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SUMMARY

Human disease prediction from microbiome data has broad implications in meta-
genomics. It is rare for the existing methods to consider abundance profiles from
both known and unknownmicrobial organisms, or capture the taxonomic relation-
ships among microbial taxa, leading to significant information loss. On the other
hand, deep learning has shown unprecedented advantages in classification tasks
for its feature-learning ability. However, it encounters the opposite situation in
metagenome-based disease prediction since high-dimensional low-sample-size
metagenomic datasets can lead to severe overfitting; and black-box model fails
in providing biological explanations. To circumvent the related problems, we
developed MetaDR, a comprehensive machine learning-based framework that
integrates various information and deep learning to predict human diseases.
Experimental results indicate that MetaDR achieves competitive prediction per-
formance with a reduction in running time, and effectively discovers the informa-
tive features with biological insights.

INTRODUCTION

The rapid development of sequencing technologies has yielded myraids of microbial data; and mounting

evidence correlates microbes with various diseases (e.g., diabetes, allergy, and cancer) (Livanos et al., 2016;

Huang et al., 2017; Zhou and Gallins, 2019). Compared with 16S rRNA sequencing which only targets 16S

rRNA genes, recent shotgun metagenomic sequencing can provide sample information by sequencing all

given genomic DNA from a sample, thus it is becoming increasingly popular and adopted in microbiome

research (Zeller et al., 2014; Zhu et al., 2019). In the past several years, some studies indicate that the meta-

genomic predictive study can be formulated as a supervised learning task based on a species-by-sample

matrix (i.e., microbial abundance profiles), which makes it possible to predict human diseases from meta-

genome-based data (Vangay et al., 2019; Manzoor et al., 2020).

Briefly, microbial abundance profiles can be obtained by two different strategies (Zhu et al., 2019). The first

is reference-based methods, while the second is de novo assembly-based methods (Chikhi and Rizk, 2013;

Xing et al., 2017; Knight et al., 2018). The reference-based methods estimate the microbial abundances by

mapping sequencing reads to existing databases (e.g., NCBI RefSeq (Pruitt et al., 2014)). However, some

reads may not be mapped and thus the relevant information is lost (Knight et al., 2018). In contrast, the de

novo assembly-based methods consider all reads to create metagenome-assembled genomes (MAGs)

and estimate their abundances (Chikhi and Rizk, 2013). Nevertheless, they are computationally time-

consuming as all the reads are considered (Xing et al., 2017). The abundance profiles obtained by these

two strategies can be defined as known and unknown microbial features (Zhu et al., 2019). Theoretically,

both known and unknown microbial features can be utilized as the input to train a supervised learning

model for disease classification. However, most existing methods are based on the abundance profiles

of known microbial organisms obtained by reference-based methods since ,compared to de novo assem-

bly-based methods, the reference-based methods can provide more biological insights from the existing

taxonomic annotations (Kim et al., 2016; Knight et al., 2018; Vangay et al., 2019). On the other hand, the

reference-based methods are computationally efficient, although the incomplete mappings can lead to

the loss of valuable information (Zhu et al., 2019).

After obtaining the microbial features from sequencing reads, traditional machine learning-based

methods combine the features with the corresponding labels to train a classifier. For example,
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Qin et al. (2012) predicted liver cirrhosis based on a support vector machine (SVM) using gene markers.

Zeller et al. (2014) introduced a LASSO-based model to identify whether the subject has colorectal

cancer. Harris et al. (2019) trained a random forest to predict patient phenotypes based on their

metagenomic profiles. Although these methods achieved satisfactory results in their respective applica-

tions, the input of them is essentially tabular data (i.e., a species-by-sample matrix) that assumes feature

independence and neglects the hierarchical relationships among the neighboring taxa (e.g., phyloge-

netic arrangement and order on a reference tree) (Harris et al., 2019). Therefore, it has been proposed

to integrate the phylogenetic relationship with deep learning to improve the prediction performance.

For example, Reiman et al. (2020) introduced PopPhy-CNN to transform the phylogenetic tree into an

abundance matrix, combining with a convolutional neural network for disease classification. Oudah

and Henschel (2018) proposed a similar taxonomy-aware algorithm for feature engineering to exploit

the phylogenetic hierarchy for metagenome-based phenotype classification. The same approach was

also leveraged by Bogart et al. (2019) for human host status inference. Although the embedded architec-

ture can successfully integrate the phylogenetic structure into microbial features, however, it also intro-

duces extra noises when constructing the phylogenetic matrix, since some species in the phylogenetic

tree may not originally exist in microbial features. Recently, Fioravanti et al. (2018) combined the patristic

distance and multidimensional scaling to embed the phylogenetic tree into the Euclidean space.

However, the feature transformation results in high time complexity and the model design is difficult

to optimize. In addition, both Lo and Marculescu (2019) and Nguyen and Zucker (2019) utilized the

alphabet-sorting approach to sort the microbial features based on their taxonomic ranks (i.e., phylum,

class, order, family, and genus). This method extracts the phylogenetic information by congregating

the neighboring taxa with similar species names; however, it still neglects the relationship between

taxa that have the same ancestor but the names are farther in alphabetical order.

On the other hand, throughout the related studies in the past several years, most existing methods are

tailored for focused studies; when applied to other datasets, they can suffer from underfitting for different

reasons (e.g., small data size adaptation issue, noisy features, lack of data processing, etc.) (Pasolli et al.,

2016). Besides, the training and prediction time for the existing methods cannot fulfill the clinic require-

ments anymore (Zhou and Gallins, 2019), necessitating a new framework that can be scalable with the rapid

increase of microbiome data.

