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Background
The red palm weevil, Rhynchophorus ferrugineus, belongs to Coleoptera: Dryophthori-
dae family and is native to tropical Asian regions which have become a most threaten-
ing pest of palm trees worldwide (Yan et al. 2015). R. ferrugineus is a concealed tissue 
borer that resides inside the trunk of the palms with a highly aggregated population 
distribution pattern and tree injuries are often severe when it is discovered (Abraham 
et al. 1998). The widespread nature of this pest is due to their ability of adoption to a 
broader host range, to a wider variety of climates, and practice of shipping the palm trees 
between different territories (Murphy and Briscoe 1999). In the newly invaded areas, 
this pest generally causes serious damage to the trees and significant economic losses are 
associated by minimizing the production of palms, and increases cost management in 
eradication of the pest (El-Sabea et al. 2009). Due to its concealed nature and exceptional 
colonization capability, integrated pest management strategies play an important role in 
controlling the red palm weevil (Vacas et al. 2014). With respect to this, large quantities 
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of insecticides are still applied to prevent and control R. ferrugineus infestations (Llácer 
et  al. 2013). However, trapping systems which include aggregation pheromone, date 
fruits, bait traps have been effectively and environmentally used to detect and control 
this pest (Abuagla and Al-Deeb 2012). New management strategies from the aspect of 
chemical ecology should be developed by understanding the R. ferrugineus olfactory 
system, which will be efficient in reducing the weevil populations and the usage of pes-
ticides. However, most of the olfactory genes have been deciphered by transcriptome 
sequencing are fragmental and their expression patterns are not well known (Yan et al. 
2015; Antony et al. 2016). Thus, the information regarding the molecular mechanisms 
underlying the olfaction in this species is scarce.

Odorant-binding proteins (OBPs) are hydrophilic soluble proteins which are com-
posed of approximately 130 amino acids and typically contain six conserved cysteine 
residues (Leal et al. 1999) which are secreted by the accessory cells around the olfactory 
neurons and are accumulated in the sensillar lymph (Klein 1987). OBPs are essential for 
insect olfaction which acts by transporting hydrophobic compounds through aqueous 
sensillar lymph to the receptors embedded on dendritic membranes of olfactory recep-
tor neurons from the external environment and is thought to be the first step in the rec-
ognition of chemical signals (Krieger and Breer 1999; Leal and Leal 2015). Hence, it is 
necessary to understand the mechanism of olfaction of R. ferrugineus OBPs which has 
an important role. Hence, in our study we reported the identification of 11 OBP genes 
from the antennae of this pest and analyzed their tissue expression patterns.

Methods
Insects and sample collection

Rhynchophorus ferrugineus was collected from cocoons but was originally collected in 
naturally infested palms in the suburbs of Hainan province. The lab colony was main-
tained as described in the study by Yan et  al. (2014). The antennae, heads (without 
antenna), thoraxes, abdomens, and legs of male and female were collected separately and 
frozen immediately in liquid nitrogen.

cDNA library construction and sequencing

Total RNA was extracted from approximately 100 antennae of both sexes after 5 days 
of emergence by Trizol regent. The quantity and quality of the total RNA was validated 
using spectrophotometer. 5  μg of total RNA was subjected to construct full length 
cDNA library using Creator SMART cDNA Library Construction Kit (Clontech, Moun-
tain View, CA, USA) according to the manufacturer’s instructions. During the library 
construction, 400–1200 bp fragments were selected. About 1000 clones were randomly 
sequenced from 5′-end of the gene. After BlastX annotation, the genes were assigned to 
the OBP family and were completely sequenced to obtain their full length cDNA. The 
signal peptide of the protein sequences were predicted using SignalP 4.0 server version 
(Petersen et al. 2011). Sequence alignments were performed using the program ClustalX 
(Thompson et al. 1997). Phylogenetic trees were constructed by MEGA version 5 based 
on the neighbor-joining algorithm method at bootstrap 1000 (Tamura et al. 2011).
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qPCR analysis

