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Abstract: The Polyacrylonitrile (PAN)/g-C3N4/CdS nanofiber sono-photocatalysts were successfully
synthesized by an ordinary electrospining-chemical deposition method. The PAN/g-C3N4/CdS
heterojunction nanofibers constructed with the CdS nanoparticles deposited on the PAN/g-C3N4

nanofibers. The g-C3N4/CdS heterojunction increase of light absorption and the construction of
heterojunction can depress recombination of charge carrier and PAN nanofibers improve the recycla-
bility successfully. Finally, a highly effective photocatalytic activity was performed by degradation
of Rhodamine B (RhB) in visible light irradiation. Furthermore, an ultrasonic method is introduced
into the sono-photocatalytic system to enhance the degradation efficiency of RhB ascribed to the
synergistic effect of ultrasound.

Keywords: PAN/g-C3N4/CdS heterojunction; low power ultrasound; sono-photocatalytic activity;
nanofibers

1. Introduction

Semiconductor-based photocatalysts have attracted more and more attention, since Fu-
jishima’s team found water splitting with TiO2 in 1972 [1]. Especially in recent years, many
promising semiconductor photocatalysts, such as TiO2 [2–5], ZnO [6–8] and SnO2 [9–12],
have been widely reported. Among those, graphite-like phase carbon nitride (g-C3N4),
with inexpensive, physicochemical stability and suitable potentials, has been extensively
used to degrade refractory organic contaminants and hydrogen production as new metal-
free semiconductor photocatalysts [1,3–15]. However, the low sunlight response caused by
its intrinsic band gap (2.7 eV), and the strong recombination rate and low mobility of charge
carrier have restricted the photocatalytic activity of single g-C3N4 [16–18] seriously. There-
fore, many efforts, such as the metal or nonmetal elements doping, surface heterostructures
modification, etc., have been tried to improve its catalytic activity. In particular, construct-
ing a heterojunction with another semiconductor obtains a suitable potential, such as
g-C3N4/BiOI [19], LaFeO3/g-C3N4/BiFeO3 [20], and g-C3N4/Ag3PO4 [21], can depress
the recombination of charge carrier, and extend the solar response.

Herein, cadmium sulfide (CdS), with a suitable band gap of 2.42 eV, has been widely
reported as a sensitizer to achieve visible light response [22–25]. Nevertheless, due to the
photocorrosion caused by photogenerated holes self-oxidation, CdS would be very unstable
during the photocatalytic process [26–28]. Actually, the fabrication of heterostructures
would drive the holes from CdS transferring to another semiconductor, which is regarded
as an effective approach. By calculation, the potentials of g-C3N4 and CdS obtain a
well-matching, which is very suitable to form a high-quality heterojunction to facilitate
separation and transfer of photogenerated charge carrier [29–32].
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Nevertheless, poor dispersion and easy aggregation would be another important
issue for g-C3N4/CdS heterojunction, which would result in a significant decrease in
photocatalytic efficiency [33]. Meanwhile, the g-C3N4/CdS heterojunction photocatalysts
faced with the problems about separation and reuse, result in the large-scale unrealistic
application [34]. In order to solve these problems, a suitable support would be a promising
strategy. Polyacrylonitrile (PAN) nanofibers prepared by electrospinning with an over-long
one dimensional nanostructure and excellent flexibility are regarded as an ideal support for
fixing the heterostructure [35,36]. Therefore, the PAN/g-C3N4/CdS photocatalysts formed
by immobilization of g-C3N4/CdS on the PAN is more favorable for recycling in large-scale
photocatalytic reactions.

Moreover, the catalytic performance is expected to improve further. Recently, a
series of literatures have reported that the introduction of ultrasound would be an effi-
cient method. Compared with a single ultrasound or a single photocatalysis, the sono-
photocatalysis with synergistic effects will obtain a great improvement during the degra-
dation process [37,38]. Thus, the synergistic effects of ultrasound and photocatalysis is
reported as an efficient method for enhancing degradation efficiency in sonophotocatal-
ysis [39]. Additionally, this sonophotocatalysis also can produce a tremendous number
of active free radicals in a very short period of time, which are adequate to oxidate the
intractable organic pollutants [40].