Recently, deep learning has shown unprecedented advantages for its feature-learning ability and acceler-

ated training technique. One of the most popular deep learning algorithms is convolutional neural

networks (CNNs), which have been utilized in a variety of medical imaging applications including tumor

classification, mutation prediction, and cancer subtype detection (O’Shea and Nash, 2015). Compared

with traditional hand-craft feature-based machine learning methods, CNN can capture the spatial locality

in the image by extracting the spatial correlation among neighboring pixels (LeCun et al., 2015). Inspired by

its structure, we propose a taxonomic representation approach for microbial features, which can keep the

Table 1. Performance comparison of average AUCs and the standard deviations with the state-of-the-art methods

(Bold means the best performance)

Method

Karlsson_T2D Qin_T2D Qin_LC Zeller_CRC

AUC (Std) AUC (Std) AUC (Std) AUC (Std)

Micro-Pro (Zhu et al.,

2019)

0.7581 (0.0753) 0.7252 (0.0642) 0.9386 (0.0165) 0.8780 (0.0447)

MetaML (Pasolli et al.,

2016)

0.5184 (0.1257) 0.5290 (0.1202) 0.8755 (0.0342) 0.6874 (0.0578)

DeepMicro (Oh and Zhang,

2020)

0.6251 (0.0867) 0.6284 (0.0734) 0.9001 (0.0264) 0.7208 (0.0502)

MetaNN (Lo and Marculescu,

2019)

0.4896 (0.0482) 0.5105 (0.0180) 0.7576 (0.0162) 0.7839 (0.0172)

DeepForest (Zhu et al., 2018) 0.7560 (0.1160) 0.7650 (0.0809) 0.9309 (0.0389) 0.8657 (0.0361)

WRF 0.7118 (0.0236) 0.6738 (0.0205) 0.9341 (0.0043) 0.9416 (0.0074)

EPCNN 0.7890 (0.0559) 0.8131 (0.0238) 0.9535 (0.0074) 0.9063 (0.0127)
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phylogenetic relationship and enable the utilization of CNN for disease classification. Besides, an

ensemble model is constructed to enrich the microbial feature representation and reduce the risk of over-

fitting. In view of the black-box property of deep learning, we introduce a weighted random forest to

extract biological insights. The study is conducted in the context of the shotgun-sequenced metagenomic

datasets.

RESULTS

Comparison with state-of-the-art predictors

In order to assess the effectiveness of our framework, we compare both weighted random forest (WRF)

and ensemble phylogenetic convolutional neural network (EPCNN) with five state-of-the-art predictors,

which are MetaML (Pasolli et al., 2016), DeepForest (Zhu et al., 2018), MetaNN (Lo and Marculescu,

2019), Micro-Pro (Zhu et al., 2019), and DeepMicro (Oh and Zhang, 2020). The five comparison tools all

have been published recently and declared to achieve state-of-the-art performance. Since the utilized da-

tasets in original publications are all based on different analysis pipelines and evaluation standards, to

keep a fair comparison, we ensure the input for all the comparison predictors are consistent which in-

cludes abundance profiles of both known and unknown microbial organisms, and the obtained results

for different predictors are all based on the same evaluation standard. In addition, we strictly followed

the suggested parameters and model architectures with the best performance in original experiments

(see STAR Methods). The evaluation metric is the receiver operating characteristic (ROC) curve (AUC).

As we can see in Table 1, our WRF and EPCNN achieve superior performance compared with the

state-of-the-art predictors. Especially, the performance of our EPCNN is the best on three out of four da-

tasets. The improvements for Karlsson_T2D and Qin_T2D datasets are remarkable as our EPCNN in-

creases the average AUCs from 0.4896 to 0.7890 and 0.5105 to 0.8183, respectively, compared to

MetaML and MetaNN. For Qin_LC dataset, even if the AUCs of DeepForest, DeepMicro, and Micro-

Pro are all higher than 0.9 which are close to the perfect prediction, the AUC of our EPCNN still increases

to 0.9535, achieving the improvements of 2%–5%. Compared with MetaNN based on the same deep

learning method, the AUCs of our EPCNN increase by about 20% across the datasets by utilizing

ensemble strategy to reduce the overfitting.

Besides, it can be noticed that the performance of Micro-Pro and DeepForest is better than that of the bench-

marks. We attribute this to the mapping weights utilized in Micro-Pro and phylogenetic information fused in

Figure 1. Boxplot of the comparison result of single and ensemble-based models

Known (P), Known (L), Unknown (P), and Unknown (L) are the results obtained by single models which are known-profile-based model with postorder

representation, known-profile based-model with level-traversal representation, unknown-profile-based model with postorder-traversal representation, and

unknown-profile-based model with level-traversal representation. Known (P + L) is the averaged result obtained by ensembling the first two single models,

and Unknown (P + L) is the averaged result obtained by ensembling the last two single models. Ensemble (All) is the final result obtained by ensembling all

four models (EPCNN). Asterisk means the average value.
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DeepForest. On the other hand, DeepMicro utilizes a convolutional autoencoder (CAE) to reduce the feature

dimensions but it also deleted some important features. Therefore, the performance is unsatisfying, especially

on Karlsson_T2D and Qin_T2D datasets with the originally high-dimensional features. Besides, the perfor-

mance of MetaML is bad; we infer that SVM may not be applicable for classifying metagenomic data.

It is notable that the performance of EPCNN is no better than that of WRF on Zeller_CRC dataset, the

reason may be that the overall feature dimension of this dataset is the highest among all datasets. There-

fore, the introduced noise amount may also be the highest during the taxonomic representation since

some unrelated profiles of microbial organisms may be convoluted in the training process of CNN.

