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Introduction
Esophageal cancer (EC) is an aggressive upper gastrointestinal malignancy and is 
ranked ten common malignancies worldwide [1]. EC is classified into two major histo-
types: esophageal squamous cell carcinoma (ESCC) and esophageal adenocarcinoma 
(EAC). The incidence of EAC has increased significantly in recent years. Although 
artificial intervention and treatment of patients with high-risk factors and long-term 
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Background:  Esophageal adenocarcinoma (EAC) is an aggressive malignancy with a 
poor prognosis. The immune-related genes (IRGs) are crucial to immunocytes tumor 
infiltration. This study aimed to construct a IRG-related prediction signature in EAC.

Methods:  The related data of EAC patients and IRGs were obtained from the TCGA 
and ImmPort database, respectively. The cox regression analysis constructed the 
prediction signature and explored the transcription factors regulatory network through 
the Cistrome database. TIMER database and CIBERSORT analytical tool were utilized to 
explore the immunocytes infiltration analysis.

Results:  The prediction signature with 12 IRGs (ADRM1, CXCL1, SEMG1, CCL26, CCL24, 
AREG, IL23A, UCN2, FGFR4, IL17RB, TNFRSF11A, and TNFRSF21) was constructed. Overall 
survival (OS) curves indicate that the survival rate of the high-risk group is significantly 
shorter than the low-risk group (P = 7.26e−07), and the AUC of 1-, 3- and 5- year sur-
vival prediction rates is 0.871, 0.924, and 0.961, respectively. Compared with traditional 
features, the ROC curve of the risk score in the EAC patients (0.967) is significant than 
T (0.57), N (0.738), M (0.568), and Stage (0.768). Moreover, multivariate Cox analysis 
and Nomogram of risk score are indicated that the 1-year and 3-year survival rates 
of patients are accurate by the combined analysis of the risk score, Sex, M stage, and 
Stage (The AUC of 1- and 3-years are 0.911, and 0.853).

Conclusion:  The 12 prognosis-related IRGs might be promising therapeutic targets for 
EAC.
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exposure greatly influence the progress of EAC, whereas, it still has a poor prognosis 
rate with a 5-year survival rate of less than 20% [2]. Therefore, it is necessary to iden-
tify more diagnostic and prognostic biomarkers and effective therapeutic targets for 
EAC patients.

As we all know, the tumor microenvironment plays a vital role in cancer initiation 
and progression and in response to cancer treatment [3, 4]. As an indispensable part 
of the microenvironment, tumor-infiltrating immune cells are closely associated with 
the growth, invasion, and metastasis of carcinomas [5, 6]. In recent years, immunother-
apy has been included in the multiple treatment guidelines of cancers and has become 
part of the standard treatment plan for numerous solid tumors [7–9]. For example, 
the immune checkpoint therapy targeting programmed death protein (PD-1) and pro-
grammed death-ligand 1 (PD-L1) have achieved encouraging results in the treatment 
of melanoma [10], advanced non-small cell lung cancer (NSCLC) [11, 12], and gastric 
cancer [13]. Nevertheless, not every patient has a good response to the currently recom-
mended immunotherapy. The potential prognostic value of immune responses involving 
different cells may vary depending on the immune-related genes (IRGs) [14].

Recently, prognostic signatures based on IRGs have been constructed in a variety of 
tumors to develop individualized immune characteristics and improve the prognostic 
evaluation in immunotherapy, such as non-squamous non-small cell lung cancer [15], 
glioma [16], and hepatocellular carcinoma [17]. Although the previous studies have 
explored the predictive value of IRGs in the EC or EAC, the accuracy of each signa-
ture is different, and the IRGs included are difference [18–20]. Therefore, are there 
other differentially expressed immune-related genes (DEIRGs) that affect the prog-
nosis of EAC patients? Compared with traditional features, how accurate is the prog-
nosis prediction signature based on these DEIRGs? Is the signature based on EAC 
patients also applicable to ESCC patients? What transcription factors have potential 
regulatory relationships with DEIRGs? What are the important biological functions of 
these DEIRGs, and what signal transduction pathways do they participate in? What 
are the relationships between the expression level of DEIRGs in the prognostic sig-
nature, the abundance of tumor-infiltrating immune cells, and the frequency of copy 
number variation? These are the questions that our research needs to explore.