In the paper, the PAN/g-C3N4/CdS nanofibers heterojunction were prepared by elec-
trospinning and chemical deposition. The optimum synthesis condition was investigated
to prepare PAN/g-C3N4/CdS heterojunction photocatalysts with excellent photocatalytic
performance. The sono-photocatalytic performance was investigated by the degradation
efficiency of RhB. Furthermore, the sono-photocatalytic mechanism of PAN/g-C3N4/CdS
nanofibers heterojunction was discussed.

2. Methods/Experimental
2.1. Chemicals

Melamine (C3H6N6, AR), thiourea (CH4N2S, AR), N, N-Dimethylformamide (DMF,
AR), and cadmium acetate dihydrate (Cd(CH3COO)2·2H2O, AR) were supplied from
Aladdin Chemical Co., Ltd. (Shanghai, China). Polyacrylonitrile (PAN, MW = 150,000) was
supplied from Sinopharm Chemical Reagent Co., Ltd. (Beijing, China). Chemical reagents
were not purified ulteriorly.

2.2. Synthesis of PAN/C3N4/CdS Heterojunction

The bulk g-C3N4 was synthesized through a process reported in previous litera-
ture [41]. As always, 5 g of melamine was put into a covered alumina crucible, warmed
to 550 ◦C at a rate of 5 ◦C min−1 in a high temperature furnace, and retained for 4 h.
Subsequently cooled to the room temperature, the acquired yellow product was gathered
and milled into powder for later use. Then, 1 g of bulk g-C3N4 was added into 10 mL of
sulphuric acid and agitated for 8 h under ordinary temperature. The gained mixed solution
was slowly devolved to a certain amount of deionized water and sonicated for exfoliation.
During this procedure, it may be observed that the color of gained suspension changed
from yellow to light yellow. The suspension was then centrifuged at 6000 rpm for five
minutes to eliminate all un-exfoliated g-C3N4, washed with deionized water for three times
to dispose of the remained sulphuric acid, heated to 80 ◦C, and held for 12 h in the air.

The PAN/C3N4/CdS heterojunction was synthesized by electrospinning-chemical
deposition method. In brief, 0.1 g of as-synthesized g-C3N4 was mixed into 8 mL of N,
N-Dimethylformamide (DMF) with sonication for 2 h, and then 1 g of polyacrylonitrile
(PAN) was placed into the above solution to form a uniform solution after agitating for 2 h.
The uniform solution was loaded into an injector for electrospun nanofibers. The process
condition of electrospinning was that the working high voltage was set to 15 kv, the injection
rate was set to 0.8 mL h−1, and the receiving distance was set to 15 cm. The obtained
PAN/C3N4 nanofibrous membranes were further warmed to 80 ◦C and held for 12 h.
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A certain amount of PAN/C3N4 nanofibers were dispersed into a mixed solution with the
same molar concentration of cadmium acetate and thiourea, and a pH value of the above
solution was then controlled to 10 through introducing ammonia water. It was found that
the light yellow fibers were transformed to yellow, and the PAN/C3N4/CdS nanofibers
was successfully prepared, which is shown in Scheme 1. The molar concentrations of the
mixed solution (cadmium acetate and thiourea) were 0, 0.05, 0.10, and 0.15, which are
labelled as PC, PC-Cd-0.05, PC-Cd-0.10, and PC-Cd-0.15.
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Scheme 1. A diagram of the PAN/g-C3N4/CdS heterojunction preparation.