Comparison with different microbial features and taxonomic representation

In addition, we compare the performance of single models and ensemble models based on different mi-

crobial features and taxonomic representation. As seen in Figure 1, the ensemble strategy obviously im-

proves the prediction performance compared with the single feature-based models on three out of four

datasets. The average AUCs are increased by 5%–20% on different datasets. However, for Karlsson_T2D

dataset, we can see that the performance of EPCNN was slightly worse than Known (P + L), and no matter

for the known-profile-based model Known (P) or Known (L) with different taxonomic representation, the

average AUC is almost 10% higher than the performance of unknown-profile-based model Unknown

(P) and Unknown (L). We infer that the abundance profiles of unknown microbial organisms on this dataset

may have a negative influence on the abundance profiles of known microbial organisms, thereby causing

the terrible performance of ensemble results. Besides, we can observe that for Karlsson_T2D dataset, the

mapping ratio of its MAGs are the least among all the datasets (Table 2), which indicates that the taxo-

nomic information of the abundance profiles of unknown microbial organisms on this dataset may not be

accurate to support the model performance. For the performance of different features in different taxo-

nomic representations, it can be observed that the abundance profiles of unknown microbial organisms

with postorder-traversal representation can contribute more in CNN models because compared with

the performance of abundance profiles of known microbial organisms, the average AUC score was

increased by 4%–12% on two of the four datasets.

Influence of taxonomic information

Regarding the benefits of the proposed taxonomic information, we have additionally conducted extra ex-

periments on four datasets to compare the prediction performance with/without taxonomic tree spatial

information. The results are shown in Table S1. Herein, Known (w/P), Known (w/L), Unknown (w/P), and

Unknown (w/L) are the prediction results obtained by single models which are known-profile-based model

with postorder representation, known-profile-based model with level-traversal representation, unknown-

profile-based model with postorder-traversal representation, and unknown-profile-based model with

level-traversal representation. Known (w/o) represents the prediction result of known profiles without taxo-

nomic tree spatial information, and Unknown (w/o) represents the prediction results of unknown profiles

without taxonomic tree spatial information. It can be observed that the taxonomic tree spatial information

does increase the final prediction performance by 2%–5% across different datasets, although there is a

performance discrepancy between different profiles with different taxonomic tree spatial information.

Prediction based on different architectures

Regarding the model architecture of EPCNN, we validate and compare a series of deep neural network

(DNN)-based models which are multilayer perceptron (MLP), one-dimensional (1D)-CNN, and two-

dimensional (2D)-CNN with different numbers of layers and nodes (Table S2 and STAR Methods). As

can be seen in Table S3, comparing the performance of MLP_2layer and MLP_3layer, we can see that

Table 2. Average mapping ratios and average feature weights for four datasets

Dataset

Mean mapping

rate (reads)

Known mapping

ratio (profiles)

Weight for known

profiles

Weight for

unknown profiles

Karlsson_T2D 0.3410 0.6055 0.4699 0.5301

Qin_T2D 0.4225 0.6910 0.4614 0.5386

Qin_LC 0.4356 0.6789 0.5072 0.4928

Zeller_CRC 0.3578 0.5824 0.4957 0.5043
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the performance is slightly better as the model complexity increases. Although the performance is not

good without embedding the phylogenetic information, however, the standard deviations of MLP are

the least and the model is the most stable among all the comparison architectures. Comparing the

performance of CNN1D_conv3_pool2 and CNN1D_conv5_pool3, they suffer from severe overfitting

problems, which achieve similar results as MetaNN in comparison with the state-of-the-art predictors.

However, we can see that the performance increases as the filter and pooling sizes increase. We believe

that the complicated model structure and large filter size can improve the prediction performance since

larger sizes mean larger receptive fields and more information. The comparison results between

CNN2D_conv3_pool3 and EPCNN can also support that. However, the improvement is not absolute

because the performance of Qin_LC dataset slightly drops. The same tendency also appears on

CNN2D_ResNet. Herein, ResNet is the most complicated architecture among all the comparison models,

but it also suffers from severe overfitting, resulting in performance degradation, which indicates that

complex architectures may not be applicable to all the datasets. The reason for the bad performance

of ResNet may also be from its pre-trained ImageNet weights since ImageNet has a totally different

feature distribution from our metagenomic data. It is notable that there is a huge difference in the results

between 1D-CNN and 2D-CNN models; we attribute that to the matrix conversion which can simulate

the image structure to extract both local and global features between the neighboring taxa, making it

more suitable for CNN classification.

Prediction based on OTU-level data

Besides, our MetaDR is also scalable and can be generalized to the task based on operational taxonomic

units (OTUs). The difference is, because the OTU features are obtained by the 16S amplicon analysis pipe-

line which is different from the previous shotgun metagenomic analysis pipeline, we cannot generate the

abundance profiles of unknown microbial organisms from 16S amplicon analysis. However, because the

taxonomic tree information of OTUs can be still obtained from 16S amplicon analysis, our MetaDR is

able to be utilized in the OTU-based prediction. Herein, we evaluated our MetaDR on one public available

OTU-based 16S rRNA sequencing dataset to predict T2D and compared it with PopPhy-CNN (Karlsson

et al., 2013; Qin et al., 2012; Reiman et al., 2020), which is one of the state-of-the-art tools for OTU-based

prediction. Surprisingly, our MetaDR still achieved an average AUC of 0.72210 while PopPhy-CNN is simply

0.6810, which reflects that our framework can also have a promising generalization and better performance

on OTU-level data.

Analyses of informative features

To evaluate our WRF, we calculated the mean mapping rate of reads (to reference database), the ratio of

the features with known taxonomic annotations, and the obtained weights for each feature (Table 2). The

predicted weights for abundance profiles of both known and unknown microbial organisms represent the

importance of the different microbial profiles. We can observe that for both Karlsson_T2D and Qin_T2D

datasets, the weights of abundance profiles of unknownmicrobial organisms are all higher than the weights

of abundance profiles of known microbial organisms, while for Qin_LC and Zeller_CRC datasets, the abun-

dance profiles of known and unknown microbial organisms have approximately equal weights. The ten-

dency indicates that for T2D, the abundance profiles of unknown microbial organisms are more important

than the abundance profiles of known microbial organisms.

