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Background: Increased arterial stiffness is associated with diastolic dysfunction in

adults. Data in youth are lacking, so we examined the impact of arterial stiffness on

diastolic function in youth.

Methods: We obtained diastolic function and augmentation index, pulse wave velocity,

brachial artery distensibility, and carotid stiffness on 612 youth [10–24 years, 65%

female, 38% normal weight, 36% obese, and 26% with type 2 diabetes mellitus (T2DM)].

Participants were classified as compliant (C) vs. stiff (S) arteries based on seven arterial

stiffness parameters [Global Stiffness Index (GSI), S = GSI > 4). Mean differences in

covariates were evaluated by Student’s t-tests. A stepwise regression analysis was

performed to determine if GSI was an independent predictor of diastolic function.

Results: Lower diastolic function and more adverse cardiovascular disease (CVD) risk

factors were present in the S group (n = 67) than the C group (n = 545) (p < 0.001).

Covariates that were associated with diastolic dysfunction were higher GSI, male sex,

higher body mass index (BMI), and systolic blood pressure (SBP) z-score (R2 = 0.18 to

0.25; p ≤ 0.05).

Conclusion: Adverse diastolic function is seen in youth with increased arterial stiffness

independent of CVD risk factors. Interventions to improve arterial stiffness prior to clinical

onset of diastolic dysfunction are needed to prevent development of heart failure.

Keywords: arterial stiffness, diastolic dysfunction, pediatrics, obesity, T2DM

INTRODUCTION

Effective cardiovascular disease (CVD) prevention requires identification of risk factors prior to
the onset of clinical burden. While it is commonly understood that adults with obesity or obesity-
related type 2 diabetes mellitus (T2DM) are at increased risk for CVD (1), the evidence regarding
the extent to which these risk factors impact the pediatric age range is not well-characterized.

Diastolic dysfunction is a risk factor-related measure of target organ damage that predicts heart
failure (2, 3) and CV events in adults (4). Emerging evidence suggests that pre-clinical diastolic
dysfunction [diastolic dysfunction with normal systolic function and without symptoms of heart
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failure (5)] exists in hypertensive adolescents (6) and youth with
obesity or T2DM (7). One mechanism for the development
of diastolic dysfunction may be increased afterload on the
heart induced by increased arterial stiffness (8, 9). Pediatric
studies show that arterial damage is associated with higher left
ventricular mass (10) and with reduced systolic strain (11). We
sought to determine the relationship between arterial damage
and diastolic function in healthy youth and those with CV risk
factors including obesity and T2DM.

METHODS

The study population consisted of 612 youth (age 10–24 years,
mean 18 years, 65% female, 62% non-Caucasian, and 26% with
T2DM) who participated in a study comparing cardiovascular
parameters among adolescents and young adults who were lean
(L), obese (O), or obese with T2DM (T). Pregnant females were
excluded from the study. Investigational review board approval
was obtained. Written informed consent was obtained from
subjects 18 years or older and from the guardian for subjects <18
years old. Written assent was obtained for subjects<18 years old.

CV Risk Factor Measurements
The mean of two measures of height with a calibrated
stadiometer (Veeder-Rood, Elizabethtown, North Carolina) and
two measures of weight with a Health-O-Meter electronic
scale (Jarden Consumer Solutions, Rye, New York) were
used in analyses. Body mass index (BMI) was calculated
as weight (kilograms) / height (meter) (2). The mean of
three resting measures of blood pressure (BP) with mercury
sphygmomanometry collected after 5min of rest according to
pediatric guidelines (12) was obtained. After an overnight fast,
plasma glucose was measured with a Hitachi model 704 glucose
analyzer (Roche Hitachi, Indianapolis, Indiana) with intra-
assay and inter-assay coefficients of variation of 1.2 and 1.6%,
respectively. Plasma insulin was measured by radioimmunoassay
with an anti-insulin serum raised in guinea pigs, indium125-
labeled insulin (Linco, St. Louis, Missouri), and a double-
antibody method to separate bound from free tracer with a
sensitivity of 2 mmol (intra-assay and inter-assay coefficients
of variation of 5 and 8%, respectively). Glycated hemoglobin
A1c (HbA1c) was measured by use of high-pressure liquid
chromatography. Fasting plasma lipid profiles were performed
with standardized methods from the National Heart Lung and
Blood Institute–Centers for Disease Control and Prevention,
and low-density lipoprotein cholesterol concentration was
calculated with the Friedewald equation. C-reactive protein
(CRP) was measured with a high-sensitivity enzyme-linked
immunosorbent assay.

