VEGFR, a novel inhibitor (CHMFL-VEGFR2-002) with
high selectivity toward VEGFR-2 (inhibitory activity of kinase
IC50 = 66 nmol/L) has been found to show superb anti-
angiogenesis effect in vivo and in vitro with low toxicity (Jiang
et al., 2020a). ELR510444, a small molecule blocking HIF and
known as a microtubule blocker, inhibited tumor angiogenesis in
mice model of renal cell carcinoma, which was contributed to the
suppression of HIF-1α and HIF-1β activity (0-100 nM) and the
induction of microtubule destabilization (EC50, 27 nM) (Carew
et al., 2012). C11, an FGFR1 inhibitor, blocked cell migration and
tube formation in HMEC-1 endothelial (1–10 uM) and
angiogenesis in CAM assay (0.1 - 10 ng/egg) (Chen et al.,
2019a). The JAK/STAT pathway enhances the progression of
angiogenesis, which mainly relates that p-STAT3 responds to
FGF2 and VEGF stimulated in tumors and ECs (Chen et al., 2008;
Zhao et al., 2011).

STAT3 bound the VEGF promoter and transactivated VEGF
to touch upon tumor angiogenesis (Niu et al., 2002). PM-73G,
phosphopeptide molecular mimic that synthesized to target the
SH2 domain of STAT3, reduced MVD and VEGF levels by the
suppression of p-STAT3 (Tyr705) in mice bearingMDA-MB-468
tumor (Auzenne et al., 2012).

The 6-amino-2,4,5-trimethylpyridin-3-ol analogs had been
investigated as feasible tumor angiogenesis regulators (Kim
et al., 2014). BJ-1108, a 6-amino-2,4,5-trimethylpyridin-3-ol
derivative, inhibited tumor angiogenesis and 5-HT-induced
ROS generation that depended on the PI3K/Akt/NOX
signaling pathway (0.1.1 μM) in HUVECs (Banskota et al.,
2016). The decylubiquinone (DUb), a coenzyme Q analog,
induced tumor angiogenesis inhibition of breast cancer in vivo
and ex vivo by the ROS/p53/BAI1 signaling axis (Cao et al., 2020).

The new 2-substituted benzimidazole molecules with
heterocyclic were synthesized, in which compound 2 had the
best activity of anti-proliferation without genotoxicity in PC-3
and SK-BR-3 cancer cells (IC50 < 20 μg/ml) and anti-
angiogenesis in CAM assay (Güner et al., 2019). The IPA(8k),
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a novel indolephenoxyacetamide analog with anti-proliferative
activity against A549 (IC50 ~5 uM), performed anti-angiogenic
activity in vivo and in vitro through inhibiting HIF-1 alpha,
VEGF, MMP-2 and -9, and P53 (Al-Ostoot et al., 2021).

DMU-212 (trans-3,4,5,4 ′- tetramethoxystilbene), a
resveratrol analog with higher anti-tumor activity and
bioavailability than resveratrol, exhibited effective inhibition
toward angiogenesis in vitro and in vivo. In mechanism, it
suppressed the VEFGR2/Akt/mTOR/p70S6K pathway and
c-Src/FAK/Erk 1/2 axis (Chen et al., 2013b). LW-215, derived
from flavonoid wogonin, attenuated tube formation by
inactivating VEGFR2 and its downstream p-Akt, p-ERK1/2,
and p-p38 in endothelial cells (Zhao et al., 2018).

The compound 25, a gambogic acid (GA) analog, inhibited the
ATPase activity of Hsp90 with an IC50 value of 3.68 μM
compared with GA 21.98 μM. In addition, the compound 25
suppressed migration and angiogenesis by downregulating HIF-
1α that was regulated by Hsp90 in HUVEC cells (0.01-0.25 μM)
(Xu et al., 2016a). Another investigation about GA derivatives
implied molecule 8n that bears a strong resemblance to the
aforementioned effects (Xu et al., 2016b).