It is noticeable that for Karsson_T2D dataset, the abundance profiles of unknown microbial organisms

have higher weights based on WRF than those for the abundance profiles of known microbial organisms,

yet in Figure 1, the models using abundance profiles of unknown microbial organisms performed worse

Table 3. Number of selected informative features across four datasets (among top 30 features)

Dataset

Raw Micro-Pro WRF

Known Unknown Known Unknown Known Unknown

Karlsson_T2D 0 30 5 25 3 27

Qin_T2D 0 30 0 30 4 26

Qin_LC 4 26 10 20 7 23

Zeller_CRC 4 26 3 27 6 24
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than the models using abundance profiles of known microbial organisms. We infer the discrepancy is

because WRF and CNN have totally different input and training strategies. Although the two models uti-

lized the abundance profiles of both known and unknown microbial organisms, the input of WRF is sub-

stantially a one-dimensional vector assuming feature independence. In contrast, the input for CNN is a

matrix that can extract the spatial correlation among neighboring taxa. Besides, WRF is an ensemble-

based method composed of many decision trees, while CNN is a deep learning-based method that

automatically learns the features. For the results of Qin_LC dataset, the mapping ratio for the abundance

profiles of known microbial organisms to the reference database is the largest. Analogously, the weight

for the abundance profiles of known microbial organisms is also larger than the weight of the abundance

profiles of unknown microbial organisms, which can further support the rationality and accuracy of our

results.

Additionally, we explored the microbial features that were significantly associated with a certain disease

in this study. The top 30 features associated with highly ranked importance coefficients are selected for

further analyses. In order to assess the effectiveness of the proposed WRF for feature selection, we

compared it with two other feature selection methods (Raw and Micro-Pro) based on different feature

fusion strategies (see STAR Methods). Besides, we also list the numbers of selected features of known

and unknown microbial organisms among the top 30 informative features for comparison (Table 3). As

we can see in Venn diagrams (Figure 2), the three methods have completely different results for the ex-

tracted top 30 informative features. The overlaps of three methods on four datasets are all small, with

less than five same features. However, the overlap informative features between Raw and Micro-Pro

are large, with more than five informative features in common on three out of four datasets. Contrarily,

the overlaps between WRF and Raw or Micro-Pro are small. Only for Karlsson_T2D dataset, they share

more than 10 informative features.

As can be seen in Table 3, our WRF is the only one that discovered both known and unknown informative

features across all the datasets. For the selected unknown informative features, because the taxonomic as-

signments of MAGs are not accurate, they need to be evaluated by further analyses. However, for the

selected features of known microbial organisms, compared with Raw and Micro-Pro, our WRF successfully

identified Gordonibacter urolithinfaciens and Lactobacillus salivarius in both two T2D datasets (Sáez-Lara

et al., 2016; Corrêa et al., 2019); Erysipelotrichaceae bacterium in LC dataset (Kaakoush, 2015; Lu et al.,

2015); and Anaerostipes hadrus, Dialister pneumosintes, Akkermansia muciniphila, and Streptococcus in

CRC dataset (Boleij et al., 2011; Dingemanse et al., 2015; Louis and Flint, 2017; Li et al., 2019). These bio-

markers all have been proved to have associations with the related diseases. However, the other two

methods (Raw and Micro-Pro) did not successfully identify them in the top 30 features, which indicate

that our proposed WRF is more effective than the other two methods. In addition, the proposed WRF

can also be utilized to predict diseases. A detailed comparison of the average AUCs can be found in

Table S4.

Execution time

We report the execution time of different baseline predictors to compare with our methods (Table 4 and STAR

Methods). For the running time of our EPCNN, we beat all the other predictors except MetaML. For MetaML,

Figure 2. Venn diagrams for the selected top 30 informative features by three methods
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although it is the fastest one, it achieves the worst prediction results among all the comparison tools (as evi-

denced in Table 1). In summary, although the proposed EPCNN is not the fastest, however, considering the

prediction performance, our EPCNNmay be the only one that canmake a perfect trade-off between the predic-

tion performance and the running time. Besides, it is more scalable as it can be trained on GPUs.

DISCUSSION

Deep learning has been proved to be promising on large and complex classification tasks such as natural

language processing and image recognition. However, it is rarely applied in metagenomic research since

high-dimensional low-sample-size metagenomic datasets can lead to severe overfitting, and the black-box

model fails to provide biological explanations. To circumvent the related problems, we propose MetaDR, a

Figure 3. Overview of the proposed MetaDR

[Top] At the beginning, the raw sequencing reads are sent to Micro-Pro to extract the abundance profiles of known and unknown microbial organisms. [Left]

The taxonomic information is extracted from a phylogenetic tree, combined with the ensemble convolutional neural network to train the models. [Right] The

weighted random forest obtains the weight for each feature and outputs the informative features for biological explanations.
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comprehensive machine learning-based framework that integrates various information and deep learning

to predict human diseases.

In the current work, the experiments are conducted in the context of shotgun-sequenced metagenomic

datasets. However, given that the 16S amplicon analysis pipeline is also popular in microbiome research,

we also evaluated the generalization of our MetaDR on OTU-level data. The result indicates that the pro-

posed MetaDR is also scalable and can perform well on OTU-level data. Regarding the benefits of the

proposed taxonomic information, it can be observed that some features (the abundance profiles of

known/unknownmicrobial organisms) with specific taxonomic tree spatial information may have a negative

influence on prediction (Figure 1). However, the additional ablation experiments (see STAR Methods)

demonstrate that the taxonomic tree spatial information does increase the final prediction performance

by 2%–5% across different datasets, although there is a performance discrepancy between different pro-

files with different taxonomic tree spatial information.

