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the aging primate substantia nigra

AL McCormack1, SK Mak1 and DA Di Monte*,1

Post-translational modifications of a-synuclein occur in the brain of patients affected by Parkinson’s disease and other
a-synucleinopathies, as indicated by the accumulation of Lewy inclusions containing phosphorylated (at serine 129) and
nitrated a-synuclein. Here we found that phospho-Ser 129 and nitrated a-synuclein are also formed within dopaminergic neurons
of the monkey substantia nigra as a result of normal aging. Dopaminergic cell bodies immunoreactive for phospho-Ser 129 and
nitrated a-synuclein were rarely seen in adult mature animals but became significantly more frequent in the substantia nigra
of old primates. Dual labeling with antibodies against phospho-Ser 129 and nitrated a-synuclein revealed only limited
colocalization and mostly stained distinct sub-populations of dopaminergic neurons. Age-related elevations of modified
protein paralleled an increase in the number of neurons immunoreactive for unmodified a-synuclein, supporting a relationship
between higher levels of normal protein and enhanced phosphorylation/nitration. Other mechanisms were also identified that
likely contribute to a-synuclein modifications. In particular, increased expression of Polo-like kinase 2 within neurons of
older animals could contribute to phospho-Ser 129 a-synuclein production. Data also indicate that a pro-oxidant environment
characterizes older neurons and favors a-synuclein nitration. Aging is an unequivocal risk factor for human a-synucleinopathies.
These findings are consistent with a mechanistic link between aging, a-synuclein abnormalities and enhanced vulnerability to
neurodegenerative processes.
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Pathological changes of a-synuclein are hallmarks of idio-
pathic Parkinson’s disease (PD) and other age-related
neurodegenerative disorders such as dementia with Lewy
bodies and multiple system atrophy.1,2 Intraneuronal accu-
mulation of insoluble a-synuclein, as reflected by the forma-
tion Lewy bodies and Lewy neurites, is typically observed in
postmortem brains of all PD patients, and the spreading of
these inclusions throughout the brainstem, meso- and neo-
cortex underlies a pathological staging of PD progression
that was first proposed by Braak et al.3 Post-translational
a-synuclein modifications are also a feature of PD: specific
kinases catalyze a-synuclein phosphorylation (particularly at
serine 129), and oxidative/nitrative reactions lead to the
accumulation of nitrated a-synuclein within Lewy inclu-
sions.4–6 Interestingly, protein deposition, phosphorylation
and nitration may be interrelated, as suggested by findings
showing that a-synuclein’s tendency to aggregate is affected
by its post-translational modifications.4,7,8 Furthermore,
because modified forms of a-synuclein possess toxic proper-
ties, accumulation of insoluble, phosphorylated and/or
nitrated protein could be a key event linking a-synuclein to
neuronal dysfunction and, ultimately, neuronal demise in the
pathogenesis of human a-synucleinopathies.9–11

Aging is an unequivocal PD risk factor, although the precise
mechanisms by which neuronal susceptibility to degener-
ative processes is augmented by age remain unclear.12

Interestingly, recent work showing increased levels of
a-synuclein protein in both human and non-human primate
substantia nigra supports a relationship between aging and
a-synuclein. Using a semiquantitative immunoblot analysis,
Li et al.13 found a 100% increase in nigral a-synuclein in
individuals 480 years of age as compared with subjects o60
years old; in contrast, a-synuclein levels were unaffected by
age in the frontal cortex and caudate nucleus. Subsequent
studies also reported an increase in the number, optical
density and fluorescence intensity of a-synuclein-immuno-
reactive neurons as a function of age in the substantia nigra
but not the ventral tegmental area of humans and rhesus
monkeys.14,15 Finally, experimental evidence indicates that
age-related a-synuclein changes are rather unique to
primates as levels of this protein actually decline in the mouse
substantia nigra.16 The primate substantia nigra is highly
vulnerable to both a-synuclein pathology and neurodegenera-
tion, raising the intriguing possibility that this enhanced
susceptibility is due, at least in part, to age-related a-synuclein
elevation.