Material and methods
Data sources

The RNA-seq FPKM data of EAC and the corresponding clinical information were 
downloaded from the TCGA database, which included 80 EAC tissues and 10 nor-
mal esophagus tissues (Table 1). A total of 2,498 immune-related genes (IRGs) related 
to human cancers were obtained from the ImmPort database (https://​www.​immpo​rt.​
org/​home) [21]. The transcription factor (TF) was acquired from the Cistrome data-
base (https://​www.​cistr​ome.​org/) [22]. To further assess the prognostic power of 
this signature, the transcriptome data of GSE72873 were downloaded from the Gene 
Expression Omnibus (GEO, https://​www.​ncbi.​nlm.​nih.​gov/​geo/), which included 48 
EAC tissues. The related clinical data were obtained from the Supplemental data sub-
mitted by Krause et al. [23].

https://www.immport.org/home
https://www.immport.org/home
https://www.cistrome.org/
https://www.ncbi.nlm.nih.gov/geo/
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Screening of differentially expressed IRGs, and differentially expressed TFs

According to the gene annotations from the GENCODE project (https://​www.​genco​
degen​es.​org/) [24], the RNA-seq data of EAC was classified into lncRNA protein-encod-
ing gene profile data. Differentially expressed genes (DEGs) between the tumor and nor-
mal tissue samples were identified from the protein-coding gene profile data by using the 
"limma" [25] package. The P < 0.05 and |log2 FC|> 1 were considered meaningful. The 
differentially expressed immune-related genes (DEIRGs) were further extracted from the 
list of DEGs.

Functional enrichment analysis

Further exploring these DEIRGs may be involved in the Gene Ontology (GO) and the 
Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. The "cluster profile" 
[26] and" org.Hs.eg.db" packages were utilized to perform GO and KEGG analysis. The 
P < 0.01 was considered statistically significant.

Prognostic model construction and evaluation

To further confirm the potential prognostic value of DEIRGs, univariate Cox regression 
analysis was used to assess the association between DEIRGs and survival data (P < 0.05). 

Table 1  The clinical characteristics of patients with EAC in TCGA​

Clinical characteristics Patients 
(n = 80)

Percentage (%) Clinical characteristics Patients
(n = 80)

Percentage (%)