Arterial Stiffness Measurements
Vascular function testing was conducted after 5min of rest in the
supine position. Three measures of brachial artery distensibility
(BrachD) were obtained with a DynaPulse Pathway instrument
(Pulse Metric, Inc., San Diego, California). This device derives
brachial artery pressure curves from arterial pressure signals
obtained from a standard cuff sphygmomanometer. Brachial

artery compliance is derived from waveform parameters, and
then BrachD is calculated as compliance normalized to baseline
brachial artery diameter (estimated from a regression equation
developed from ultrasound, adjusting for sex and body size). This
variable is equivalent to other measures of distensibility, such as
those measured with ultrasonography, in that it represents the
relative change in volume per unit of pressure and is expressed
with the units of %change/mmHg. Repeat measures in our
laboratory show coefficients of variability <9%.

Three measures of pulse wave velocity (PWV) were measured
and averaged with a SphygmoCor SCOR-PVx System (Atcor
Medical, Sydney, Australia). PWV is a measure of the
difference in the carotid-to-distal path length divided by the
difference in R-wave-to-waveform foot times (m/s). Specifically,
electrocardiography (ECG) leads were applied to the carotid
artery, the sternal notch, and the distal artery of interest
(femoral, radial, and dorsalis pedis). A pressure tonometer the
size of a pencil is placed on the proximal artery (carotid) then
distal to obtain arterial waveforms gated to the R-wave on the
electrocardiography tracing. The ECG recording was used to
measure heart rate. Repeat measures in our laboratory show
coefficients of variability <7%.

Three measures of augmentation index (AIx) were collected
with the SphygmoCor device. The pressure sensor is applied
to the radial artery to collect radial artery pressure waves
that are calibrated to a non-invasive blood pressure (Pulse
Metric, Inc., San Diego, California). A generalized transfer
function validated against invasive catheterization data is used to
calculate central (aortic) systolic blood pressure (SBP), diastolic
blood pressure (DBP), mean arterial pressure (MAP), and pulse
pressure (PP) and reconstruct the central aortic pressure curve.
AIx, adjusted to a heart rate of 75 beats per minute, is calculated
utilizing the ascending aorta pressure curve. AIx is the pressure
difference between the primary (main outgoing wave) and
the reflected wave of the central arterial waveform, expressed
as a percentage of the central pulse pressure. Reproducibility
studies in our laboratory demonstrated intra-class correlation
coefficients between 0.7 and 0.9 for all variables.

Carotid Ultrasonography
Carotid ultrasound studies were performed by a single
registered vascular technologist using high-resolution B-
mode ultrasonography (GE Vivid 7; GE Healthcare, Milwaukee,
Wisconsin) with a high-resolution linear array vascular
transducer (7.5 MHz). An optimal two-dimensional (2D) image
of the common carotid artery was obtained, where both the
near and far wall intima/media complex were well-visualized.
The M-mode cursor was then placed 1 cm proximal to the
beginning of the carotid artery bulb. Multiple image loops were
digitally transmitted by use of the Camtronics Medical System
(Camtronics Medical Systems, Hartland, Wisconsin) for off-line
reading. The maximal and minimal lumen diameters were read
from the M-mode tracing for calculations of carotid stiffness.
Calculations included arterial compliance (AC), beta stiffness
index (β), circumferential arterial strain (CAS), Peterson’s elastic
modulus (PEM), and Young’s elastic modulus (YEM). Because
of pulse-wave amplification along the arterial tree, which results
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in overestimation of brachial SBP, the central BP calculated from
the radial artery pressure curve using the SphygmoCor device
(obtained no more than 30min before the carotid scan) was used
in the calculations of carotid artery stiffness.