The compound 22h obtained from tanshinone I elevated
water-solubility, bioavailability and anti-tumor potency, while
it also suppressed migration and tube formation of HMEC-1 cells
(Ding et al., 2018; Tian et al., 2018). The molecule 2f, cleaved ring
A of tanshinone IIA and imported a methoxy group at C-8
position, provided feasible physicochemical property and anti-
angiogenic activity in HUVECs (0.25, 0.5, 1 μM) and zebrafish
model (1,2,4 μM) (Huang et al., 2021). However, the eleven novel
tanshinone analogs were obtained from puried tanshinone

mixture from Salvia miltiorrhiza by one-pot synthesis
modification, in which the molecule 10 exerted potent pro-
angiogenesis effect in zebrafish, with at least partly involving
VEGF/FGF-Src-MAPK and PI3K-P38 signaling pathways
(Zhang et al., 2014).

The moscatilin derivative 8Ae performed more effective
angiogenesis inhibition in zebrafish assay (0.62–1.25 μM) than
positive drug SU5416 (Guan et al., 2019). Muscone derivative
ZM-32 attenuated the stabilizing effect of RNA-binding protein
HuR toward Vegf-a and Mmp9 mRNA, thus resulting in
downregulation of VEGF-A and MMP-9 expression in
HUVECs and breast cancer MDA-MB-231 cells (Yang et al.,
2021a).

PHARMACEUTICAL DELIVERY SYSTEMS
AGAINST TUMOR ANGIOGENESIS

Nano preparations demonstrate the advantages of prolonging
drug action time, improving solubility, and active and passive
targeting (Hatami et al., 2020). Beyond loading anti-angiogenic
drugs, nanoparticles are also combined with other adjuvants to
construct multifunctional nano-platforms, including imaging,
immunomodulation, photothermal therapy, and photodynamic
therapy.

Galbanic acid (GC), delivered by the poly (D,
l-lactide)–polyethylene glycol (PLA–PEG) nanosystem, showed
lower IC50 than free galbanic acid in colon carcinoma C26 cells
with IC50 = 8 μM and 15 μM, respectively, and increased by 15%
in anti-angiogenetic activity compared to GC (Afsharzadeh et al.,

FIGURE 4 | 2D structure of potential chemicals with anti-angiogenesis. The structure–activity relationship in coloring molecules was investigated: blue (parent) and
red (substituent position).
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2019). HA-TQ-Nps, hyaluronic acid-decorated mixed Pluronic®
nanoparticles loading thymoquinone, faded tumor angiogenesis
via miR-361/VEGF-A in breast cancer MDA-MB-231, MDA-
MB-231, and 4T1 cells (IC50 < 9 μg/ml) (Bhattacharya et al.,
2020; Peng et al., 2021). The amphiphilic and self-assemble drug
(FUDR-PAB nanoparticles) was synthesized by conjugating
floxuridine (FUDR) as the hydrophilic moiety and pseudolaric
acid B (PAB) as the hydrophobic. The nanoparticle exerted better
antiproliferative activity (lower IC50 and smaller tumor volume)
in HeLa tumor cells and mice bearing tumors and higher anti-
angiogenesis efficiency in HUVECs than PAB, FUDR, and PAB/
FUDR mixture (Sun et al., 2019). Likewise, AuNPs-Qu-5, gold
nanoparticle-loaded quercetin (50 μM), was observed to perform
angiogenic nature against tube and new blood vessel formation ex
vivo and in vivo through the VEGE/VEGFR2/PI3K/Akt axis,
which was respectively confirmed by tube formation and CEA
(Balakrishnan et al., 2016).

Cyclic RGD pentapeptide blocking αvβ3 integrin and
tengflavin were linked by low molecular weight heparin to
form cRHG nanoparticles that inhibited HIF-1 α, VEGF,
CD31, and p-VEGFR2 in U87MG glioblastoma xenograft
model (Dahmani et al., 2016). RGD peptide surface-decorated
selenium nanoparticles (RGD-NPs) loading with adriamycin
significantly promoted the anti-angiogenic activity of SeNPs