Elevated a-synuclein could itself promote pathological
modifications of the protein, underscoring the relevance of
studies on the effects of aging on a-synuclein aggregation,
phosphorylation and nitration. Two previous investigations
reported lack of a-synuclein deposition in the substantia nigra
of young, middle-aged and old humans and monkeys.14,15
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No study to date, however, has assessed whether protein
phosphorylation and nitration are affected by age and vary in
parallel with changes in soluble and/or insoluble a-synuclein.
In the present report, the number of neuronal cell bodies
immunoreactive for normal, phospho-Ser 129 and nitrated
a-synuclein was compared in the substantia nigra of young
adult versus old squirrel monkeys. The focus on neuronal
cell bodies is justified by the consideration that they are
normally devoid of detectable immunoreactivity for nitrated or
phosphorylated a-synuclein.4,6 Data indicate an age-related
increase in both normal and modified protein in the absence
of overt a-synuclein aggregation. Results are also consis-
tent with the interpretation that besides the increase in
normal a-synuclein levels enhanced kinase expression and
pro-oxidant/nitrative conditions contribute to the production
of phospho-Ser 129 and nitrated a-synuclein, respectively,
in older nigral neurons.

Results

Age-related a-synuclein accumulation within dopami-
nergic cell bodies. Aging was accompanied by an increase
in nigral cell bodies immunoreactive for a-synuclein. Quanti-
fication of this effect revealed a significant difference
between mature (o10 years of age) and old (416 years
old) monkeys. The total number of a-synuclein-immunoreac-
tive cells was 60% greater in the latter than the former age
group, and a-synuclein-positive cell bodies constituted 17%
and 27% of the total count of nigral dopaminergic neurons in
mature and old squirrel monkeys, respectively (Table 1).
Interestingly, a-synuclein immunoreactivity was consistently
associated with neuromelanin-containing neurons and, in
fact, the number of unpigmented cell bodies expressing
detectable levels of a-synuclein was negligible (o1% of the
total count of dopaminergic cells) in either mature or old
animals (Table 1).

Age-related a-synuclein phosphorylation. Phosphoryla-
tion at Ser129 has been reported to be the predominant
modification of a-synuclein in Lewy bodies.17 An antibody
that specifically recognizes phospho-Ser 129 a-synuclein4

was used to determine whether neuronal cell bodies in
the primate substantia nigra contain this modified form of
the protein and whether a-synuclein phosphorylation is
enhanced by aging. Phospho-Ser 129 a-synuclein-immuno-
reactive neurons were rarely detected in midbrain sections
from mature monkeys but became a more frequent feature

of nigral specimens from old animals (Figures 1a and b).
In the former, only B1% of dopaminergic neurons displayed
detectable immunoreactivity for phospho-Ser 129 a-synuclein.
In old animals, counts of these cells revealed an eightfold
increase (Figure 1c), and nigral neurons immunoreactive for
phospho-Ser 129 a-synuclein represented 7.3% of the total
number of dopaminergic cells. To ensure specificity of these
effects, tissue sections were stained with a second anti-
phospho-Ser 129 a-synuclein antibody.17 A similar pattern of
immunoreactivity and age-related changes was observed
(data not shown).

In a second set of experiments, midbrain sections were
double stained with antibodies against phospho-Ser 129
a-synuclein and unmodified a-synuclein. Fluorescence micro-
scopy on sections stained for phospho-Ser 129 a-synuclein
confirmed the formation of phosphorylated protein within
dopaminergic neurons. Earlier investigations in vitro (e.g.,
HeLa cells) have reported a nuclear enrichment of phospho-
Ser 129 a-synuclein, and data in mice (e.g., transgenic
animals overexpressing a-synuclein) also showed nuclear
anti-phospho-Ser 129 a-synuclein immunostaining, particu-
larly in cortical brain regions.5,18 Our present observations
were consistent with the presence of both cytosolic and
nuclear phospho-Ser 129 a-synuclein in the monkey sub-
stantia nigra (Figure 1d). Colocalization of total and phospho-
Ser 129 a-synuclein immunoreactivities was also assessed.
In all instances, cell bodies stained for phospho-Ser 129
a-synuclein were also immunoreactive for unmodified
a-synuclein, consistent with the interpretation that immuno-
reactivity with the former antibody indeed detected phospho-
rylated a-synuclein. Approximately 5% of neuronal cell bodies
immunoreactive for total (i.e., unmodified) a-synuclein also
contained phosphorylated protein in mature monkeys; this
percentage dramatically increased in old animals in which
immunoreactivity for phospho-Ser 129 a-synuclein character-
ized 25% of nigral neurons expressing normal a-synuclein
(Figures 1d–g).