Age New events
 ≤ 65 36 45 NO 45 56.25

 >65 44 55 YES 35 43.75

Gender Alcohol history
Female 11 13.75 NO 27 33.75

Male 69 86.25 YES 53 66.25

Vital Statue Barretts_esophagus
Alive 41 51.25 NO 48 60

Dead 39 48.75 YES 26 32.5

Stage Unknow 6 7.5

Stage I 10 12.5 neoplasm_histologic
_grade

Stage II 26 32.5 G1 1 1.25

Stage III 34 42.5 G2 28 35

Stage IV 10 12.5 G3 25 31.25

T GX 26 32.5

T1 + T2 30 37.5 Chemotherapy
T3 + T4 48 60 NO 71 88.75

Tx 2 2.5 YES 9 11.25

N Radiation_therapy
N0 22 27.5 NO 60 75

N1-N3 55 68.75 YES 7 8.75

Nx 3 3.75 Unknow 13 16.25

M
M0 70 87.5

M1 10 12.5

https://www.gencodegenes.org/
https://www.gencodegenes.org/
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DEIRGs with statistical significance were then selected into the multivariate Cox regres-
sion analysis to establish a robust prognostic signature and calculate the risk score. The risk 
score calculation is based as follows = ∑regression coefficient (genie) × expression value 
(genie). According to the median risk score of the DEIRGs predictive model, the patients of 
TCGA and GSE72873 datasets were classified into high-risk and low-risk groups to assess 
the evaluation performance of this signature. The predictive performance of this signature 
was also assessed in ESCC patients based on the TCGA database. Besides, the receiver 
operating characteristic (ROC) curve and area under the ROC curve (AUC value) were per-
formed to evaluate the prognostic model’s predictive value. Moreover, to assess whether 
the risk score of prognostic-related DEIRGs can be a prognostic indicator independent of 
clinicopathological factors, univariate and multiple Cox regression analyses were utilized to 
evaluate the relationship between clinical data and risk score.

Construction of nomogram and TF‑mediated regulatory networks

According to the result of previous multivariate cox regression analysis, we further utilized 
the “survival” and “rms” packages to construct a nomogram, which can assist in the clinical 
interpretation and predict the survival probability of EAC patients. Moreover, calculated 
the time-dependent ROC curves and the AUC values of this Nomogram. Finally, the differ-
ence between the predicted results of the nomogram and the actual results were drawn in 
the calibration curve.

The transcription initiation process of eukaryotes is very complicated and requires the 
assistance of a variety of protein factors. The transcription factor (TF) plays an essential 
role in initiation by forming a transcription initiation complex with RNA polymerase II. 
To explore which transcription factors regulate the transcription of prognostic-related 
DEIRGs, we performed pearson correlation analysis on both TFs and DEIRGs. The thresh-
olds were set as follows:|correlation value|> 0.3 and P < 0.001.

The analysis of immune infiltration and copy number variation in 12 DEIEGss

To further explore the relationships between the expression level of DEIRGs in the prog-
nostic signature and the abundance of tumor infiltrated immune cells. Firstly, based on the 
CIBERSORT (https://​ciber​sort.​stanf​ord.​edu/) [27], we evaluated the difference in the pro-
portion of 22 immune cell subtypes in each sample of the high-risk and low-risk group. 
TIMER (https://​cistr​ome.​shiny​apps.​io/​timer/) [28] is an online database that can com-
prehensively analyze multiple tumors infiltrated immune cells, including B CD4 + T cells, 
CD8 + T cells, Neutrophils, Macrophages, and Dendritic cells. Furthermore, the TIMER 
was utilized to evaluate the relationship between DEIRGs expression and tumor infiltrated 
immune cells. Moreover, we further evaluated the frequency of copy number variation of 
12 DEIRGs that constructed the signature. The related copy number variation data of EAC 
patients were obtained from the UCSC Xena database (http://​xena.​ucsc.​edu/).

Statistical analyses

All statistical analyses and related visualization were conducted to determine independ-
ent prognostic factors using the R package (R software version 3.6. 3), GraphPad Prism 
8, and Perl (5.30.1) software.

https://cibersort.stanford.edu/
https://cistrome.shinyapps.io/timer/
http://xena.ucsc.edu/
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Result
Identification of DEGs and DEIRGs

Based on the cut-off criteria of |log2 FC|> 1 and P < 0.05, a total of 3490 DEGs (2888 
up-regulated and 602 down-regulated DEGs) were identified from the protein-encoding 
gene profile data between normal tissues and tumor tissues (Fig. 1a, b). Besides, accord-
ing to the ImmPort database, a total of 399 DEIRGs (349 up- and 50 down-regulated 
DEIRGs) (Fig. 1c, d; Additional file 1: Table S1) were obtained from the list of DEGs.