in vitro and in vivo. RGD-NPs induced apoptosis and S phase
cell cycle arrest in HUVECs (2-8 μM) and inhibited neo-
angiogenesis in BC MCF-7-bearing tumor mice
(2.5–7.5 mg/kg) by the downregulation of VEGF-VEGFR2 (Fu
et al., 2016). The spontaneous degradation of pH-degradable poly
(vinyl alcohol) (PVA) microgel depended on pH in an acidic
tumor microenvironment. The decoration of dopamine (DA) on
PVA microgels partially contributed to tumor adhesion and
retention, which was the origin of dopamine (DA)-
functionalized PVA microgels (DMGs). DMGs@Bev /DTX,
PVA microgel encapsulated bevacizumab (Bev) and docetaxel
(DTX), facilitated anti-tumor activity in 4T1-Luc cells (48 h
treatment IC50 < 10 μg/ml), and anti-angiogenesis in tumor-
bearing BALB/c mice (Chen et al., 2020b). The microgels with
tumor-targeting and pH-degradable for the combination scheme
of Bev and DTX performed better chemotherapy enhancement
and anti-angiogenesis than other controls (Chen et al., 2020b).
The metal–organic framework nanosystem named as aMMTm,
designed on the strategy of photodynamic therapy (PDT) and
anti-angiogenesis, was packed with porphyrinic Zr-MOF
(photosensitizer) and apatinib (VEGFR2 inhibitor) and coating
with MnO2 and cell membrane in the surface (Min et al., 2019).
PDT and VEGF/VEGFR double inhibitor (Avastin + Erbitux)
lead to an obvious decrease in VEGF and EGFR and

TABLE 2 | Anti-angiogenic effects and mechanisms of compounds related to ethnopharmacology.

Molecule Model Angiogenetic effect Mechanism Reference

CHMFL-
VEGFR2-002

HUVECs and Zebrafish embryonic
models

Inhibiting cell migration, invasion, and tube
formation; intersegmental vessel (ISV)
growth

VEGFR2 kinase ↓ Jiang et al.
(2020a)

ELR510444 Renal cell carcinoma A498 and 786-O
cells and xenograft tumor mice

Reducing VEGF release; inhibiting tumor
angiogenesis

HIF-1α and HIF-2α ↓ Carew et al.
(2012)

C11 Human microvascular endothelial cells
(HMEC-1); CAM

Suppressing migration and tube formation;
inhibiting angiogenesis ex vivo

FGFR1 and its downstream p-Akt and p-Erk ↓ Chen et al.
(2019a)

PM-73G MDA-MB-468 breast tumor xenograft
mice

Reducing MVD VEGF and p-STAT3 ↓ Auzenne et al.
(2012)

BJ-1108 HUVECs and CAM Inhibiting migration, tube formation, and
angiogenesis ex vivo

Phosphorylation of PI3K, Akt, and mTOR ↓ Banskota et al.
(2016)

DUb CAM, YSM, and Matrigel plug assay;
HUVECs

Reducing angiogenesis in vivo and ex vivo;
inhibiting proliferation, migration, and tube
formation

ROS/P53/BAI1 ↑ Cao et al.
(2020)

IPA HUVECs; CAM, rat aortic ring assay,
and mice bearing Dalton’s lymphoma
tumor

Inhibiting migration and tube formation;
decreasing angiogenesis in vivo and ex vivo

P53↑; HIF-1α and its downstream VEGF and
MMP-2,9 ↓

Al-Ostoot et al.
(2021)

DMU-212 HUVECs; CAM and Matrigel plug
assay

Inhibiting cell viability, migration, tube
formation, and inducing apoptosis; reducing
angiogenesis

Phosphorylation of VEGFR2 and its
downstream c-Src, FAK, Erk1/2, Akt/mTOR/
,and p70S6K ↓

Chen et al.
(2013b)

LW-215 HUVECs; CAM, and rat aortic ring
assay

Inhibiting migration and tube formation;
reducing angiogenesis

Phosphorylation of VEGFR2, Akt, Erk 1/2, and
P38 ↓

Zhao et al.
(2018)

Compound 25 HUVECs Inhibiting cell migration HIF-1α ↓ Xu et al.
(2016a)

Molecule 8n HUVECs; fluorescent zebrafish assay
(VEGFR2: GFP)

Suppressing migration, invasion, and tube
formation; reducing angiogenesis in vivo

Hsp90/HIF-1α/VEGF in HepG2 cells ↓ Xu et al.
(2016b)

2f HUVECs; zebrafish embryo assay Inhibiting proliferation, migration, and tube
formation; reducing angiogenesis in vivo

Not reported Huang et al.
(2021)