Echocardiographic Technique
Echocardiograms were obtained with a GE Vivid 5 or 7
(Milwaukee, WI, USA) or Philips Sonos 5500 (Andover, MA,
USA) ultrasound system. A complete 2D pulsed Doppler, tissue
Doppler, and color Doppler echocardiographic examination was
performed on each participant. All images were obtained with
the participant in the left lateral decubitus position to acquire
parasternal long-axis, parasternal short-axis, and apical four-
chamber views for a total of three cardiac cycles. Left atrial
diameter (LAD) was measured in the long axis and indexed
to height (LAD/ht). Measurement was performed off-line by
either of two sonographers using a Cardiology Analysis System
(Digisonics, Houston, TX, USA).

The assessment of mitral inflow velocity was obtained with
pulsed wave Doppler parallel to mitral inflow in the apical four-
chamber view, and maximal velocity measured at the mitral valve
leaflet tips. The mitral peak E (early filling) and A (inflow with
atrial contraction) waves were measured off-line, and an E/A
ratio was calculated. Tissue Doppler imaging of myocardial flow
velocities was acquired in the apical four-chamber view. The
peak and late velocities of mitral annular flow were recorded
at both the septal annulus (e′-sept, a′-sept) and lateral annulus
(e′-lat, a′-lat). The e′/a′ ratios were calculated in addition to E/e′-
lat and E/e′-sept ratios. The E/e′ ratio corrects for myocardial
relaxation in transmitral flow (E) and has been shown to correlate
with left ventricular (LV) end-diastolic pressure (7). In adults,
an E/e′-lat of >10 is predictive of elevated LV filling pressures,
and <6 is normal. In addition, the left atrial size was assessed by
two-dimensional-directed M-mode and indexed to height.

Statistical Analysis
All analyses were performed with Statistical Analysis Software
(SAS R©, version 9.1.3, Cary, North Carolina). Variance-stabilizing
measures to transform non-normal values were performed as
needed. The 95th percentile for each of the seven arterial
stiffness measures (BrachD, AIx, PWV, AC, β , CAS, PEM,
and YEM) for lean subjects without diabetes was determined.
Subjects were given a score of 1 for the parameter if ≥95th
percentile for the lean group (≤5th percentile for AC and
BrachD) and 0 if below the cutpoint (overall, a total of 7 points
are possible). Global Stiffness Index (GSI) was calculated as the
sum of the stiffness points for each of the four measures of
carotid artery stiffness and the three non-ultrasound measures
of arterial stiffness. The GSI has been shown to be linearly
related to LV mass index in a previous study (10). Subjects
were stratified into either “compliant arteries” (CA) or “stiff
arteries” (SA) based on their GSI score (a score of 4 or
greater, which was the 95th percentile for GSI for the lean,
healthy group, qualified as stiff). Average values for demographic,
anthropometric, BP, and laboratory values were obtained for
each group. Student’s t-tests were performed to determine
differences by stiffness classification. The χ

2 analyses were

TABLE 1 | Demographics and metabolic profile of study participants stratified by

Global Stiffness Index category (n = 612, mean ± SD or frequency).

Variable Compliant (n = 545) Stiff (n = 67) P value

Age (years) 17.8 ± 3.3 19.5 ± 3.2 <0.01

Sex (% male) 192 (35.2%) 18 (26.9%) NA

Race (% non-Caucasian) 335 (61.5%) 46 (68.6%) NA

Presence of T2DM (%) 127 (23.3%) 30 (44.8%) NA

Weight (kg) 87 ± 31 113 ± 26 <0.01

Height (cm) 167 ± 11 168 ± 10 NS

BMI (kg/m2) 31 ± 10 40 ± 8 <0.01

SBP (mmHg) 114 ± 12 124 ± 12 <0.01

DBP (mmHg) 63 ± 12 71 ± 15 <0.01

HR (beats/min) 66 ± 11 72 ± 11 <0.01

TChol (mg/dl) 169 ± 35 184 ± 43 <0.01

LDL-C (mg/dl) 99 ± 29 114 ± 40 <0.01

HDL-C (mg/dl) 50 ± 13 46 ± 11 <0.01

TG (mg/dl) 96 ± 67 126 ± 73 <0.01

Fasting glucose (mg/dl) 103 ± 43 123 ± 70 <0.01

Fasting insulin (mU/ml) 18 ± 15 23 ± 12 <0.01

HbA1c (%) 5.97 ± 1.8 6.72 ± 2.3 <0.01

hsCRP (mg/l) 4 ± 6.5 6.5 ± 7.3 <0.01

T2DM= type 2 diabetes mellitus; BMI= bodymass index; SBP= systolic blood pressure;