Functional enrichment analysis of DEIRGs

Under the criteria of P < 0.01, we have explored the biological characteristics of the 
DEIRGs. GO analysis indicates that these DEIRGs may be related to the biological 
characteristics of cell receptor-ligand activity, receptor regulator activity, cytokine 
activity, cytokine receptor binding, and growth factor activity (Fig. 2a). KEGG analy-
sis shows that these DEIRGs are directly or indirectly involved in Cytokine-cytokine 
receptor interaction, Viral protein interaction with cytokine and cytokine receptor, 
and Antigen processing and presentation (Fig. 2b). Besides, DEIRGs are also involved 
in some vital signal pathways, such as the JAK-STAT signaling pathway, PI3K-Akt 
signaling pathway, PD-L1 expression, and PD-1 checkpoint pathway in the cancer 
MAPK signaling pathway (Additional file 2: Table S2).

Fig. 1  Differentially expressed genes (DEGs) between esophageal adenocarcinoma (EAC) and normal 
esophageal tissues. a, b The heatmap and volcano plot of DEGs in EAC and normal tissues. c, d The heatmap 
and volcano plot of differentially expressed Immune-related genes (DEIRGs) in EAC and normal tissues. The 
green spot represents the down-regulated gene, the red spot represents up-regulated gene
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Construction and evaluation of IRG‑related prognostic signature

According to univariate cox regression analysis (P < 0.05), 19 prognostic-related 
DEIRGs have been selected (Fig.  2c). Subsequently, based on multivariate cox 
regression analysis, we finally obtained 12 DEIRGs to construct a prognostic signa-
ture (Table  2). The risk score of each EAC patient = (−0.01621*ADRM1) + (0.0049
9*CXCL1) + (0.06824*SEMG1) + (0.39269*CCL26) + (0.05053*CCL24) + (0.02883*
AREG) + (0.11286*IL23A) + (−0.31860*UCN2) + (−0.03313*FGFR4) + (−0.03694*
IL17RB) + (0.12972*TNFRSF11A) + (0.00438*TNFRSF21). According to the prog-
nostic signature, EAC patients were divided into high-risk and low-risk groups. The 
overall survival (OS) of the EAC high-risk group is significantly shorter than that of 
the low-risk group (P = 7.26e-07) (Fig. 3a). The two-and-a-half-year survival rate of 
the high-risk group (0.0737, 95% CI 0.0124–0.439) is approximately about one-tenth 
that of the low-risk group (0.713, 95% CI 0.566–0.898) based on this prediction sig-
nature. Moreover, there are also significant differences in the disease-free survival 
(DFS) of patients in the high and low-risk groups (P = 1.399e−05) (Fig.  3b). The 
receiver operating characteristic (ROC) curves were used to evaluate the signature’s 
predictive performance. The area under the ROC (AUC) curve of 1-, 3- and 5-year 

Fig. 2  GO and KEGG pathway enrichment analyses. a Bar graph of GO enrichment analysis of the 399 
DEIRGs. b Bar graph of KEGG pathway enrichment analysis of the 399 DEIRGs. c Based on Univariate Cox 
regression analysis obtained 19 prognostic DEIRGs. d The regulatory network consists of TFs (green circle) 
and 12 prognostic-related DEIRGs (red triangle). GO: Gene Ontology; KEGG: Kyoto Encyclopedia of Genes and 
Genomes
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is 0.871, 0.924, and 0.961, respectively (Fig. 3g). However, the signature constructed 
by EAC patients’ sequencing data is not suitable for ESCC patients (P = 8.409e − 02) 
(Fig. 3c). We determined its prognostic ability in the external test set GSE72873, and 
the result indicated that this signature could be used as a reliable predictor for OS in 
patients with EAC (P = 1.201e−03) (Fig. 3d). Besides, risk scores of all EAC patients 
were ranked to analyze the distributions of the prognostic-related DEIRGs. The dis-
tributions of survival status indicated that the high-risk group’s survival rate and 
time were significantly decreased compared to the low-risk group (Fig.  3e, f ). We 
have also shown the expression profiles of 12 prognostic-related DEIRGs in the high 
and low-risk groups (Fig. 3h).