Total RNA from different tissues were extracted as mentioned above. After DNase treat-
ment, the cDNA was synthesized from 1 μg total RNA using a GoScript Reverse Tran-
scription System (Promega, USA). qPCR was performed using gene-specific primers 
(Table 1) by SYBR Premix EX Taq™ (TaKaRa, Dalian, Liaoning, China) in three biologi-
cal and technical replicates with different samples. PCR reactions were performed in a 
3-step amplification process at 94 °C for 30 s, 55 °C for 30 s, and 72 °C for 30 s. Expres-
sion levels of the genes were calculated relative to the control gene 18S RNA expression 
using the 2−��CT method (Livak and Schmittgen 2001). The total expression of one gene 
in all the tissues was set as 100 % and the percentage of one gene in each tissue was used 
to measure the expression level.

Results and discussion
Characteristics of OBP sequences

In total, 11 full length OBP genes from 36 clones named as RferOBP1-11 were iden-
tified from the antennal cDNA library sequencing, which have been deposited in the 
NCBI under the accession numbers KR780571 to KR780581 (Table 2). Compared to the 
49 OBPs identified in the genome of Tribolium castaneum, more OBP genes might be 
expected to be identified in R. ferrugineus by massive sequencing strategies and by using 
more different tissues that may also express OBPs (Tribolium Genome Sequencing Con-
sortium 2008; Zhu et al. 2013). The cDNA length ranged from 497 bp to 579 bp. The 
open reading frame (ORF) ranged from 396 to 441  bp, which encoded approximately 

Table 1 qPCR primers

Primer name Sequence (5′ → 3′)

RferOBP1 Reverse TCCTCGCCCAACATTAC

Forward TTTGACCGCCTCCTTTA

RferOBP2 Reverse TAGTCCAAGCGGATCTCACA

Forward CGTAGCACCAGTTTCCTC

RferOBP3 Reverse TTTTCAGCGACTCACCA

Forward GACATTTATCTAGCATAGCG

RferOBP4 Reverse TGGAGAACTCACCGACTC

Forward CGAACAACATAATCCCTTT

RferOBP5 Reverse CTGAACAACGCCAGAGG

Forward TCATTCCCAAACATACCA

RferOBP6 Reverse CTGAACAACGCCAGAGG

Forward TCATTCCCAAACATACCA

RferOBP7 Reverse TGGTGTCGGCCATCTCA

Forward CTTCGCCCTCGTCGTTT

RferOBP8 Reverse TGATGGTATGTGGGACTT

Forward ATGGTGGAGCCTGAGTT

RferOBP9 Reverse AGGCGACTGGGAGGTAG

Forward TGTGCGTCTGCGGATTT

RferOBP10 Reverse GGTACTCCTCGCTGTTT

Forward ATCCATAGATCCCGTTT

RferOBP11 Reverse AACAGGAGCAACAGAAGAT

Forward ATTACTGGCGGTAGGGT
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130 amino acid residues, with a predicted molecular weight of about 15 kDa. Except for 
RferOBP1, 8 and 9, the predicted pH of others were acidic. The amino acid sequences 
identity of RferOBP5 and RferOBP6 was 99  %, while their DNA sequence homology 
was only 62  % (Fig.  1). RferOBP5 and RferOBP6 might be the result of gene duplica-
tion events. Similar to the characteristics of OBP with a rather low level of sequence 
similarity (Forêt and Maleszka 2006; Zhu et  al. 2012), RferOBP1-4 and RferOBP7-11 
shared 8–65  % amino acid residual identities with each other. In addition, they con-
tained the characteristic sequence features for these proteins, such as conserved cysteine 
residues and signal peptide. All identified OBPs were used to construct a phylogenetic 
tree clustering with OBPs from T. castaneum (Fig. 2), which was the only species with 

Table 2 Characteristics of Rhynchophorus ferrugineus OBP genes

Gene name Nucleotide 
length (bp)

ORF length 
(bp)

Complete 
protein 
(aa)

Signal pep-
tide (aa)

Molecular 
weight 
(kDa)