Members of the Polo-like kinase (PLK) protein family and, in
particular, PLK2 have an important role in a-synuclein
phosphorylation at Ser129.5,19,20 Using immunohistochemis-
try to identify and count PLK2-expressing neurons, we found
that the number of cells displaying robust staining was
43-fold greater in the substantia nigra of old as compared
with mature monkeys (Figures 2a–c). As these neurons also
contained neuromelanin, data are consistent with a marked
age-related enhancement of PLK2 levels within dopaminergic
cell bodies. Dual staining and fluorescence microscopy

Table 1 a-Synuclein-i.r. nigral cell counts in mature versus old monkeys

DAergic cells a-Synuclein-i.r. cells

Age (years) Total NM containing No NM Total NM containing No NM

o10 (n¼4) 213±7.0 164±10 (77%) 49±12 (23%) 36.5±1.2 (17.1%) 35.7±1.1 (16.7%) 0.8±0.3 (0.4%)

416 (n¼3) 218±3.0 206±1.0 (95%)* 12±2.0 (5%)* 58±4.6 (26.6%)* 57.3±4.6 (26.3%)* 0.7±0.3 (0.3%)

Abbreviations: DAergic, dopaminergic; i.r., immunoreactive; NM, neuromelanin
For each animal, counts were made in two midbrain sections at the level of the third nerve, and values from the two sections were averaged. The total number of
DAergic neurons was the sum of NM-containing cells plus tyrosine hydroxylase-i.r. neurons devoid of NM. a-Synuclein immunoreactivity was detected within
pigmented neuronal cell bodies, i.e., NM-containing cells and, rarely, within neurons devoid of NM. Results are the means±S.E.M.; *Po0.01 versus the
corresponding value in younger animals. Values in parenthesis show the percent of the total number of dopaminergic cells
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allowed us to evaluate whether expression of PLK2 was
associated with a-synuclein phosphorylation within the
same neurons. Data revealed a substantial colocalization
of phospho-Ser129 a-synuclein and PLK2, with 480% of
phosphorylated a-synuclein-immunoreactive neurons also
staining for PLK2 in the substantia nigra of either mature or
old animals (Figures 2d–g).

a-Synuclein nitration in aging nigral neurons. Antibodies
that react with nitrated tyrosine residues of a-synuclein label

Lewy inclusions in PD and other human a-synucleinopathies.6

Midbrain sections from mature and old monkeys were
therefore stained with an anti-nitrated a-synuclein antibody
to detect potential age-related modifications. Similar to the
results with phosphorylated protein, immunoreactivity for
nitrated a-synuclein was rarely detected within nigral neurons
of mature animals; indeed, only 0.6% of dopaminergic
neurons displayed detectable immunoreactivity for nitrated
a-synuclein in this age group. In contrast, the anti-nitrated
a-synuclein antibody robustly stained neuromelanin-containing

Figure 1 The number of dopaminergic cell bodies immunoreactive for phosphorylated a-synuclein is increased in the substantia nigra of old monkeys. Four mature and
three old squirrel monkeys were used for these experiments. Representative midbrain sections from a mature (a) and an old (b) animal were immunostained for phospho-Ser
129 a-synuclein (brown) and counterstained with cresyl violet (purple). (c) The number of pigmented nigral neurons immunoreactive for phospho-Ser 129 a-synuclein was
counted in mature (o10 years of age) and old (416 years old) monkeys. Data are the means±S.E.M.; *Po0.001 versus the mature age group. A representative midbrain
section from an aged monkey was dual labeled for phospho-Ser 129 a-synuclein (d) and (unmodified) a-synuclein (e). The merged image (f) shows coimmunoreactivity within
a nigral neuron. Arrows indicate nuclear immunoreactivity. (g) In double-labeled sections, the number of neurons immunoreactive for phospho-Ser 129 a-synuclein was
counted and expressed as percent of the total number of neurons stained for (unmodified) a-synuclein. Results are the means±S.E.M.; *Po0.001 versus the mature age
group. Scale bar for panels a and b (in panel b)¼ 10mm. Scale bar for panels d–f (in panel f)¼ 5 mm