On the other hand, the proposed weight random forest successfully explains different features (i.e., the

abundance profiles of known and unknown microbial organisms), and further proves that unknown profiles

are necessary for human disease prediction. In addition, the obtained weight for each kind of profile also

supports the performance of our EPCNN. In this study, the proposed weight random forest complements

the poor interpretability of the black-box deep learning model (i.e., our EPCNN), since CNN cannot explic-

itly identify the feature importance when conducting the prediction. Additionally, the proposed weight

random forest also helps to explore the microbial features that were significantly associated with a certain

disease and successfully identifies some potential biomarkers for further analyses. Besides, the perfor-

mance of our weight random forest is promising, which can be an alternative to the black-box CNN model

when users prefer a more strongly explanatory predictor.

In the future, we consider applyingmore advanced deep learningmodels, such as recurrent neural network

(RNN) and graph neural network (GNN) to further improve the disease prediction in metagenomics,

combining with post hoc interpretable algorithms to explore more representative features to lay the

groundwork for future development of specific disease biomarkers. We believe that MetaDR can

contribute to microbiome research and help explore the patterns among the microbial features and its

Figure 4. Traversal order of the taxonomic representation

Given the initial random order of the microbial features as 1, 2, 3, and 4, and the corresponding taxonomic name ‘‘A’’, ‘‘B’’, ‘‘C’’, and ‘‘D’’, PhyloT constructs a

phylogenetic tree with the taxonomic name as input. After traversing the phylogenetic tree, new sorting orders are kept to replace the initial orders.
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host disease, paving the metagenomic diagnosis foundation for personalized medicine in the coming

future.

Limitation of the study

The current study is limited by the absence of a truly independent validation set. In addition,

while the ensemble model can achieve state-of-the-art performance, the running time complexity can

be high.

Figure 5. The proposed neural network architecture of EPCNN

From top to bottom, the abundance profiles of known and unknown microbial organisms are transformed into matrices according to different taxonomic

representations. Then, the species abundances are mapped to microbial features with specific taxonomic annotations, and the abundance matrices are

converted to grayscale images as the input of CNN. Four single models are then trained with the same CNN architecture. Finally, the outputs of the four

models are averaged to obtain the ensemble prediction result.
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Table 4. Running time (s) for different predictors

Method Karlsson_T2D Qin_T2D Qin_LC Zeller_CRC

Micro-Pro (Zhu et al., 2019) 153 277 236 267

MetaML (Pasolli et al., 2016) 7 14 37 40

DeepMicro (Oh and Zhang, 2020) 7517 9201 13,327 7576

MetaNN (Lo and Marculescu, 2019) 175 221 309 232

DeepForest (Zhu et al., 2018) 588 556 546 516

WRF 610 853 2025 2270

EPCNN 192 215 225 229

Table 5. Disease types, data sizes, and feature dimensions of four datasets

Dataset Disease

Known

features

Unknown

features

Number of

controls

Number

of cases

Karlsson_T2D (Karlsson et al., 2013) T2D 785 594 43 53

Qin_T2D (Qin et al., 2012) T2D 925 486 74 71

Qin_LC (Qin et al., 2014) LC 936 506 114 123

Zeller_CRC (Zeller et al., 2014) CRC 1287 1026 93 91
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STAR+METHODS

KEY RESOURCES TABLE

RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources should be directed to and will be fulfilled by the lead con-

tact, Dr. Ka-Chun Wong (kc.w@cityu.edu.hk).

Materials availability

This study did not generate new biological data.

Data and code availability

The datasets utilized in this study are publicly available. The accession numbers for the datasets are listed in

the key resources table.

The current version of MetaDR is implemented in python and can be found at https://github.com/

Microbiods/MetaDR.

Any additional information required to reanalyze the data reported in this paper is available from the lead

contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

This paper analyzes existing, publicly available data. The study does not use experimental models typical in

life sciences.

METHOD DETAILS

Datasets

We retrieve the datasets from four available shotgun-sequencedmetagenomic studies which are related to

three different diseases: Type 2 Diabetes (T2D) (Qin et al., 2012; Karlsson et al., 2013), Liver Cirrhosis (LC)

(Qin et al., 2014) and Colorectal Cancer (CRC) (Zeller et al., 2014). The raw sequencing reads can be down-

loaded from European Nucleotide Archive (ENA) database (https://www.ebi.ac.uk/ena), and the related

accession numbers can be found in Table S5.

In this study, since we focus on developing a disease-related predictive framework rather than the

sequence feature extraction pipeline, we directly utilized our recently published pipeline MicroPro (Zhu

et al., 2019) to obtain the abundance profiles of known and unknown microbial organisms from the raw

sequencing reads. MicroPro is a software to perform profiling of both known and unknown microbial

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

Karlsson_T2D European Nucleotide Archive (ENA) ERP002469

Qin_T2D European Nucleotide Archive (ENA) SRA045646

Qin_LC European Nucleotide Archive (ENA) ERP005860

Zeller_CRC European Nucleotide Archive (ENA) ERP005534

Software and algorithms

MetaDR This study (https://github.com/Microbiods/MetaDR) MetaDR (v3.0.0)

MicroPro https://github.com/zifanzhu/MicroPro MicroPro (v1.0.1)

Megahit https://github.com/voutcn/megahit Megahit (v1.1.3)

MetaBAT2 https://bitbucket.org/berkeleylab/metabat/src/master/ MetaBAT2 (v2.12.1)

Centrifuge https://ccb.jhu.edu/software/centrifuge/ Centrifuge (v1.0.3)

PhyloT https://phylot.biobyte.de/ PhyloT (v2)
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organisms for metagenomic datasets. For abundance profiles of known microbial organisms, MicroPro

applied Centrifuge (Kim et al., 2016) to map the reads to NCBI RefSeq database and estimate their abun-

dances. In terms of Centrifuge command, we set flag ‘‘-q’’ which indicated the input was in FASTQ format,

and the other arguments were set as default. Regarding the reads that cannot be mapped to NCBI RefSeq,