The prognostic‑related DEIRGs and clinical features

To testify whether the 12 prognostic-related DEIRGs could be utilized as the inde-
pendent prognosis biomarkers of patients in EAC, we used univariate and mul-
tivariate cox regression analysis to evaluate the relationship between the clinical 
data and risk score. The univariate independent prognostic analysis shows that the 
M stage, Stage, and Risk score are significant prognostic factors (Fig.  4a, Table  3). 
However, multivariate independent prognosis analysis indicates that Sex, M stage, 
cancer stage, and risk score are significantly independent prognosis factors (Fig. 4b, 
Table 3). Compared with traditional features, the ROC curve of the risk score in the 
EAC patients (AUC = 0.967) is significant than T (AUC = 0.57), N (AUC = 0.738), M 
(AUC = 0.568), and cancer stage (AUC = 0.768) (Fig.  4c). Besides, the "beeswarm" 
package was used to evaluate the correlation between 12 DEIRGs and clinical char-
acteristics of patients with EAC. Addtionally,we found that high-risk patients with 
certain characteristics have low survival times than low-risk groups (Fig.  5a–i). 
Moreover, in terms of the M stage, the median expression value of ADRM1 and 
IL23A in M0 is higher than that of M1, while the CCL24 in M0 is lower than M1. 
The median expression values of FGFR4 and ADRM1 in Stage I and II are higher 
than those in stage III-IV (Fig. 5j–n).

Table 2  The list of 12 differentially expressed Immune-related genes (DEIRGs) in the prognostic 
prediction signature

Gene Coef HR HR.95L HR.95H P value

ADRM1 −0.016206835 0.983923789 0.962921024 1.005384655 0.140978295

CXCL1 0.004991274 1.005003751 0.99888175 1.011163272 0.10936358

SEMG1 0.068236246 1.070618208 0.985792628 1.162742867 0.105188407

CCL26 0.392686523 1.480954071 1.188727511 1.845019098 0.000462561

CCL24 0.050527114 1.051825382 1.00424869 1.10165604 0.032396281

AREG 0.028832808 1.029252497 1.016310595 1.042359203 7.97E−06

IL23A 0.112855589 1.119470257 1.02553231 1.222012846 0.011610335

UCN2 −0.318601379 0.727165355 0.522352103 1.012285488 0.059077041

FGFR4 −0.03312774 0.967414974 0.932966514 1.003135394 0.073334515

IL17RB −0.036938548 0.963735357 0.913151925 1.017120824 0.179325428

TNFRSF11A 0.129718312 1.138507634 1.06252719 1.219921378 0.000232274

TNFRSF21 0.004384263 1.004393888 1.002150781 1.006642016 0.000121351
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Fig. 3  a The Kaplan–Meier survival analysis of overall survival between high- and low-risk groups of EAC 
patients; b The Kaplan–Meier survival analysis of disease-free survival between high- andlow-risk groups of 
EAC patients; c The The Kaplan–Meier survival analysis of overall survival between high- and low-risk groups 
of ESCC patients; d The Kaplan–Meier survival analysis of overall survival between high- and low-risk groups 
of patients in GSE72873; e survival status of the patients in the low-risk group and high-risk group; f Ranking 
of the risk signature and distribution of the risk groups; g The receiver operating characteristic (ROC) curve of 
constructed signature in EAC; h The heatmap of expression profiles of the included genes

Fig. 4  Clinical Value of the prognostic-related DEIRGs. The forest plots of EAC are based on a univariate Cox 
regression analysis and b multivariate Cox regression analysis; c The 4-year time-dependent ROC curve of risk 
score and traditional clinical features in the EAC patients
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Nomogram and TF‑mediated regulatory network of DEIRGs