Figure 2 PLK2 immunoreactivity is enhanced in the substantia nigra of old (n¼ 3) as compared with mature (n¼ 4) squirrel monkeys. Representative midbrain sections
from a mature (a) and an old (b) animal were immunostained for PLK2 (brown) and counterstained with cresyl violet (purple). (c) Pigmented PLK2-immunoreactive neurons
were counted in the substantia nigra of mature (o10 years of age) and old (416 years old) monkeys. Data are the means±S.E.M.; *Po0.001 versus the mature age group.
A representative midbrain section from an old animal was dual labeled for phospho-Ser 129 a-synuclein (d) and PLK2 (e). The merged image (f) shows colabeling within a
nigral neuron. (g) In double-labeled sections, the number of neurons immunoreactive for PLK2 was counted and expressed as percent of the total number of neurons stained
for phospho-Ser 129 a-synuclein. Results are the means±S.E.M. Scale bar for panels a and b (in panel b)¼ 10mm. Scale bar for panels d–f (in panel f)¼ 5 mm
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cell bodies scattered throughout the substantia nigra of old
monkeys (Figures 3a and b). Cell counts using bright-field
microscopy confirmed that the number of neurons containing
nitrated a-synuclein was nine times higher in the older age
group (Figure 3c). In these animals, the count of neurons
positive for nitrated a-synuclein was 5.2% of the total number of
nigral dopaminergic neurons (data not shown).

To determine what percentage of cell bodies immunoreac-
tive for unmodified a-synuclein contained detectable levels of
nitrated protein, neuronal counts were performed using
fluorescence microscopy on sections double labeled for total
and nitrated a-synuclein: data indicate that the count of cell
bodies immunoreactive for nitrated a-synuclein, expressed
as a percentage of the total number of a-synuclein-positive
neurons, increased from 6.3% in mature monkeys to 19.4% in
old animals (Figures 3d–g).

The formation of nitrated a-synuclein is the result of
nitrative reactions that could be promoted within a pro-oxidant
environment. The presence of such an environment within
aging dopaminergic neurons was supported by experiments
in which midbrain monkey tissues were immunostained with
antibodies against 4-hydroxy-2-nonenal, a product of lipid
peroxidation, or 3-nitrotyrosine, a marker of protein oxidation/
nitration. In both instances, the number of immunoreactive
nigral neurons was significantly increased with age. The
percentage of neuromelanin-containing cells that were also
immunoreactive for 4-hydroxy-2-nonenal was 25% and
70% in mature and old animals, respectively (Figures 4a–c);
staining with anti-3-nitrotyrosine characterized 20 and 60%
of nigral dopaminergic neurons in the two age groups
(Figures 4d–f).

Colocalization of phosphorylated and nitrated a-synuclein.
The formation of phosphorylated and nitrated a-synuclein

and their parallel accumulation in the aging substantia nigra
raise the question of whether these modified forms of the
protein colocalize within the same dopaminergic neurons.
To address this question, midbrain sections from mature
and old monkeys were double immunostained with specific
antibodies against phospho-Ser 129 and nitrated a-synuclein.
Neurons characterized by single or double staining were
observed throughout the nigral tissues of monkeys from
the two age groups (Figures 5a–i). These single- or double-
labeled cells were counted separately; then, the number of
neurons immunoreactive for (i) phospho-Ser 129 a-synuclein
only, (ii) nitrated a-synuclein only, or (iii) both phospho-Ser
129 and nitrated a-synuclein were expressed as percent of
the total count (singleþ double stained) of immunoreactive
cells. Results revealed that 30–40% of cells were single
labeled for phospho-Ser 129 a-synuclein, whereas another
30–40% of neurons were stained with the anti-nitrated
a-synuclein antibody (Figure 5j). Only the remaining 20–30%
of cell bodies displayed immunoreactivity for both forms of
modified a-synuclein, indicating that protein phosphorylation
and nitration did not necessarily occur within the same
population of nigral neurons. This percentage of single- and
double-stained cells was not significantly different in tissues
from either mature or old monkeys (Figure 5j). Thus,
although the number of neurons immunoreactive for phos-
pho-Ser 129 or nitrated a-synuclein augments with age
(Figures 1 and 3), the proportion of cells in which these
modified forms of the protein colocalize remains relatively
constant (Figure 5j).

Lack of a-synuclein aggregation. In tissues immuno-
stained for a-synuclein, immunoreactivity labeled the neuropil
as well as a few dopaminergic (neuromelanin-containing)
neuronal cell bodies (Figures 6a and b). To determine if