DBP = diastolic blood pressure; HR = heart rate; TChol = total cholesterol; LDL-C =

low density lipoprotein concentration; HDL-C = high density lipoprotein concentration;

HbA1c = glycoselated hemoglobin; hsCRP = high sensitivity C-reactive protein.

performed for categorical variables. Bivariate correlations were
calculated for GSI, covariates, and diastolic function variables.
Variables that were significant in the bivariate analysis were
included as potential independent predictors in the general linear
model analyses. The full model contained the following data:
demographic (age, race/ethnicity, sex, and presence of T2DM),
anthropometric (BMI z-score), hemodynamic (SBP z-score,
DBP z-score, and HR), and laboratory (fasting glucose, fasting
insulin, HbA1c, low-density lipoprotein cholesterol, high-density
lipoprotein cholesterol, triglycerides, and CRP). The significance
of each covariate in the initial model was assessed, and non-
significant terms were removed by backward elimination until all
remaining covariates or their interaction terms were significant.
Robustness of the models was assessed with the use of the
maximum R-square technique.

RESULTS

The population included 612 youth (10–24 years, 65% female,
and 62% non-Caucasian) enrolled in one of three groups (38%
lean, 36% obese without T2DM, and 26% obese with T2DM).
When stratified as having compliant or stiff arteries (Table 1),
participants with stiff arteries were older and more obese and
had higher peripheral BP and heart rate, a more adverse lipid
and metabolic profile, and more evidence of inflammation (all
p ≤ 0.01). Specifically, lipids in the stiff group were within
normal limits, but glucose, insulin, and HbA1c were elevated,
sincemore diabetics were included in the group. Additionally, the
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stiff group had a mean SBP in the elevated BP category according
to BP guidelines (12).

Consistent with stratification by GSI, the stiff cohort had
arterial function measures (AIx, PWV, β , PEM, YEM, AC, CAS,
and BrachD) that were in the direction of higher arterial stiffness
(Table 2). The stiff group also had significantly lower E/A ratio
and e′/a′, as well as higher E/e′, all suggesting pre-clinical diastolic

TABLE 2 | Cardiovascular parameters stratified by arterial stiffness category

(mean ± SD).

Variables Compliant (n = 545) Stiff (n = 67) P value

Stiffness variables (means)

AIx (%) 1.65 ± 11 8.27 ± 13 <0.01

BrachD (%1/mmHg) 6.15 ± 1.3 4.73 ± 0.6 <0.01

PWV (m/s) 5.9 ± 1 7.3 ± 1.2 <0.01

AC (mm/mmHg) 0.27 ± 0.07 0.20 ± 0.06 <0.01

Beta (unitless) 2.2 ± 0.5 2.9 ± 0.9 <0.01

CAS (unitless) 0.19 ± 0.04 0.16 ± 0.05 <0.01

PEM (mmHg) 192 ± 65 209 ± 77 NS

YEM (mmHg/mm) 256 ± 112 403 ± 150 <0.01

Diastolic variables

E/A ratio 1.99 ± 0.55 1.76 ± 0.43 <0.01

e′/a′ avg 2.36 ± 0.65 1.91 ± 0.48 <0.01

E/e′ avg (LVEDP) 6.47 ± 1.43 7.29 ± 1.68 <0.01

LA diameter/ht (cm) 1.98 ± 0.32 2.21 ± 0.33 <0.01

dysfunction (Table 2). There was a linear relationship between
increasing levels of GSI (0–7) and lower diastolic function
including increased LAD/ht (Figure 1) and between lower E/A
ratio (Figure 2) and e′/a′ (Figure 3). There was a similar increase
in E/e′ across GSI score (data not shown).

General linear models demonstrated that GSI was
independently related to diastolic function (p ≤ 0.0001 for
LAD/ht, E/A, and e′/a′). Other important covariates associated
with lower diastolic function were male sex, higher BMI and SBP
z-score, age, LDL, CRP, and HR (R2 = 0.16 to 0.40; model p ≤

0.001 and all parameters p≤0.05) (Table 3).