Megahit (Li et al., 2015) and MetaBAT2 (Kang et al., 2019) are executed to generate MAGs and extract the

abundance profiles of unknownmicrobial organisms. Herein, Megahit was executed cross-assembly on the

unmapped reads from all samples to generate the assembled contigs which can be considered as origi-

nated from an unknown organism. MetaBAT2 is then utilized to perform binning on the assembled contig

set. In this work, Megahit and MetaBAT2 were used with default parameters according to the previous

study (Zhu et al., 2019). Before assembly, reads with lengths less than 1000bp were filtered out. In addition,

low-quality MAGs were kept for the follow-up analyses. Once we finished cross-assembly and metage-

nomic binning, we treated each contig bin as an unknown organism, and the binned reads as a part of

its genome. In terms of defining the feature of the unknown organisms, we still used the relative abun-

dance, just as we did for known species.

After obtaining both known and unknownmicrobial features, the states or the existence of a certain disease

are utilized as the labels for each sample. Detailed descriptions for each dataset are listed in Table 5.

Overview of MetaDR

MetaDR is composed of two separate modules, which are a deep learning module and a random forest

module. The deep learning module (EPCNN) utilizes the taxonomic information and microbial features

to construct an ensemble convolutional neural network for classification. The random forest module

(WRF) extracts insights from different microbial features and identifies the informative features on disease

pathways. The architecture of the proposed MetaDR is described in Figure 3.

Ensemble phylogenetic convolutional neural network

Construction of phylogenetic tree

A phylogenetic tree can be constructed by comparing the microbial genomes based on multiple sequence

alignment, and the similar taxa are organized into clades close to each other (Fioravanti et al., 2018). Since

the construction of the phylogenetic tree is not the point in our work, considering the easy accessibility, we

directly utilize PhyloT (https://phylot.biobyte.de/) to generate least-pruned phylogenetic trees based on

the taxonomic annotations of known and unknownmicrobial features. For abundance profiles of knownmi-

crobial organisms, since we utilized MicroPro to map the raw reads to NCBI RefSeq database, the annota-

tion of each taxon can be directly obtained by Centrifuge (Kim et al., 2016). For abundance profiles of

unknown microbial organisms, in order to obtain the corresponding phylogenetic tree, we followed

MicroPro utilizing Mash v.2.0 (Ondov et al., 2016) to calculate the pairwise distance between each MAG

and the reference genomes in Centrifuge, and identified the taxonomic assignment of each MAG. Howev-

er, as none of the pairwise Mash distance was below 0.05 for all the utilized datasets, we adopted the Mash

distance of 0.34 suggested by (Zhu et al., 2019) to classify the microbes into the genus level. For MAGs that

cannot be classified to the genus level, we directly arranged them in an initial random order. A similar

approach can be leveraged to distribute all the MAGs into specific levels, and the obtained taxonomy an-

notations can be used to generate the phylogenetic tree of unknown microbial organisms.

Taxonomic representation

In most metagenomic predictive studies, the obtainedmicrobial features for each sample are a one-dimen-

sional vector that ignores the correlations among taxa (Qin et al., 2012; Zeller et al., 2014; Harris et al., 2019).

Recent studies suggest that the phylogenetic tree which integrates the taxonomic relationships can be

utilized to enrich the microbial feature representation (Oudah and Henschel, 2018; Reiman et al., 2020).

Therefore, in this study, we consider the taxa on a phylogenetic tree as pixels in an image to extract the

taxonomic spatial information from the tree-based topological structure. After obtaining the phylogenetic

trees from the previous steps, we extract the taxonomic information by traversing the taxon nodes on the

tree. Specifically, two popular algorithms in the data structure are leveraged to traverse the phylogenetic

tree. The first is postorder traversal:

� Traverse the left subtree,

� Traverse the right subtree,
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� Visit the root;

and the second one is level traversal:

� Traverse every node on each level of the tree from left to right and top to bottom.

The traversing order of the taxonomic annotations of microbial features is preserved when traversing the

phylogenetic tree, which can be treated as the hierarchical information among taxa. For the postorder

traversal, neighboring taxa on the phylogenetic tree are rearranged as a sequential order from left to right,

and the obtained sorting order congregates the taxa with the same ancestors. In contrast, for the level

traversal, different levels on the phylogenetic tree can be treated as diverse evolution stages. Theoretically,

the farther the distance to the root node is, the longer time needed for evolution and the fewer similarities

with the ancestor. In this case, the level traversing order implies genetic information. Herein, the proposed

taxonomic representation is similar to the alphabet-sorting representation approach which assembles the

microbial features with similar taxonomic names (Oudah and Henschel, 2018; Reiman et al., 2020). Howev-

er, the difference is, instead of solely considering the alphabetically taxonomic annotations, we match the

related taxa with the kinship on a phylogenetic tree by traverse. The instance of taxonomic representations

is depicted in Figure 4.

The obtained sorted features can preserve the hierarchical information on the phylogenetic tree and

enable us to adapt CNN for feature extraction. Herein, since the two proposed taxonomic representations

are implemented in different perspectives, to further simulate the image structure, we conduct different

matrix conversions for the obtained sequential vectors. For postorder traversal-based representation, to

preserve the topological structure and congregate neighboring taxa as much as possible, we reshape

the vector following a ’Z’ shape path to construct the matrix. In contrast, for level traversal-based represen-

tation, the matrix is obtained by directly reshaping the vector from top to bottom and left to right, to simu-

late the evolution stage on the phylogenetic tree. After that, the species abundances are mapped to

microbial features with specific taxonomic annotations. Herein, bothmatrices with different taxonomic rep-

resentations can be regarded as images, while the normalized species abundances in the matrices can be

regarded as the pixels. The image size is defined to be n � n, where n is the minimum integer to make n �
nRN, andN is the dimension of the input features. Specifically, the ceiling function is applied to solve the

non-integer case. If the square of the obtained image size is more than the original dimension, the missing

part will be complemented by zeros. Finally, for each taxonomic representation, we obtain an abundance

matrix withNmicrobial features. The features are then converted to a grayscale image as the input of CNN.