Figure 3 The number of dopaminergic cell bodies immunoreactive for nitrated a-synuclein is increased in the substantia nigra of old (n¼ 3) as compared with mature
(n¼ 4) squirrel monkeys. Representative midbrain sections from a mature (a) and an old (b) animal were immunostained with an anti-nitrated a-synuclein antibody (brown)
and counterstained with cresyl violet (purple). (c) The number of pigmented nigral neurons immunoreactive for nitrated a-synuclein was counted in mature (o10 years of age)
and old (416 years old) monkeys. Data are the means±S.E.M.; **Po0.005 versus the mature age group. A representative midbrain section from an aged monkey was dual
labeled with anti-a-synuclein (d) and anti-nitrated a-synuclein (e) antibodies. The merged image (f) shows coimmunoreactivity within a nigral neuron. (g) In double-labeled
sections, the number of neurons immunoreactive for nitrated a-synuclein was counted and expressed as percent of the total number of neurons stained for (unmodified)
a-synuclein. Results are the means±S.E.M.; #Po0.01 versus the mature age group. Scale bar for panels a and b (in panel b)¼ 10mm. Scale bar for panels d–f
(in panel f)¼ 5 mm
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age-related changes in the number of cell bodies stained for
normal, phosphorylated and nitrated a-synuclein was accom-
panied by formation of insoluble protein, midbrain sections
were incubated with proteinase K before staining with the
anti-a-synuclein antibody. Immunoreactivity was completely
eliminated by proteinase K pre-treatment in samples from
either mature or old monkeys, indicating a lack of age-related
accumulation of insoluble/aggregated (proteinase K resistant)
a-synuclein (Figures 6c and d).

Discussion

The purpose of this study was to investigate age-related
modifications of a-synuclein that specifically occur within
dopaminergic cell bodies in the primate substantia nigra.
Biochemical assays (e.g., western blot analysis) performed
on tissue homogenates would have not been suitable to
detect changes within distinct neuronal populations. There-
fore, the effects of aging on nigral dopaminergic neurons were
assessed after immunostaining monkey midbrain sections
with specific antibodies against unmodified, phosphorylated
or nitrated a-synuclein. Phosphorylation and nitration gen-
erate pathological forms of a-synuclein observed in the brain
of PD patients.4,6 A significant outcome of this study is the
demonstration that phosphorylated and nitrated a-synuclein
also accumulate within neuronal cell bodies in the primate
substantia nigra as a consequence of normal aging.

In agreement with earlier investigations,14,15 we found
a significant increase in the number of dopaminergic cell
bodies immunoreactive for unmodified a-synuclein in the
substantia nigra of old as compared with adult mature
monkeys. Previous work has also shown that older neurons
are characterized by enhanced immunoreactivity for unmodi-
fied a-synuclein, consistent with an increase in intraneuronal

protein concentration.14 Post-translational modifications of
a-synuclein as a function of aging, which were revealed in
the present study, were primarily reflected by changes in
the number of immunoreactive neurons. Indeed, dopaminer-
gic cell bodies positive for phospho-Ser 129 or nitrated
a-synuclein were rarely seen in adult monkeys; in contrast,
a sizable sub-population of cells immunoreactive for phos-
phorylated and/or nitrated a-synuclein became evident
in old animals. In the latter, B30% of all dopaminergic
(neuromelanin-containing) neurons stained positive for
unmodified a-synuclein; 25% and 20% of these a-synuclein-
positive cells were co-immunoreactive for phospho-Ser
129 and nitrated a-synuclein, respectively.

Results also provide important clues on the mechanisms
leading to a-synuclein phosphorylation and nitration. As
already mentioned, both the current and earlier studies have
shown elevated a-synuclein in the substantia nigra of humans
and non-human primates as a function of age.13–15 It is quite
conceivable therefore that changes in a-synuclein expression
and post-translational modifications of the protein are related
events, with higher a-synuclein resulting in more pronounced
phosphorylation and/or nitration. The reasons for marked
a-synuclein elevation within older dopaminergic neurons
remain unclear. An intriguing possibility, however, concerns
the role of age-related changes in protein degradation
pathways and, in particular, the lysosomal clearance system.
Strong experimental evidence indicates that soluble mono-
meric a-synuclein is a substrate for chaperone-mediated
autophagy (CMA) and that CMA activity declines as a result
of aging as well as in some age-related diseases, including
PD.21,22 It is also noteworthy that phosphorylated and nitrated
a-synuclein are less susceptible to CMA degradation than
the unmodified protein,23 a feature that could contribute to
their intraneuronal accumulation.