Based on the result of multivariate cox regression analysis, M stage, grade, can-
cer stage, and the risk score were adopted into a nomogram which can assist in the 
clinical interpretation and be convenient to predict the survival rate of EAC patients. 
Based on the nomogram, the survival rate of 1- and 3-years can be assessed by sum-
ming the score of each item (Fig. 6a). The AUC of 1- and 3-years are 0.911, and 0.853 
respectively (Fig.  6b,c). The calibration curves of the nomogram indicate that the 
predicted survival rates of 1- and 3- years have superior accuracy (Fig. 6d,e). Moreo-
ver, we performed a pearson correlation analysis on TFs and the 12 DEIRGs. Under 
the thresholds of |correlation value|> 0.3 and P < 0.001, a total of 85 TFs related to 
12 DEIRGs were obtained (Fig.  2d; Additional file  3: Table  S3). Among them, the 
top three DEIRGs with the most transcription factors are FGFR4 (27 related TFs), 
ADRM1 (20 related TFs), and TNFRSF11A (10 related TFs).

Immunocyte infiltration analysis

The CIBERSORT method was used to estimate differences in the infiltration of 22 
immune cell types in the low-and high-risk group of EAC patients (Fig. 7a; Additional 
file  4: Table  S4). The proportions of M0, M1, and Plasma cells are different accord-
ing to high and low-risk groups (Fig. 7b–d). Moreover, the result indicated that most 
DEIRGs obtain copy number variation more frequently than lose copy number varia-
tion (Fig. 7e, f ). Besides, the correlations between the 12 DEIRGs and 6 immune cell 
subtypes were investigated using TIMER (Fig. 8a–l). The results manifest that these 

Table 3  Clinical characteristics and risk scores based on Univariate and multiple Cox regression 
analysis

Bold inidcates clinical features are statistically signifcant in the Univariate- or Multivariate-cox regression analysis

Type B SE z HR 95% CI of HR P-value

Univariate Cox regression analysis
Age −0.02058 0.012827 −1.60406 0.979635 0.955313–1.004576 0.108701

Sex −0.48872 0.54149 −0.90255 0.613411 0.212243–1.772836 0.366767

T 0.200995 0.226366 0.88792 1.222619 0.784523–1.905346 0.374584

N 0.315018 0.19462 1.618634 1.370284 0.935723–2.006646 0.105526

M 0.912924 0.455467 2.004368 2.491597 1.020433–6.083766 0.045031
Stage 0.682306 0.210541 3.240722 1.978436 1.309503–2.989066 0.001192
RiskScore 0.050045 0.010946 4.572128 1.051319 1.029003–1.074116 4.83E−06
Multiple Cox regression analysis
Age −0.02668 0.013824 −1.93036 0.973668 0.947642–1.000409 0.053563

Sex −1.50855 0.631636 −2.38833 0.22123 0.064142–0.762945 0.016925
T −0.43244 0.364599 −1.18606 0.648926 0.317572–1.325997 0.235598

N −0.21311 0.287253 −0.74189 0.808066 0.460182–1.418916 0.458151

M −2.27121 1.008249 −2.25263 0.103187 0.014302–0.744473 0.024283
Stage 1.508601 0.54772 2.754327 4.520401 1.545102–13.22504 0.005881
RiskScore 0.056974 0.012569 4.532942 1.058629 1.032862–1.085031 5.82E−06
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prognostic-related DEIRGs have an immune infiltration relationship with at least one 
or more immune cells.

Discussion
EC is one of the most aggressive malignant tumors globally. EAC is a histological subtype 
of EC with poor prognosis. Improvements in research and treatment indicate that the 
immune system and immune damage determine cancer occurrence and development 
[29, 30]. Accumulating evidence indicates that IRGs and the immune cellular microen-
vironment play a directly or indirectly pivotal role in carcinogenesis and tumor develop-
ment [31, 32]. Our study analyzed the differential immune-related genes (DEIRGs) in 
EAC patients based on data from multiple public databases and constructed a robust 
predictive signature related to clinical prognosis to assess whether these DEIRGs could 
be the potential immune treatment targets of EAC.