8Ae Zebrafish embryo assay Reducing angiogenesis in vivo Not reported Guan et al.
(2019)

ZM-32 HUVECs; xenograft mice models of
MDA-MB-231 cells

Inhibiting migration and tube formation;
reducing MVD

HuR, VEGF, and MMP-9 ↓ Yang et al.
(2021a)

HUVECs, human umbilical vascular endothelial cells; CAM, chick chorioallantoic membrane; MVD, microvascular density; YSM, yolk sac membrane.
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considerable tumor elimination in a murine bladder tumor model
(Bhuvaneswari et al., 2011). Sunitinib, VEGFR and PDGFR
inhibitor, was encapsulated in a polyamide amine (PAMAM)
dendrimer cavity, and the nano-scintillator CaF2 and
photosensitizer Rose Bengal were distributed on the surface of
PAMAM at a suitable distance to construct a nano platform
CCT-DPRS. After low dose X-ray irradiation, the doped
scintillator transformed the captured energy into green
emission, which led to further excitation of Rose Bengal to
produce cytotoxic singlet oxygen to eliminate cancer cells. At
the same time, the platform released sunitinib and active oxygen
to induce apoptosis and inhibit tumor angiogenesis, with
increased expression of cleaved PARP and decreased levels of
VEGFA, HIF-1α, survivin, and p-STAT3 (Jiang et al., 2021).

Nanoparticles (CA4P-loaded NBP@TiO2) for photothermal
therapy (PTT) combined with anti-angiogenesis have been
reported, in which Au nanobipyramids (NBPs) were designed
as photothermal agents for infrared light excitation at 1064nm
and TiO2 shell coating with combretastatin A-4 phosphate
(CA4P) for anti-tumor attribute. The inhibition of
angiogenesis in HUVECs and reduction of tumor microvessel
density in A549 tumor-bearing mice were found in the therapy
with synergism between PTT and nano-platform (Chen et al.,
2019b). Similar photothermal chemotherapy was applied in
cervical cancer for anti-angiogenesis. The delivery nanosystem
(cisplatin–AuNRs@SiO2–Avastin@PEI/AE105) carried cisplatin
and the anti-angiogenic drug Avastin, with Au nanorods
(AuNRs) selected as a photothermal agent. AE105, a
polypeptide composed of nine molecular amino acids with a
high affinity for uPAR receptor that is highly expressed in cervical
cancer tissues, linked by hydrophilic polymers PEI to the
nanoparticles for tissue targeting (Hu et al., 2019). RBCs@Se/
Av suppressed angiogenesis of HUVEC by triggering apoptosis
and decreased vascular density in A375 tumor-bearing mice. The
nanosystem was constructed by binding pegylational selenium
nanoparticles (SeNPs, Se) and Avastin (VEGF antibody, AV),
encapsulated with red blood cells membrane (Liu et al., 2018b). A
novel chelating agent, imidazole doped with organic silica (Imi-
OSi) nano-materials, performed anti-angiogenesis by copper
capture and blocking tumor blood vessels through phosphate
and Cu2 + responsive polymerization in breast cancer and colon
cancer mice models (Yang et al., 2019b).

Antagonizing cytokines triggering angiogenesis, combined
with vascular normalization therapy, reshuffle the balance of
pro-vascular factors and anti-vascular factors in TME. The bi-
directional nanosystem has been exposed that FLG nanoparticles
loaded with VEGF/VEGFR2 pathway inhibitors, low molecular
weight heparin (LMWH), and gambogic acid (GA) and modified
by F3 peptide targeting tumor vascular endothelial cells,
obstructed the abnormal proliferation of vascular endothelial
cells, increased pericyte coverage, and improved hypoxia, while
the other nanosystem MAR/MPA with CCL5/CCR5 blocker
Maraviroc induced the decrease of glycolysis rate, VEGF
secretion, and Tregs recruitment as well as the increase of
CD8 + T and CD4 + T cell infiltration (Deng et al., 2021).

The ginsenoside Rg3, oridonin, and Ganoderma lucidum
polysaccharide (GLP) were introduced into a self-

microemulsifying drug delivery system (RGO-SMEDDS) as an
anti-angiogenic agent, immune regulator, and apoptosis inducer,
respectively. The system evinced a combined strategy against
HCC via triggering angiogenesis inhibition, anti-proliferation,
and decreasing immunosuppressive cytokines and M2-polarized
macrophages, for the suppression of the p-EGFR/AKT/GSK3 axis
(He et al., 2021).