Figure 4 Immunolabeling for markers of oxidative stress is enhanced within older nigral neurons. Four mature and three old squirrel monkeys were used for these
experiments. Representative midbrain sections from a mature (a and d) and an old (b and e) monkey were immunostained for either 4-hydroxy-2-nonenal (a and b) or
3-nitrotyrosine (d and e; brown) and counterstained with cresyl violet (purple). Pigmented cell bodies with robust immunoreactivity for these markers of oxidative stress (b and e)
are more typically seen in the substantia nigra of old monkeys. (c and f) The number of neurons immunoreactive for either 4-hydroxy-2-nonenal (c) or 3-nitrotyrosine (f) was
counted in sections from mature (o10 years of age) and old (416 years old) monkeys, and expressed as percent of the total number of neuromelanin-containing nigral
neurons. Results are the means±S.E.M.; **Po0.005 versus the corresponding mature age group. Scale bar for panels a–e (in panel e)¼ 10mm
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Our present findings indicate that other mechanisms
besides increased levels of unmodified a-synuclein contribute
to its phosphorylation and nitration. A number of kinases
(e.g., casein kinases and G-protein-coupled receptor kinases)
have been reported to partially phosphorylate a-synuclein
in vitro. More recently, however, a primary role of PLK2 in
catalyzing a-synuclein phosphorylation at serine 129 has
been underscored by evidence of its specific and quantitative
(495%) effect on a-synuclein conversion.5,20 Furthermore,
PLK2 levels have been reported to be enhanced in postmortem
brains of patients affected by Alzheimer’s disease and Lewy

body disease.5 In view of these considerations, we assessed a
possible relationship between increased a-synuclein phospho-
rylation and age-related PLK2 changes. Indeed, a significantly
greater number of PLK2-immunoreactive dopaminergic cells
characterized the substantia nigra of old monkeys. Double
staining of midbrain tissue sections with antibodies against
PLK2 and phospho-Ser 129 a-synuclein revealed substantial
colocalization in both adult and old monkeys. The number
of colabeled neurons increased in older monkeys, further
supporting a relationship between enhanced PLK2 expres-
sion and age-dependent a-synuclein phosphorylation.

Figure 5 Immunoreactivities for phosphorylated and nitrated a-synuclein colocalize only in part within nigral neuronal cell bodies. Four mature and three old squirrel
monkeys were used for these experiments. A representative midbrain section from an old monkey was dual labeled for phospho-Ser 129 (a, d and g) and nitrated (b, e and h)
a-synuclein. Merged images show different neurons in which phosphorylated and nitrated a-synuclein do (i) or do not (c and f) colocalize. (j) In dual labeled sections, the
number of neurons immunoreactive for (i) phosphorylated a-synuclein only (P-aS), (ii) nitrated a-synuclein only (N-aS) or (iii) both phosphorylated and nitrated a-synuclein was
counted in the substantia nigra of mature (o10 years of age) and old (416 years old) monkeys. Results (means±S.E.M.) are expressed as percent of the total count of
single- and double-stained cells, i.e., P-aS, N-aS and P-aSþN-aS. Scale bar for panels a–i (in panel i)¼ 10mm
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A pro-oxidant environment characterizes dopaminergic
neurons and is reflected by their accumulation of neurome-
lanin, a product of dopamine oxidative metabolism.24

Evidence from earlier investigations suggests that, in the
presence of neuromelanin and under oxidative conditions,
a-synuclein may precipitate around pigment-associated
lipid droplets.25,26 In this study, the effect of aging in
promoting oxidative/nitrative reactions and a-synuclein/
neuromelanin interactions was supported by findings
showing (i) an increased number of neuromelanin-
loaded cells with age, (ii) the occurrence of a-synuclein
elevation almost exclusively within pigmented neurons and
(iii) enhanced counts of neurons immunoreactive for
4-hydroxy-2-nonenal and 3-nitrotyrosine, two markers of
oxidative/nitrative reactions. Taken together, these results
are also compatible with the interpretation that a-synuclein
accumulation in a setting favoring oxidative modifications
leads to the formation of nitrated protein within aging
dopaminergic cells.

Parallel increases in phosphorylated and nitrated a-synu-
clein raised the possibility that these modified forms of the
protein may be generated within the same sub-population of
nigral dopaminergic neurons. However, colocalization experi-
ments did not support this hypothesis and, in the majority of
instances, antibodies against phospho-Ser 129 and nitrated
a-synuclein-labeled distinct neurons. This finding bears implica-
tions for the mechanisms of a-synuclein phosphorylation and

nitration. If protein modifications were a mere consequence of
enhanced a-synuclein, a greater degree of phospho-Ser 129
and nitrated a-synuclein colocalization might have been
expected. Instead, limited coimmunostaining suggests that
formation of phosphorylated and nitrated protein, although
promoted by a common setting of age-related a-synuclein
elevation, involves distinct mechanisms. As discussed
above, older neurons with higher kinase expression would
produce phospho-Ser 129 a-synuclein, whereas enhanced
pro-oxidant conditions would favor the formation of nitrated
protein.