Fig. 5  Stratification analysis of the association between the 12 prognostic-related DEIRGs and overall survival 
of EAC patients. a Ages ≤ 65 years; b ages > 65 years; cM0 stage; d male sex; e N0; f Nx; g T1 stage; h T3 stage; 
i stage II. Relationships between the expression of the 12 prognostic-related DEIRGs and clinicopathological 
factors in patients with EAC. j ADRM1 expression and M stage; k ADRM1 expression and stage; l CCL24 
expression and M stage; m FGFR4 expression and stage; n IL23A expression and M stage
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A robust predictive signature was established based on integrated analysis of the con-
sequence of univariate and multivariate cox regression analyses. Remarkably, the signa-
ture has an excellent ability to predict the specific survival rate of EAC (The AUC of 
1- 3- and 5-year is 0.871, 0.924, and 0.961, respectively). The molecular mechanisms of 
DEIRGs show that it is functionally involved in cytokine activity, cytokine receptor bind-
ing, growth factor activity, and chemokine activity. At the same time, pathway analysis 
indicates that these DEIRGs are involved in the JAK-STAT signaling pathway, PI3K-Akt 
signaling pathway, PD-1 checkpoint pathway in cancer, and MAPK signaling pathway.

Fig. 6  The performance evaluation and application of the nomogram. a Based on the total score, which 
was calculated by summing the scores of each item to calculated the survival rate of HCC patients for 1- and 
3-year; b, c the ROC curves of nomogram in 1-and 3-year. The AUC of 1-and 3-year are 0.911 and 0.853 
respectively; d, e The calibration curves of the nomogram in 1- and 3-year
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The comprehensive analysis of the predictive signature and clinical pathology data 
indicated that M stage, Stage, and risk scores can regard as independent prognostic 
factors in EAC. ADRM1 and FGFR4 were strongly correlated with tumor Stage, and 
ADRM1 was also associated with distant metastasis. The ADRM1-encoded protein, a 
member of the adhesion regulator 1 protein family, is a component of the proteasome. 
Studies have confirmed that the dysregulation of ADRM1-encoded protein in some 
malignancies is related to carcinogenesis, cell adhesion, and poor prognosis [33, 34]. 
Nevertheless, bis-benzylidine piperidone RA190, an ADRM1 Inhibitor, has the effect 
of reduced growth of multiple myeloma and ovarian cancer xenografts [35]. Equally, 
RA190 can also inhibit intrahepatic cholangiocarcinoma cell growth by inducing G2-M 
phase cell cycle arrest and nuclear factor κB (NF-κB)-regulated cell apoptosis [36]. Thus, 
in consideration of the important role of ADRM1 and its inhibitors in other tumors, 
more related research is worth exploring in EAC.

Fibroblast growth factor receptor 4 (FGFR4) is a member of a highly conserved tyros-
ine kinase family. Previous studies have indicated that various important pathways can 
be activated by FGFR4-related signaling, including Wnt/GSK-3β/β-catenin and the 
STAT signaling pathways [37, 38]. Additionally, FGFR4 drives tumor cell proliferation 
by inhibiting apoptosis induced by stress-related MST1/2 signaling [39]. Remarkably, 
compared with other FGFRs (FGFR1-3), FGFR4 with the unique cysteine residue within 
the ATP binding pocket (Cys552) [40]. Therefore, this makes it possible to develop some 
FGFR4-specific inhibitors to increase specificity and reduce the toxicity of FGFR tar-
geted therapy. Moreover, some FGFR4 specific inhibitors (such as FGF401, BLU-554 and 
H3B-6527) combined with other treatments are also indispensable for improving clini-
cal treatment effects [41–43]. FGF401 can act synergistically with vinorelbine to inhibit 