DISCUSSION

Our study findings demonstrate that higher arterial stiffness,
independent of traditional CVD risk factors, is associated with
lower diastolic function in youth. Importantly, these changes
in youth are pre-clinical and represent an early form of
cardiac disease that is measurable before most other traditional
determinants of cardiac disease, such as overt heart failure.

Clinical symptoms of heart failure are common in the
adult population, experienced by at least 6.2 million Americans
according to American Heart Association data (1). However,
many more adults may have asymptomatic diastolic dysfunction,
with the prevalence in the Framingham Heart Study reported
to be 36% (1). This is relevant since diastolic dysfunction is
predictive of incident heart failure (3), reduced quality of life (13),
and all-cause mortality (3, 5, 14).

FIGURE 1 | Left atrial dimension/height regressed on the Global Stiffness Index (mean with 95% confidence limit). R2 = 0.40; P for slope differs from zero <0.0001 in

fully adjusted model.
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FIGURE 2 | Regression of E/A ratio on the Global Stiffness Index (mean with 95% confidence limit). R2 = 0.16; P for slope differs from zero <0.0001 in fully

adjusted model.

FIGURE 3 | Regression of e′/a′ average on the Global Stiffness Index (mean with 95% confidence limit). R2 = 0.29; P for slope differs from zero <0.0001.
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TABLE 3 | Independent determinants of diastolic function.

Variable LAD/ht E/A e′/a′* E/e′*

Intercept 1.73 1.48 1.73 1.67

Presence of T2MD −0.079 0.072

GSI 0.029 −0.049 −0.032 NS

Male sex 0.058

BMI z-score −0.029 −0.051 0.060

Age (years) −0.013 −0.017

SBP z-score 0.072

HR (beats/min) −0.0067 −0.0075

LDL (mg/dl) −0.00075

CRP (mg/dl) 0.0052

R2 0.40 0.16 0.29 0.23

All models p ≤ 0.0001 and all parameters p ≤ 0.05.

*Average of septal and lateral TDI velocities.

All measures of diastolic function are unitless ratios.

Adult studies have demonstrated that increased pulse pressure
(a crude surrogate for arterial stiffness) is independently
predictive of not only diastolic dysfunction (15–17) but also
heart failure with preserved ejection fraction (18, 19). In
addition, carotid artery wall stiffness (20, 21) and aortic
compliance, a similar parameter, positively correlate with LV
diastolic function (22). Similar to our results, increased PWV is
independently associated with diastolic dysfunction in patients
with hypertension (23), type 2 diabetes (24), clustered CV
risk factors (25), and suspected coronary artery disease (26,
27). Measures of wave reflection including augmentation index
are also associated with diastolic dysfunction (28) and LV
filling pressure (E/e′) (9). Although an association cannot prove
causality, investigators have proposed that as cardiac output
falls with worsening diastolic function, neurohumoral activation,
and vasoconstriction increase vessel tone to maintain mean
arterial pressure and thereby increase vascular smooth muscle
mass, tone, and fibrosis, resulting in increased stiffness (29).
A direct relationship between neurohumoral activation and
increased carotid stiffness has been demonstrated in subjects
with heart failure (30). It is also possible that increased
pulse wave velocity generates an earlier reflected wave in the
cardiac cycle, increasing late systolic afterload, affecting thick–
thin myofilament interactions and crossbridge dissociation, and
leading to impaired relaxation (31, 32). The importance of
increased arterial stiffness in determining diastolic function
is seen in studies of normo- and hypertensive adults, where
relaxation assessed with tissue Doppler varies inversely with
afterload and vascular stiffness (31).Measurement of ventricular–
arterial coupling (VAC = ratio of arterial elastance to end-
systolic elastance) is also finding increasing usage as VAC
predicts outcomes in adults with cardiac disease and heart failure
(33). Our study provides a different method to evaluate the
relationship between arterial and cardiac function.