Isoelectric 
point

Accession 
number

RferOBP1 556 405 135 19 15.27 8.43 KR780571

RferOBP2 569 396 132 18 15.18 4.42 KR780572

RferOBP3 568 402 134 20 15.03 5.25 KR780573

RferOBP4 497 396 132 18 14.86 5.02 KR780574

RferOBP5 509 399 133 17 15.21 4.43 KR780575

RferOBP6 533 399 133 17 15.16 4.43 KR780576

RferOBP7 580 441 147 19 16.68 6.59 KR780577

RferOBP8 556 432 144 18 16.16 7.01 KR780578

RferOBP9 579 432 144 21 15.56 7.78 KR780579

RferOBP10 570 429 143 19 15.82 4.6 KR780580

RferOBP11 571 402 134 18 14.96 4.29 KR780581

            
            
RferOBP1  : 
RferOBP2  : 
RferOBP3  : 
RferOBP4  : 
RferOBP5  : 
RferOBP6  : 
RferOBP7  : 
RferOBP8  : 
RferOBP9  : 
RferOBP10 : 
RferOBP11 : 
            

                                                                          
                                                                          
------MKLLIFSVCLLVSLLQVKCQTDKQKELLAQHYKHCVEETHVDQNVLQQARAGNFTDDPKLKDHILCIT
------MNNLVVLLLYIGYFLVQADLTPQQREELFKVQIECMEETGATDDMIMSAFAGNFSDDPIFKEHLVCIG
----MEKLFILLLQLVVLFVVVAGELTADQRKQFIVFQNECMQETGATDDMIMKALAGVFSDSPVFKNHLVCMG
-----MCRFTAILLISLCG-LIYGGMTPEQRTRFFNFQNECMQETGATDEMVLKAFAGELTDSPVFKDHLVCIG
-----MFYFSLILLNILASVLAYGTMTPEQRQRFLTFQGECMMESGTTEEMLLKAFMGEFTESSVFKDHLVCLG
-----MFYSSLILLNILASVLAYGTMTPEQRQRFLTFQGECMMESGTTEEMLLKAFMGEFTESSVFKDHLVCLG
----MNGLLKVSVLVIVVSAISCQEFTEEQKKKILENRKQCIEETKVNPELIEKADQGNFVDDNSLKCFTKCFY
---MGLLFFFLTLLILSINNGDCAMSEAQVKAAKKLVRNACIPKSKVTEEQVDGMHDGMWDLDKRGKCYLQCVM
-MKKCGVIVVLCVLIL-INDVVARMTEKQLQAAVKLVRNMCTGKTKATADDIDKMHKGDWEVDHNAMCYMWCSL
MSSLTELVVLLAVLSISIAKFDDSIISEDIRKLLKGLHDVCVSKTAVDEVLIEKLKDAEFTEDQKLKCYVQCLL
-------MFKTLPIVLALFLPYSSCISDEMKELAAQLHNACVAETGATEDAITNARAGTFADDDNFKCYFKCLF
                                                                          

     
     
 :  68
 :  68
 :  70
 :  68
 :  69
 :  69
 :  70
 :  71
 :  72
 :  74
 :  67
     

            
            
RferOBP1  : 
RferOBP2  : 
RferOBP3  : 
RferOBP4  : 
RferOBP5  : 
RferOBP6  : 
RferOBP7  : 
RferOBP8  : 
RferOBP9  : 
RferOBP10 : 
RferOBP11 : 
            

                                                                          
                                                                          