Sibusiso et al. have reported the nanosystem doped with
artemisinins, including polymeric, metal-based, and lipid
nanoparticles, against cancer by enhancing effects recuperating
poor solubility and bioavailability and targeting delivery (Alven
and Aderibigbe, 2020). Concurrently, Yun et al. depicted a
biodegradable poly (ethylene glycol) methyl ether-poly (ε-
caprolactone) (MPEG-PCL) loading dihydroartemisinin
(DHA) had allowed for a stronger anti-angiogenic effect than
free DHA (Lu et al., 2020).

CO-REGULATING TUMOR ANGIOGENESIS
AND TME BY TCM

The molecular mechanisms through which immunosuppressive
microenvironment-caused abnormal tumor vasculature and
vascular normalization improved immunotherapy have been
reported, respectively (Fukumura et al., 2018; Liu et al.,
2021b). In brief, tumor-characteristic metabolism led to an
imbalance between pro- and anti-angiogenic factors to induce
abnormal vessels: disorganized vessel distribution and
dysfunction, which in turn aggravated tissue hypoxia to
promote the imbalance. The hypoxia, acidosis, and
accumulated pro-angiogenic factors (represented by VEGF and
Ang2) cooperatively promoted immunosuppressive TME with
multi-mechanisms via recruiting immune-inhibiting cells and
repressing the anti-tumor function of dendritic cells and
cytotoxic T lymphocyte (Fukumura et al., 2018; Zhu et al.,
2021b; Fousek et al., 2021). Also, on the contrary, the adverse
TME recruited and activated immunosuppressive cells to
facilitate tumor angiogenesis with the VEGF/VEGFR-
dependent approach (Yang et al., 2021b).

Advances of angiogenesis dictated the efficiency of
immunotherapy, while immune interference induced vascular
normalization, which was ascribed to interferon γ secreted by
CD4+ /CD8+ T cells, and reshaped TME advantageous to
regression of angiogenesis in preclinical observations (Liu
et al., 2021b; Yang et al., 2021b). The combined concept of
immunocheckpoint blocking (PD-1/PD-L1 antibodies) and
anti-VEGF has been generally accepted for the improvement
of clinical outcomes and is considered a hopeful and promising
treatment approach in therapeutics (Hack et al., 2020; Lee et al.,
2020). Instead of directly targeting VEGF, an indirect approach
was recommended for materializing dual-modulation of the
tumor vascular system and TME through VEGF/HIF-1
mediated by the PI3K/Akt/mTOR cascade and preventing
drug resistance (Fokas et al., 2012).

What we are persuasively interested in is the local or ethnic
medicine—derived molecules with properties of both anti-
angiogenesis and TME remodeling, all of them provide a
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unique sight on the combined therapy of tumor angiogenesis
inhibition and immune modulation. On the other hand, there are
abundant evidences implying that natural products and their
analogs have a crucial part in regulating TME, such as ginseng
and silibinin (Deep and Agarwal, 2013; Li et al., 2021b), while in
independent studies the anti-angiogenic attributes in some of
them are also reported. The biologically active ingredients with
TME regulatory and anti-angiogenic activities confirmed in
independent and respective studies are considered second-line
or potential evidences. Traditional and empirical medicines,
including traditional Chinese medicine, have contributed
molecules libraries for cancer treatment and preclinical
investigations with multi-potency in the modulating
phenotype, such as angiogenesis and TME remodeling (He
et al., 2015). The plant-derived flavonoids, alkaloids,
glycosides, terpenoids, and coumarin were discussed as
dispatchers between anti-VEGF therapy and treatment via
immune checkpoint inhibitors (Kumar et al., 2021).