Post-translational modifications affect the biological activity
and toxic potential of a-synuclein. For example, phosphoryla-
tion has been suggested to modulate a-synuclein’s interaction
with phospholipids and other proteins (e.g., tau), and nitrated
a-synuclein is capable of inducing adaptive immune
responses and may exacerbate microglial activation.8,27–29

Thus, neuronal a-synuclein accumulation and formation
of phospho-Ser 129 and nitrated a-synuclein are age-
related features of likely pathophysiological relevance.
They could contribute to the progressive decline that char-
acterizes the nigrostriatal system of older primates and have
an important role in rendering aging dopaminergic cells
increasingly vulnerable to neurodegenerative processes.14,30

Similarities between a-synuclein modifications in the sub-
stantia nigra of old primates and in the brain of PD patients,
as described in this study, strongly support these two
possibilities.

An important property of a-synuclein is its tendency to
aggregate, which could underlie the pathogenesis of Lewy
inclusions in PD and may cause neuronal injury via the
formation of toxic oligomeric and fibrillar species.10 Several
lines of experimental evidence indicate that phosphorylation
and nitration are likely to affect a-synuclein aggregation,
although the precise relationship linking protein modifications
to aggregate formation remains unclear. Initial studies
reported that phospho-Ser 129 a-synuclein promoted deposi-
tion of insoluble protein, whereas subsequent investigations
showed opposite results.4,8 Similar inconsistencies have
been found with nitrated a-synuclein, perhaps suggesting that
the relationship between protein modifications and a-synu-
clein fibrillation/oligomerization may vary under different
experimental conditions.7,31 Our present findings do not
support a direct role of phospho-Ser 129 and/or nitrated
a-synuclein in inducing aggregation. In fact, despite the
substantial increase in unmodified, phosphorylated and
nitrated protein, no overt evidence of insoluble a-synuclein
was found in the substantia nigra of aged monkeys. It is
possible that small (e.g., oligomeric) aggregates may be
formed but remained undetected under our experimental
conditions. An alternative interpretation, however, is that other
factors in addition to age-related changes are necessary
to trigger a-synuclein aggregation. Potential culprits include
(i) a-synuclein mutations,32 (ii) destabilization of aggregation-
resistant forms of the protein,33 (iii) impairment of neuronal
mitochondrial function34 and (iv) toxic dopaminergic cell
injury.35 All these conditions are capable of promoting
aggregation and, on the background of normal aging, could
enhance a-synuclein pathogenicity and ultimately have a role
in neurodegenerative processes.

Figure 6 Lack of insoluble a-synuclein within nigral dopaminergic cell bodies of
aging monkeys. Representative midbrain sections from a mature (a and c) and an
old (b and d) animal were immunostained for a-synuclein (a and b) or incubated with
proteinase K before a-synuclein immunolabeling (c and d). Sections were
counterstained with cresyl violet (purple). Dopaminergic neurons are characterized
by their content of neuromelanin (black granules). Pigmented cell bodies with robust
a-synuclein immunoreactivity (brown) (b) are more typically seen in the substantia
nigra of old monkeys. Proteinase K pre-treatment removes a-synuclein
immunoreactivity, leaving only neuromelanin granules. Scale bar for panels a–d
(in panel d)¼ 10mm
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Materials and Methods
Animals and tissue preparation. A total of seven squirrel monkeys
(Saimiri sciureus) of both sexes were obtained from Osage Research Primates
(Osage Beach, MO, USA). The animals were individually housed in a room with a
13/11-h light/dark cycle, with free access to water and a daily diet of monkey chow
and fresh fruit. Animals were divided into two different age groups: o10 years of
age (6–9 years, n¼ 4) and 416 years old (17–19 years, n¼ 3). These two age
groups, representing mature adult and old animals, were chosen based on several
observations in squirrel monkeys, including their average life span (18–22 years)
and the age at which they reach sexual maturity and attain mature brain weight
(2.5–3.5 years).30 All experimental protocols were in accordance with the
standards established by the National Institutes of Health and the Office of the
Prevention of Research Risks and were approved by the Institutional Animal Care
and Use Committee.