2.3. Characterization

The phase analysis of the PAN/g-C3N4/CdS nanofibers was investigated through
X-ray diffraction (XRD, Bruker D8 diffractometer, Bruker AXS, Karlsruhe, Germany).
The micromorphology of the PAN/g-C3N4/CdS nanofibers was studied via scanning elec-
tron microscopy (SEM, Hitachi S-4800, Hitachi High-Technologies Corporation, Tokyo,
Japan) and transmission electron microscopy (TEM, JEM-2100, JEOL Ltd., Tokyo, Japan).
The UV–vis diffuse reflectance spectra (DRS) was taken on the UV–vis spectrometer (Pgen-
eral TU-1950, Beijing Purkinje General Instrument Co., Ltd., Beijing, China). The photolu-
minescence emission spectra (PL) of the PAN/g-C3N4/CdS nanofibers were recorded with
a fluorescence spectrophotometer (Varian Cary Eclipse, λex = 340 nm, Mulgrave, Victoria,
Australia) to examine the recombination of photon-generated charge carriers.

2.4. Sonophotocatalytic Activity Test

As can be seen from the Figure 1, the sono-photocatalytic system is made up of an
ultrasonic generator UP250 (Ningbo Scientz Biotechnology Co., Ltd., Ningbo, China), a
tungsten-halogen lamp (250 W) using a 420 nm light filter, and a 100 mL double jacket
quartz reactor. The sono-photocatalytic property of PAN/C3N4/CdS heterojunction was in-
vestigated through degradation of Rhodamine B in the sono-photocatalytic system. In this
experiment, 20 mg PAN/C3N4/CdS heterojunction samples were added into 100 mL of
10 mg/L Rhodamine B solution and agitated for 30 min in the darkness to reach adsorption-
desorption equilibrium between organic substrates and photocatalysts. Then, ultrasound
and visible light irradiation were simultaneously performed, and a certain volume of
suspension (around 3 mL) was taken and centrifugated at 6000 rpm for 10 min at fixed
intervals till the color became colorless. In this process, an external cooling coil was used for
water cycling to keep the suspension temperature around 25 ◦C. Lastly, the concentration of
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Rhodamine B was confirmed through detecting the maximum absorbance (λmax = 554 nm)
employing UV-Vis spectrophotometer (Pgeneral TU-1950, Beijing Purkinje General Instru-
ment Co., Ltd., Beijing, China). The carriers trapping experiments were implemented at
uniform conditions through introducing the ammonium oxalate (AO, as trapping agents
for h+), isopropyl alcohol (IPA, as trapping agents for ·OH), and benzoquinone (BZQ, as
trapping agents for ·O2

−), too.
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Figure 1. Schematic diagram of the sono-photocatalytic reactor.

3. Results and Discussion

The phase state and structure of as-synthesized PAN/C3N4/CdS nanofibers hetero-
junction with various concentration of CdS were investigated through XRD measurements
and shown in Figure 2. All samples present three obvious characteristic peaks at 2θ = 13.1◦,
27.5◦, and 17.1◦ that are ideally indexed to g-C3N4 phase (001) and (002) planes (JCPDS-87-
1526) [42,43] and PAN phase (111) planes [44], respectively. With the CdS nanoparticles
deposition, the samples present three new and obvious characteristic peaks at 2θ = 26.5◦,
43.7◦, and 52.1◦ that are well attributed to CdS phase (111), (220) and (311) planes (JCPDS-
80-0019) [45]. It was confirmed that the CdS were successfully introduced to PAN/C3N4
and had formed a composite photocatalyst. With increasing CdS concentration, the corre-
sponding diffraction peaks at 26.5◦, 43.7◦, and 52.1◦ exhibit an enhancement. Those above
XRD patterns reveal that the samples are made up of PAN, g-C3N4, and CdS.
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The surface morphology and microstructure of as-prepared PAN/g-C3N4/CdS nanofibers
heterojunction were examined with SEM and TEM directly. It is shown in Figure 3a that
the obtained PC nanofibers with average diameter approximately 200 nm is uniform,
continuous, and rough. The insert is the HRSEM image of the as-prepared nanofibers.
As seen, the surface of as-prepared PC sample is rough, which can offer a relatively high
surface area to facilitate more CdS nanoparticles growth and increase reaction interfaces for
improving the photocatalyst. Figure 3b–d show the different amounts of CdS nanoparticles
have been grown on the surfaces of PAN/C3N4 nanofibers successfully, and it is obvious
that the amount of CdS nanoparticles increases with the concentration of the mixed solution.
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The microstructure information is revealed by the TEM in Figure 4. Figure 4a indicates
the CdS nanoparticles are associated with the interface of PAN/g-C3N4 nanofibers and
correspond to the SEM image. Moreover, the high-resolution TEM image of sample is
displayed in Figure 4b,c. As the figures show, the lattice spacings of 0.34 nm and 0.33 nm are
attributed to (111) facets of CdS [46] and (002) facets of g-C3N4 [41], severally. This result
implies that the CdS has been introduced into PAN/g-C3N4 nanofiber.