Except for the antiangiogeneic nature, as mentioned earlier,
the immunomodulation of Dolichos lablab L. lectin was
advantageous to anti-tumor effects mediated by IL-2
(Vigneshwaran et al., 2017). The digitoxin, famous as
cardiotonic steroids, rescued HUVEC migration and loop
formation that macrophages induced and also arrested SKOV3
cell growth and migration under macrophage conditioned media
(Trenti et al., 2018; Whayne, 2018; Bejček et al., 2021). It also
weakened HIF-1α protein expression by suppressing the
phosphorylation of ribosomal protein S6 kinase (p70S6K) and
eIF4E binding protein-1 (4E-BP1) in colon cancer cells (Mi et al.,
2022). Significantly, luteolin enabled inhibition of angiogenesis
induction of M2-like TAMs, achieved by the downregulation of
HIF-1α and STAT3 signaling (Fang et al., 2018). Targeting
macrophages in TME, anemoside A3 derived from Pulsatilla
saponins induced tumor-suppressive M1-like macrophage by
activating TLR4/NF-κB/MAPK signaling and subsequently
enhanced expression of IL-12 in macrophages to attenuate
angiogenesis of breast cancer in vivo and in vitro (Yin et al., 2021).

Bufalin, the bioactive C-24 steroids extracted from traditional
Chinese medicine toad venom, exerted synergistic effects on
angiogenesis with sorafenib via downregulating PI3K/Akt/
mTOR/VEGF signaling pathways in HCC and HUVECs
(Wang et al., 2016; Wang et al., 2018). Interestingly, bufalin
inhibited angiogenesis mediated by TME cells (TAMs, CAFs, and
CT26 cells) in the HUVECs model through regulating p-STAT3
and its downstream pro-angiogenic factors, including VEGF,
PDGFA, E-selectin, and P-selectin (Fang et al., 2021).

Melittin (MEL), a polypeptide and the capital ingredient of
honey bee venom, declined HIF-1α/VEGF levels via the
suppression of ERK and mTOR/p70S6K signaling (Shin et al.,
2013). It downregulated NF-κB to inhibit the HIF-1α/VEGFA
and LDHA expression that caused angiogenesis and descent pH
via anaerobic metabolism, in TME, respectively (Mir Hassani
et al., 2021). CDDO-Me (Bardoxolone methyl), an analog of the
natural triterpenoids oleanolic acid, the methyl-ester of the 2-
cyano-3,12-dioxooleana-1,9 (11)-dien-28-oic acid (CDDO), have
been abundantly advised for pharmacological applications,
including tumor interference (Borella et al., 2019). CDDO-Me

was reported to reduce chemokines CXCL12 and CCL2 release
and the infiltration of suppressive TAM and inhibit cyclin D1,
EGFR, and STAT3 responsible for anti-proliferation in PyMT
breast cancer (Tran et al., 2012). Another study in PyMT implied
that CDDO-Me decreased IL-10 and VEGF levels while increased
TNF expression, concomitantly suppressed TAM tumor
infiltration, and CD4 Foxp3 regulatory T cells (Ball et al.,
2020). The nanoparticle delivery of CDDO-Me reshaped the
immunosuppressive microenvironment with abatement of both
Treg cells and MDSCs, and the concurrent rise of cytotoxic
T-lymphocyte population, meanwhile, reduced angiogenesis in
B16F10 melanoma mice (Zhao et al., 2015). The nanoparticle
delivery of anti-tumor agent silibinin and PI3Kγ blocker IPI-549
synergistically remodeled TME in 4T1 breast cancer mice,
contributing to decline of TAFs, MDSCs, tumor angiogenesis,
and matrix but increased Treg cells (Jiang et al., 2020b).

The nanosystem delivery technology was considered a
promising means for reshaping abnormal tumor vasculature to
vascular normalization (Liang et al., 2022). On the other hand,
vessel normalization was beneficial to the enhancement of drug
penetration (Li et al., 2020b). Another strategy for co-targeting
angiogenesis and TME is chosen as delivery platforms with
functional decorations, in which loaded two or more
molecules or drugs achieved the aforementioned goals with a
designed enhancement of pharmacokinetics, while nanosystems
loading single candidates are also that we are interested in. The
normalization of blood vessels based on the scheme of angio-
blocker delivery has been reported to reprogram TME for
improving immune cell infiltration (Li et al., 2020b). For
instance, the nomoplatform based on anti-angiogenic low
molecular weight heparin (LMWH) transformed M2 polarized
macrophage toM1 type and induced the vessel normalization (Xu
et al., 2020). Pleiotropic nanodelivery was vastly commendable to
co-modulate suppressive TME and tumor angiogenesis with
multiple components, and the evidence entailed poly-lactic-
glycolic acid (PLGA) and liposome nanoparticles (Hameed
et al., 2018). The abundant multi-potency nanosystems
indicated a synergistic strategy by introducing chemotherapy
and dynamic therapy (sonodynamic and photothermal
dynamics) for anti-angiogenesis (Li et al., 2020b; Zhu et al.,
2021b). We expect that a multi-strategy delivery system and
single molecules with multi-efficiency emerge to illuminate
unlisted angiogenesis blockers for reshaping suppressive TME,
while the role of the classic recipe of TCM remains underlying.