Fig. 7  a The relative proportion of 22 immune cell subtypes in high- and low-risk EAC patients. b–d The 
proportions of M0, M1 and Plasma cells are different according to high and low risk groups; e, f The analysis 
of copy number variation in 12 DEIEGs
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Fig. 8  Infiltration level of 12 prognostic-related DEIRGs in 6 immune cells (B cells, CD4 + T cells, CD8 + T cells, 
dendritic cells, neutrophils, and macrophages). a ADRM1; b AREG; c CCL24; d CCL26; e CXCL1; f FGFR4; g 
L17RB; h IL23A; i SEMG1; j TNFRSF11A; k TNFRSF21; l UCN2
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tumor growth and promote tumor apoptosis by inhibiting the FGF19/FGFR-4 signaling 
pathway [41].

As one of the IRGs that constructed signature, AREG and IL17RB were related to the 
carcinogenesis in some malignancies. The protein encoded by AREG is a member of 
the epidermal growth factor (EGF) family. As an EGFR ligand produced by Th9 cells, 
the study has shown that AREG can enhance Th9 cell differentiation [44]. Moreover, 
the AREG/EGFR signaling pathway may be involved in cancer progression through 
enhanced Treg cell function, leading to the activation of NFκB, which is closely related 
to neoadjuvant chemotherapy response and survival of patients with EAC [45]. In view 
of the key role of AREG in tumor immunity, it is worthy of further exploration in EAC.

IL17RB is plays a vital role in tumorigenesis. Amplified signaling of IL17RB and related 
ligand IL17B enhanced tumorigenicity in breast cancer cells and activated NF-κB to 
upregulate anti-apoptotic factor Bcl-2 and induced etoposide resistance [46]. Similary, 
the IL17B/IL17RB pathway promotes resistance to paclitaxel in breast tumors via the 
ERK1/2 pathway [47]. IL17RB activates multiple chemokine (such as CCL20/CXCL1/
IL8/TFF1) expressions to enhance tumor cell invasion, macrophage, and endothelial cell 
recruitment at primary sites and cancer cell survival at distant organs [48]. However, tar-
geting IL17B/IL17RB signaling with a newly derived anti–IL17RB antibody will block 
cancer cell metastasis and promote survival. Moreover, several studies have shown that 
the tumor microenvironment includes immune cells are critical players in tumor progres-
sion metastasis [49, 50]. Based on CIBERSORT analysis of the proportion of immune cells 
in the sample, indicate that compared with the low-risk group, the proportion of M0 in 
the high-risk group was higher, while M1 and plasma cells were lower, is worth exploring.

Although the previous studies have explored the predictive value of IRGs in the EC 
or EAC [18–20], the predicted signature we constructed (P = 7.26e−07, the AUC of 1-, 
3- and 5-year is 0.871, 0.924 and 0.961 respectively) is more reliable than similar stud-
ies, and the prognostic ability of this signature is also assessed in the external test set 
GSE72874 (P = 1.201e−03). Moreover, compared with the study of Lan et  al. [20], we 
focus more on which IRGs may participate and promote the occurrence of EAC. These 
IRGs and their current inhibitors may prepare for certain therapeutic interventions in 
patients with EAC.

Nevertheless, there are still certain limitations. The databases used in this study lack 
some important postoperative treatment information. Furthermore, the research is only 
conducted at the level of bioinformatics, and comprehensive in vitro and in vivo func-
tional assays are needed further to explore the regulatory mechanism of DEIRGs in EAC.

Conclusion
In general, the constructed prediction signature (ADRM1, CXCL1, SEMG1, CCL26, 
CCL24, AREG, IL23A, UCN2, FGFR4, IL17RB, TNFRSF11A, and TNFRSF21) based 
on IRGs is robust and promising. The DEIRGs in this signature can be used as poten-
tial biomarkers for EAC prognosis, which may help the development of individualized 
treatment.
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