Transformation details can be seen in Figure 5.

Convolutional neural network

After utilizing the taxonomic representation to embed the biological knowledge intomicrobial features, we

adopt CNN to extract the taxonomic relationship and train the classifier. A standard CNN usually consists

of a series of convolutional layers, pooling layers, and fully connected layers. In this study, the convolutional

layer is utilized to extract deep spatial patterns in microbial features. A 1D convolution can be formulated

as:

sðnÞ = ðx �wÞ½n�=
XN�1

m= 0

xðmÞwðn�mÞ (Equation 1)

where � is the symbol for convolutional calculation. xðnÞ is the input sequence, wðnÞ is the filter, and sðnÞ is
the output sequence. m represents each element when traversing the sequence xðnÞ, and N defines the

length of the input sequence. Similarly, the equation can be extended to 2D convolution:

sðn;mÞ = x � w½n;m�=
XN�1

a= 0

XM�1

b = 0

xða;bÞwðn� a;m� bÞ (Equation 2)

where xðn;mÞ,wðn;mÞ, and sðn;mÞ respectively represent the input matrix, filter, and output matrix over two

different dimensions. a and b represent each element in row and column when traversing thematrix xðn;mÞ.
N and M define the length and width of the input matrix. Besides, we utilize pooling layers to remove the

redundancy and simplify the model complexity, and the fully connected layers are applied to accept the

extracted features for final classification. Softmax is adopted as the activation function for the output layer

to calculate the class probability:
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pðy = cjxÞ = exp
�
wT

c x
�

exp ðwT
1 xÞ+/+ exp ðwT

K xÞ
(Equation 3)

where pðy = cjxÞ defines the probability of the c-th class, y is the class label and x is the input feature. w is

the weight coefficient and K represents the number of total classes. The class with the largest response of

wT
c has the highest predicted probability. A binary cross-entropy is utilized as the loss function:

Hp

�
q
�
= � 1

N

XN

i =1

yi log
�
pðyiÞ

�
+ ð1� yiÞlog

�
1�pðyiÞ

�
(Equation 4)

where the notation HpðqÞ represents the cross-entropy of the distribution q relative to a distribution p. yi is

the actual label and pðyiÞ is the predicted label. N is the number of training samples in a given set. The

utilized optimizer is Adam, and Rectified Linear Unit (ReLU) is applied as the activation function for all

the previous layers. Specifically, to avoid overfitting, Dropout and L2 regularization are executed on all pre-

vious layers. Besides, we conduct early stopping to prevent the network from being over-trained. In this

study, LeNet (LeCun et al., 1998) architecture is adopted for our CNN as it obtained the best overall per-

formance among all the datasets.

Ensemble strategy

The ensemble model has been proved to relieve the overfitting risk and achieve better performance than a

single model (Kang et al., 2020). In our study, an ensemble model is constructed by fusing the abundance

profiles of known and unknown microbial organisms and two kinds of taxonomic representations to

comprehensively assess the decisions from multiple perspectives. Specifically, EPCNN is composed of

four single models: a known-profile-based (abundance profiles of known microbial organisms) model

with postorder representation, a known-profile-based model with level representation, an unknown-pro-

file-based (abundance profiles of unknown microbial organisms) model with postorder representation,

and an unknown-profile-based model with level representation. Finally, the class probability of each model

is output and the soft-voting strategy is used to calculate an average result. The illustration of our EPCNN

can be seen in Figure 5.

Weighted random forest

Since the proposed deep learning module is a black-box model that cannot explicitly indicate the informa-

tive features for biological insights, we additionally introduce a random forest model to complement its

poor interpretability. Herein, a weighted strategy is utilized based on the random forest to evaluate the

abundance profiles of known and unknown microbial organisms, providing the reference weight to explain

each feature. Specifically, assume that the abundance profiles of both known and unknown microbial or-

ganisms have the same weights (i.e., 0.5), for each feature set, we utilize cross-validation to test the different

combinations of the hyperparameters in a random forest and choose the model with the best average per-

formance. The best average metric (i.e., AUC) is considered as the weight for each kind of feature since it

represents the classification ability of the isolated datasets to some extent.

The idea is leveraged from the Out-of-Bag (OOB) strategy (Dimitriadis et al., 2018) to compute the respec-

tive feature weights for both abundance profiles of known and unknown microbial organisms. Since the

best hyperparameters are chosen in the same parameter space and the evaluation metrics are computed

separately for each considered type of feature, the obtained weights are representative and relatively fair.

After that, the performance metrics are normalized by dividing by their sum and serving as the weights for

different feature sets. Compared to the simple concatenation, the proposed strategy can significantly

reduce the influence of feature redundancy as the models are separately trained. The basic classifier is

set to be a random forest since it can output the weights to measure the importance of each feature. Finally,

the informative features in random forests associated with highly ranked importance coefficients are picked

out for further analyses.