PERSPECTIVES AND CONCLUSION

Tumor angiogenesis is one of the crucial factors that shape cancer
malignancy. The design and development of anti-angiogenic
drugs, the identification of potential regulatory networks, and
further application of delivery systems are beneficial to provide
progressive insights into tumor angiogenesis. Some TCMs or
bioactive molecules are typical with the VEGF/VEGFR-
dependent approach against tumor angiogenesis, such as
Salvia miltiorrhiza, Curcuma longa, ginsenosides, and
Scutellaria baicalensis (Zhang et al., 2018a). Several bioactive
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ingredients or phytomolecules from the ethnopharmacology we
mentioned, mainly including artemisinin, tanshinone, flavonoids,
and saponin, are a miniature to depict and generalize these
molecules’ attributes against tumor angiogenesis and
associated regulatory mechanisms. Specifically, whatever
natural products or chemical derivatives modulating
angiogenesis share cardinal pathways that VEGF mediated,
such as VEGFR2 pathway in vascular endothelial cells, HIF-
1α/VEGF and its upstream transcriptional signaling in cancer
cells, we concern and await the emergence of more potential
targets for anti-angiogenesis therapy. Although other natural
molecules in TCM also performed anti-angiogenesis property,
comprising coumarins (Wu et al., 2020), terpenoids (Kamran
et al., 2022), polysaccharides (Li et al., 2021c), and polyphenols
(Li et al., 2021c; Marrero et al., 2022), they have no distinct
difference in mechanisms in comparison with molecules we
reported. Recently, angiopoietin (for instance, ang2) inhibition
has been implied to be a strategy for overcoming the resistance of
VEGF blockers in clinical, while the potential of natural
molecules as angiopoietin inhibitors needs further observation
(Parmar and Apte, 2021).

In spite of the fact that great understanding and progress have
been achieved in angiogenesis modulation via molecules, such as
TKIs in clinical and preclinical candidates, there is a massive dearth
of investigation in ethnopharmacology or empirical medicine for
comprehensively screening and proving potential angio-inhibitor
from the natural molecule library, including TCM. Moreover,
thyroid hormone induced angiogenesis through activation of
αvβ3 integrin signaling and upregulation of VEGF, which
suggests the potential value of endocrine therapy in anti-
angiogenesis (Cayrol et al., 2019). What is exciting is that some
active ingredients from TCM need to be relocated in angiogenic
effects for the shared signaling pathways (such asMAPK and PI3K/
Akt/mTOR), implying the viability of co-targeting angiogenesis
and other phenotypes, including proliferation, apoptosis, and stem
cell like-type. However, there are few studies to demonstrate the
role of candidate molecules toward antiangiogenic factors or
signalings, such as TNFα, TSP-1, TIMP, and TGF-β/BMP
pathway (Ayuso-Íñigo et al., 2021), but IL-8 seems to involve
the crosstalk between angiogenesis and TME like VEGF (Fousek
et al., 2021). In clinical, these candidate drugs weremore considered
dietary supplements or adjuvants (Table 3) for the anti-angiogenic
strategy, beyond a single drug being used. Thus, it is expected that
more botanical or ethnicmedicine-relatedmolecules will be pushed
into the clinic for anti-tumor and even based on the antagonism of
tumor angiogenesis. Given vascular structure distortion and
vascular dysfunction are conducive to tumor deterioration and

metastasis, tumor vascular normalization and tumor
microenvironment reprograming that the candidate molecules
triggering may contribute to the progression in clinical and
preclinical investigations.