Few data are available examining the relationship between
arterial stiffness and diastolic function in adolescents. Our
previous work demonstrated that increased left ventricular mass
was associated with higher arterial stiffness (9), and carotid
intima media thickness was associated with reduced systolic

strain in healthy youth and those with obesity and T2DM
(11). One small study found a relationship between left atrial
strain (reflecting diastolic dysfunction) and measures of insulin
resistance in obese children (34). Bradley et al. found both
increased arterial stiffness and diastolic dysfunction in a group
of adolescents with type 1 diabetes mellitus, but did not evaluate
the association between the two factors (35). In a later study of
children with type 1 diabetes, endothelial function (brachial flow-
mediated dilation), which is associated with arterial stiffness,
was inversely correlated with isovolumic relaxation time, another
echocardiographic measure of diastolic function (36). Arterial
stiffness has also been associated with elevated LVM in youth after
repair of coarctation (37–39). Altered wave reflections leading
to increased afterload on the heart has been proposed as a
mechanism explaining this observation in youth with a history
of coarctation repaired at a young age (40).

Adult studies have also examined the impact of metabolic
syndrome (41) and T2DM (42) on arterial stiffness and diastolic
function. Roes et al. (41) used MRI to evaluate diastolic
dysfunction and found increased PWV and impaired LV diastolic
function in subjects withmetabolic syndrome, regardless of blood
pressure. However, the relationship between PWV and diastolic
dysfunction was not examined. Sharman et al. (1) found central
pulse pressure, reflecting central arterial stiffness similar to PWV,
but not brachial pulse pressure, reflecting stiffness of medium
muscular artery, independently predicted diastolic dysfunction
in subjects with T2DM. They concluded that increased central
stiffness, possibly due to amplified pressure wave reflections,
was one potential etiology of the observed abnormalities in LV
diastolic function in patients with T2DM. Our work extends the
observations of a relationship between arterial aging and diastolic
function to youth who are healthy, have uncomplicated obesity,
or have obesity-related T2DM.

Many studies have employed exercise interventions to
improve arterial parameters. Adult studies have shown a positive
association between exercise training and improvement in
endothelial dysfunction in adults with both insulin resistance (43,
44) and T2DM (44, 45). The study by Okada et al. actually saw
a decreased rate of cardiovascular events in those participating
in the exercise program (45). Similarly, exercise training has
been found to improve endothelial function (as measured by
FMD) in adolescents with obesity (46, 47) and T2DM (48). Some
studies have attempted to reverse cardiac dysfunction, with a
few demonstrating improved left ventricular diastolic function
in obese adults following successful weight loss (49, 50). The
effect of lifestyle modification on diastolic function has not been
studied extensively in youth. However, the above findings suggest
that the implementation of an exercise program in obese and
diabetic patients may be an appropriate investment of health care
dollars to decrease future risk of cardiovascular disease.

LIMITATIONS

Our cross-sectional design does not allow us to determine
the time sequence for the development of changes in arterial
stiffness and cardiac diastolic function. As a result, we cannot
speculate about causality and cannot precisely determine whether
increased arterial stiffness preceded the development of diastolic
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dysfunction or if the reverse is true. In addition, we do not know
if they developed simultaneously.

Because of the original study design, our population contains
a large proportion of obese subjects and subjects with T2DM
that may limit the generalizability of our findings to other
populations. Furthermore, both adiposity and the presence of
T2DM were important determinants of diastolic function. We
were neither able to assess the duration of obesity nor is
the duration of T2DM certain, as the earliest phase may be
asymptomatic and go unrecognized.

There may also have been other non-measured confounders
(for example, activity pattern and fitness level) that affected the
vascular-cardiac relationship. However, our findings are similar
to results obtained in adults with known cardiovascular risk
factors. Finally, equipment and expertise in collecting ultrasound
measures of carotid artery stiffness and non-ultrasoundmeasures
of arterial stiffness may not be readily available to many
pediatric care providers, thus limiting the applicability of the GSI
calculation to the clinical setting.

CONCLUSIONS

We conclude that lower diastolic function is seen in youth
with increased arterial stiffness independent of traditional CVD
risk factors. Arterial stiffness likely contributes to reduction in
diastolic function by increased pulse pressure and LV afterload.
Screening for arterial stiffness and diastolic dysfunction in obese
or T2DM adolescents may identify youth at increased risk for
developing early CVD and provide the temporal opportunity for
normalization of pre-clinical disease.
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