Description of baseline approaches

We compare both WRF and EPCNN with five state-of-the-art predictors, which are MetaML (Pasolli et al.,

2016), DeepForest (Zhu et al., 2018), MetaNN (Lo and Marculescu, 2019), MicroPro (Zhu et al., 2019), and

DeepMicro (Oh and Zhang, 2020). The input for all the comparison predictors includes abundance pro-

files of both known and unknown microbial organisms. Besides, the results are obtained by averaging
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20 times running to avoid the bias caused by overfitting and random weight initialization. MetaML is a

computational tool for metagenomics-based prediction tasks including automatic model and feature se-

lection steps. The basic classifier is SVM with a radial basis function (RBF) kernel, combined with 5-fold

cross-validation and grid search to choose the best parameters. DeepForest introduced a cascade deep

forest (CDF) to keep the spatial structure between nodes through embedding phylogenetic tree informa-

tion for metagenomic data classification. MetaNN utilized the alphabet-sorting for feature representa-

tion combining with 1D-CNN as the final classifier. The architecture for 1D-CNN includes 2 convolutional

layers and 2 max-pooling layers with the kernel size of 1*3 and pooling size of 1*2 respectively.

DeepMicro is a deep representation learning framework for microbiome profiles that uses deep autoen-

coders to transform the high-dimensional microbiome data into a robust low-dimensional representa-

tion. Herein, we select the suggested CAE and MLP classifier for comparison. For MicroPro, we fused

the abundance profiles of both known and unknown microbial organisms and train a random forest

for classification. The grid search and cross-validation are used to choose the best parameters, the num-

ber of max features, max depth, and estimators in the random forest are chosen in the range of [0,1.0],

[1,10], and [100, 2000] respectively.

The implementations of all the methods are under the same evaluation standard and hardware equipment.

The extracted abundance profiles of known and unknown microbial organisms are used as the standard

starting point for comparison, with five methods conducting their feature representation and classification

respectively. For SVM inMetaML, random forest in MicroPro, and ensemble classifiers in DeepForest, since

they all utilized cross-validation and grid research functions in scikit-learn (https://scikit-learn.org/stable/)

to choose the best parameters, in order to keep a relatively fair comparison, we set ’’n jobs’’ to be�1 to use

all the cores to run the program in parallel. For DNN-based classifiers (MetaNN andMicroPro), we used the

GPU acceleration computation for training. The average running time of 20 times experiments is recorded

for comparison.

Regarding the baselinemethods ofWRF, we implement different feature selectionmethods with respect to

considering the features of both known and unknown microbial organisms (Raw and MicroPro). Raw is

based on the random forest of the original version (Breiman, 2001). It simply concatenates the known

and unknown as a one-dimensional vector without any normalization as the input. MicroPro is proposed

by Zhu et al. (2019), which utilizes Boruta feature selection method to select the important features (Kursa

and Rudnicki, 2010). MicroPro calculates the mapping rate for each sample and multiplies the known and

unknown abundances to satisfy the sum of them to be one constraint as the input. For both Raw and

MicroPro, the model is trained under the 5-fold cross-validation with grid search to choose the best param-

eters. For our WRF, the corresponding best mean cross-validated scores of the best estimators chosen by

grid search are normalized and served as the weights for abundance profiles of both known and unknown

microbial organisms. After that, the combination of the weighted features is used to train the random forest

as well as sort out the important features. Notice that for feature selection, we trainedWRF based on all the

data whichmakes the selected features more representative. In addition, the proposedWRF can be utilized

as a classifier. When being applied for the prediction tasks, we train aWRF on the training data to obtain the

weights for abundance profiles of both known and unknown microbial organisms. After that, the same

weights are applied to the test data to evaluate the performance of the new classifier.

Ablation settings

Regarding the ablation experiments of the proposed taxonomic information, the comparisons of the pre-

diction performance with/without taxonomic tree spatial information are based on the same parameter

settings and DNN architectures. For models without taxonomic tree spatial information, we simply

removed the feature extraction layers of CNN.

For DNN-based comparisons, the input of MLP is the raw microbial features. For 1D-CNN model, the

input is the raw microbial features with phylogenetic representation. For 2D-CNN model, the input is

the microbial features with phylogenetic representation and matrix conversion. For all the layers in

DNN models, Dropout is utilized with the ratio of 0.2. We also implemented L2 regularization and the

ratio is set to be 0.0001. Besides, we conduct early stopping to avoid the network being over-trained.

The patience is set to be 10 and the tolerance is set to be 0.00001. The number of hidden units is

selected among 512, 256, 128, and the number of layers is selected among 1, 2, 3. The batch size is

set to be 1 for all the datasets.
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Development environment

In this study, Keras is adopted as the deep learning library support for its accessibility and flexibility. The

experimental environment is Intel Core i79700K CPU, GTX 2080Ti graphics card, 64G memory, and 1T

hard disk. The operating system is Ubuntu 18.04, and Anaconda platform is used for Python development.

Besides, in order to speed up the training process of our deep learning models, we utilized the GPU accel-

eration technology CUDA developed by Nvidia.

QUANTIFICATION AND STATISTICAL ANALYSIS

Evaluation metrics

In order to facilitate the comparisons with other state-of-the-art predictors, we follow the same evaluation

standard as MicroPro (Zhu et al., 2019) to examine the effectiveness of our models. Herein, we randomly

separate the dataset into the training set and the test set with a ratio of 7:3. For all the datasets utilized

in this study, the classification task is to predict the states or existence of a certain disease (T2D, LC, or

CRC) given the information of the microbial composition for a specific subject (i.e., a binary classification

problem is defined for each considered experiment where true denotes disease and false denotes control).

AUC is selected as the evaluation metric in our work according to the previous studies (Pasolli et al., 2016;

Zhu et al., 2019; Lo and Marculescu, 2019; Nguyen and Zucker, 2019). AUC can show both sensitivity and

specificity for prediction. Generally, the higher the AUC score, the better a classifier performs for the given

task. A 0.5 AUC means a random guess while a 1 AUC indicates perfect classification. To prevent the opti-

mistic bias caused by the random split and weight initialization in our models, we repeatedly run the exper-

iments 20 times and the final results are obtained by an average of 20 times running. The above procedure

was executed for all the experiments including the comparison methods used in this study. Besides, the

boxplots are provided for robust and fair comparisons.
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