KKIGFQDDAGHLQKEVIQKKLKEAVKGN-EDQTKKLMEACA---VTNEDPKLQAFNAFKCIHNKAKINLL----
RKSGVIDDEGKYHKDLMKQGLMTFIND--ENTIDKMLEKCY---IEQDSVQELAYRMTKCLYNEHFGL------
LKTGIIDSDGNFHKDILKKGIMLIVNN--EAKVDAMLDKCH---VYFETQQESAFHLMKCLYEEHFGA------
MKGGVIDEQGNFHKDVMKKGIMLFVDD--EGKVDAMLDKCY---THYDTQQDTAFNMMKCMFKEHFGA------
MKTGVIDDEGNYHKDILKEEILSFIGD--ETKVDDILDTCY---IHYDTPQESAFNMMKCMFKEHFGV------
MKTGVIDDEGNYHKDILKEEILSFIGD--ETKVDDILDTCY---IHYDTPQESAFNMMKCMFKEHFGV------
QKAGFVNDEGEVQLDVVKAKLPPQADK---EQALAIVEKCK---IKGKDACDTVYLIHKCYFEHTHPELFKKDE
NFYKLQKPDNTLDWEAGIKMMETQAPPSLAPHGIKCMKECKDAAKTLNEKCTAAFEIAKCIYDIDPAQYFWP--
NMYKLMDKNNRFDRKS-ADAQLAQLPESMQKYVNKCIGQCENAATHFDDKCYAAWEYSKCMYFCDPEKYFLP--
VQTGSMDLAGHIDIEAAVELIPEQIRN----AVIKDVNKCAKDSEQVAEHCDRAFATLKCLYSVNPDIYYVF--
DQMAIMDDEGIIDVEAMIAVLPDEYQD----TLPPVIRKCDT--KKGANPCENAWLTHKCYYQENPAHYFLI--
                                                                          

     
     
 : 134
 : 131
 : 133
 : 131
 : 132
 : 132
 : 138
 : 143
 : 143
 : 142
 : 133
     

Fig. 1 Alignment of the amino acid sequences of Rhynchophorus ferrugineus OBPs
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known genomic sequence from Coleoptera and were distributed into all three groups. 
The phylogenetic tree had relatively large minus-C and classic OBP, and one plus-C OBP 
branches. Minus-C OBPs lack the second and fifth cysteine residues, and plus-C OBPs 
contained three additional conserved cysteines and one conserved proline (Xu et  al. 
2009). Four (RferOBP8-11) of the candidate sequences represented classic OBPs, each 
containing the six conserved cysteine residues. RferOBP1-7 showed minus-C OBPs, 
and there was no plus-C OBP. Of the 12 OBPs, RferOBP2-6 were clustered with each 
other together, rather than those from other insect species suggesting that they may be 
the products of recent gene duplications (Li et al. 2015a, b). These OBPs from different 
clades may have different functions, which are interesting to be determined. 

Tissue expression pattern

To uncover the tissue expression pattern, we used qPCR to assess the transcriptional 
abundance of the identified 11 OBP genes which showed varying degrees of expression 
in the antennae, head (without antenna), thorax, abdomen, and leg (Table 3). Except for 
RferOBP11 with abundant expression in female head and male thorax, RferOBP1-10 
showed a relatively higher expression in the antennae suggesting that the OBP genes 
identified in current study may play an important role in the olfaction (Leal 2013). Of 
them, RferOBP1, RferOBP4, RferOBP8 and RferOBP10 were obviously male biased 
which may play the same role as pheromone binding proteins and could play a role in 
odorant perception of certain plant volatiles (Zhang et al. 2015). RferOBP3 was highly 
expressed in the legs with near identical expression with the antennae. With respect 
to the other genes, RferOBP2, RferOBP5 and RferOBP6 were highly expressed in the 
female thorax, leg and abdomen, respectively. As head, thorax and leg have taste sen-
silla and other olfactory sensilla, OBP expressed in these tissues may function in the 
perception of non-volatile host chemicals, gustatory reorganization and other olfac-
tory function (Mitaka et  al. 2011). These results were similar to the previous studies 
which showed that OBPs of some insect are expressed primarily or exclusively in non-
antennae tissues or in larvae, which may have physiological functions independent 
of olfaction (Li et al. 2015a, b). This also reflects that the identification of these OBPs 
solely depend on the structural similarities and not function. Nonetheless, why OBPs 
are expressed in abdomen remains a mystery. RferOBP7 exhibited similar expression 
patterns with that of RferOBP11 and was expressed at a very high level in the female 
head and male thorax. The expression patterns make an important contribution to our 
understanding of OBPs in R. ferrugineus and might facilitate for their future functional 
characterization.  

Conclusion
The work presented here brings an identification of 11 OBP genes from red palm weevil 
by sequencing the antennal full length cDNA library. In particular, the expression profile 
studies provided a clear map of these genes, which may further facilitate other functional 
studies on these genes. These data enables a basis to reveal the molecular mechanisms of 
olfactory functions in the red palm weevil.
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