The animals were euthanized using procedures consistent with the recommen-
dations of the Panel of Euthanasia of the American Veterinary Medical Association.
Animals were injected first with ketamine hydrochloride (15–20 mg/kg, i.m.) to
provide restraint, and then with 0.22 ml/kg euthanasia solution (390 mg sodium
pentobarbital and 50 mg phenytoin sodium/ml, i.v.). The brains were rapidly
removed and dissected on ice. A tissue block encompassing the entire substantia
nigra was fixed in 4% paraformaldehyde in 0.01 M phosphate-buffered saline (PBS,
pH 7.4), cryoprotected in graded sucrose solutions and frozen in cold iso-pentane.
Each midbrain block was cryostat-cut into 40-mm-thick sections through the full
extent of the substantia nigra.

Immunohistochemistry. For bright-field microscopy, tissue sections were
washed in PBS, and endogenous peroxidase was quenched by incubation in
hydrogen peroxide solution. Sections were then blocked in 10% normal serum and
incubated overnight at 4 1C in primary antibody. The list of antibodies and the
dilution used for each antibody is shown in Table 2. The anti-nitrated a-synuclein
antibody used in this study has been previously characterized.6 Briefly, the binding
of this antibody is dependent on nitration of tyrosine residues at positions 125 and
136, with the latter being a stronger recognition epitope. Two different antibodies
against phospho-Ser 129 a-synuclein were used to demonstrate specificity of the
age-dependent effects.

Immunostaining was detected using the avidin–biotin immunoperoxidase method
with 3,30-diaminobenzadine as the chromagen (Vector Laboratories, Burlingame,
CA, USA). Sections were lightly stained in cresyl violet (FD Neurotechnologies,
Ellicott City, MD, USA), dehydrated and mounted in Depex mounting medium (EM
Sciences, Hatfield, PA, USA). Sections from mature and old monkeys were always
processed in parallel following identical procedures (e.g., 3,30-diaminobenzadine
incubation time). For immunolabeling with anti-phospho-Ser 129 a-synuclein,
sections were incubated in 30% formic acid for 30 s and rinsed in PBS before
immunostaining. Proteinase K treatment was performed as previously reported.35

Briefly, mounted sections were incubated at 55 1C in 50 mg/ml proteinase K
(Invitrogen, Carlsbad, CA, USA) for 60 min, washed in PBS and then stained for
a-synuclein as described above.

Separate sets of tissues were dual labeled for fluorescence microscopy with
different combinations of primary antibodies (Table 2). Sections were incubated in
the appropriate fluorescent secondary antibody conjugated to either FITC or Cy-3
(1 : 500, Jackson ImmunoResearch Laboratories, West Grove, PA, USA) and then
mounted onto glass slides. Neuromelanin autofluoresence was blocked using
the autofluorescence eliminator reagent (Millipore, Billerica, MA, USA) according to
Kanaan et al.36 Tissues were observed using an Olympus BH2 light microscope

(Olympus, Center Valley, PA, USA) equipped for epifluoresence. For dual labeling
with anti-phospho-Ser 129 a-synuclein and anti-nitrated a-synuclein, two primary
antibodies from the same host species (mouse) were used. Sections were therefore
blocked with unconjugated donkey anti-mouse Fab IgG (Hþ L) fragment (1 : 100,
Jackson ImmunoResearch Laboratories) after immunostaining for phospho-Ser 129
a-synuclein and before immunolabeling with anti-nitrated a-synuclein36; a distinct
pattern of staining was observed for each primary antibody, confirming the
effectiveness of the blocking procedure.

For both bright-field and fluorescence microscopy, control sections incubated in
the appropriate IgG in lieu of primary antibody were devoid of staining. Control
experiments were also carried out to ensure the specificity of the antibody used to
detect phospho-Ser 129 a-synuclein. A set of midbrain sections was treated
with alkaline phosphatase (Sigma, St. Louis, MO, USA) overnight at 37 1C and
washed with PBS before incubation with hydrogen peroxide and primary antibodies
against either phospho-Ser 129 a-synuclein or tyrosine hydroxylase.37 Sections
immunostained for tyrosine hydroxylase retained their immunoreactivity, whereas
immunolabeling for phospho-Ser 129 a-synuclein was no longer detectable.

Quantification. For each measurement, two midbrain sections at the level of
the third nerve were chosen and immunostained with the appropriate antibody
or combination of antibodies. The substantia nigra was delineated at low
magnification (� 1) using StereoInvestigator software (MBF Bioscience, Williston,
VT, USA); the number of immunoreactive neurons was counted at higher
magnification (� 100) using the software’s meander scan function. For each
animal, values from the two sections were averaged. Data are presented as
mean±S.E.M. Differences among means were analyzed using one-way ANOVA.
Newman–Keuls post hoc analysis was used when differences were observed in
ANOVA testing (Po0.05).
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