Single-cell transcriptome profiling suggests that SQLE and
ALDH18A1 may be potential anti-angiogenic targets for
modulating epithelial cell metabolism (Rohlenova et al., 2020).
Interested in solid tumors based on single-cell transcriptomics,
HIF-1α was reported to mediate the functional inhibition of NK
cells and regarded as an immune checkpoint of NK cells, which
opened novel insights into regulating the crosstalk between
angiogenesis and TME via HIF-1α blocking (Ni et al., 2020).
Although single-cell RNA sequencing is emerging, it still needs to
be further observed for evaluating angiogenesis. However, there is
no report concerning tumor angiogenesis in spatial
transcriptomics (ST). Interestingly, it can be considered a
supplementary method to observe multiple angiogenesis
markers on tissue sections for annotation in RNA expression,
while the GeoMx Digital Spatial Profiler technology has
integrated the transcriptomics and proteome.

While targeting VEGF and /or HIF-1 remains a basic starting
point for verifying potential anti-angiogenic candidates and
creating a bridge to interact with TME modulation, some novel
strategies are imported into ethnopharmacology, composed of
vessel normalization for the crosstalk between tumor
angiogenesis and TME reconstruction. It should not be ignored
that the cardinal role of angiogenic closely related tumor cells and
endothelial cells in TME but reshaping tumor vessel via TAMs and
macrophages, even fibroblasts, takes more attracted attention.
Traditional Chinese medicine and bioactive molecules have
been depicted as regulators in the crosstalk between gut
microbiota and TME, yet the indirect involvement of TCM
toward tumor angiogenesis via modulating the aforementioned
crosstalk remains little understood (Wang et al., 2021). There are
still challenges in the anti-angiogenic research of bio-active
components of herbal or botanical extracts (Heinrich et al.,
2020). The limitation of this article is that it just selectively
elucidates the potential and representative regulators and
delivery systems of tumoral angiogenesis, and there is a lack of
view of the interaction of rather new but not fully explored non-
coding RNAs and metabolic reprogram toward angiogenesis.
Taken together, potential targets in vascular endothelial cells
(ECs) and in tumor cells may provide new perspectives on
angiogenesis, including CCN4, CCR5, ILT-3, EDD, and PIN.
What should be paid attention to was that PFKFB3 played the
mediator between glycometabolism and VEGF signaling in ECs.
Plant-derived and ethnopharmacology-related molecules

TABLE 3 | Clinical trials of molecules based on anti-angiogenic therapy against cancer in ethnopharmacology. Data from ClinicalTrials and WHOICTRP.

Nct code Cancer Drug Phase Start date End date

NCT02439385 Colorectal Cancer Avastin and curcumin Phase 2 Aug 2015 Mar 2022
NCT02146118 Carcinoma and non-small-cell lung Erlotinib and silybin-phytosome Phase 2 Apr 2014 May 2014
NCT00529113 Pancreatic cancer Bardoxolone methyl and gemcitabine Phase 1 Sep 2007 Feb 2022
NCT00274820 Chronicmyeloproliferative disorders and

leukemia
Ascorbic acid, arsenic trioxide, dexamethasone, and
thalidomide

Phase 2 Oct 2005 Jul 2020
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contributed to the anti-angiogenesis therapy via modulating
VEGFR2 and its downstream PI3K/AKT/mTOR and MAPKs,
with NF-κB, STAT3 and β-catenin involved, irrespective of
targets in endothelial cells or cancer cells. The molecule library
of natural products has not been fully explored in angio-
modulation. Two methods were applied for developing anti-
angiogenic drugs in medical chemistry: physiological molecular
simulant and derivatives of natural products, in which the latter
was featured by heterocyclic compounds, flavonoids, anthrone,
phenanthraquinones, and polyphenols. Tanshinone’s analog has
been extensively investigated as a potential anti-angiogenic agent.
Moreover, nano-delivery systems loading functional molecules
exerted an approach for anti-angiogenic therapy, even inducing
tumor vessel normalization and remodeling TME simultaneously.
Candidates with multi-potency, including digitoxin, bufalin,
melittin, and CDDO-Me, make co-modulating therapy between
tumor angiogenesis and immunosuppressive TME true in
ethnopharmacology. We look forward to more clinical trials
focusing on the anti-angiogenic and immunomodulatory
properties of molecules from ethnopharmacology.
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