The UV-Vis diffuse reflectance spectra (DRS) of PAN/g-C3N4/CdS nanofibers het-
erojunction with diverse proportion of CdS are exhibited in Figure 5a. As illustrated, the
slope at approximately 450 nm corresponds to the PAN/g-C3N4 [34], which is ascribed
to the inherent band gap of g-C3N4 (~2.7–2.9 eV) [47]. Subsequently, the absorption of
PAN/g-C3N4/CdS heterojunction demonstrates an evidently red-shift and improvement
in visible light by increasing a certain amount of CdS, which should be ascribed to the
inherent band gap of CdS (~2.1–2.4 eV) [47]. As revealed, the red-shift and increased
optical absorption are considered as significant factors for the increasement of visible-light
photocatalysis. Additionally, the band gaps of the PAN/g-C3N4/CdS were calculated
using the equation: (αhν)1/n = A(hν − Eg), where ν is the vibration frequency, h is Planck’s
constant, A is a proportional constant, Eg is the bandgap energy, and α is the absorption
coefficient. The value of the exponent n denotes the nature of the sample transition and
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is defined as 0.5 for a direct transition semiconductor. The corresponding (αhν)2~hν plot
for the PAN/g-C3N4/CdS is shown in the inset of Figure 5a. The fitting results indicate
that the band gap of PC, PC-Cd-0.05, PC-Cd-0.1, and PC-Cd-0.15 is approximately 2.74 eV,
2.58 eV, 2.45 eV, and 2.36 eV, respectively.
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The PAN/g-C3N4/CdS heterojunction of photoinduced interfacial charge transfer
processes is researched by photoluminescence spectroscopy (PL). All samples show unique
PL signals by excitation at 340 nm. According to the Figure 5b, the impact of CdS is
obviously demonstrated by the remarkably decreased PL spectra than that PAN/g-C3N4
nanofiber. Hence the PAN/g-C3N4/CdS heterojunction is intended to show lower recom-
bination between photogenerated charge carrier, because the lower PL spectra intensity
implies a stronger separation of photogenerated charge carrier. In this PAN/g-C3N4/CdS
heterojunction, different potentials exist between CdS and g-C3N4, therefore boosting the
movement of photo-generated electrons (e−) from CB (g-C3N4) to CdS can minimize the
recombination possibility of photogenerated charge carrier efficiently. For all as-prepared
samples, the PC obtains the highest PL spectra, and implies its highest recombination
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tendency, which can be attributed to the absence of CdS, would result in a weak effect of
photogenerated electron-hole pairs separation. The PC-Cd-0.05, PC-Cd-0.1, and PC-Cd-0.15
contained different ratios of CdS, which have formed the PAN/g-C3N4/CdS heterojunc-
tions, which can improve the migration of photogenerated charge carrier to decrease the
PL. Moreover, it is obvious that the PC-Cd-0.1 obtained the lowest PL, which manifests
that the separation of photogenerated charge carrier is maximized.

The photocatalytic, sonocatalytic, and sono-photocatalytic activity of degradation
of RhB are investigated in Figure 6. As shown in Figure 6a, the degradation rate of
PC is weak (18.0%, under visible light irradiation for 50 min), while the degradation
efficiency improves obviously with the increased CdS and obtains an optimal value at the
PC-Cd-0.1 (92%), then decreases. By calculating, the degradation efficiency of PC-Cd-0.1
is about five times that of PC. One of the main reasons is attributed to the constructed
heterojunction of PAN/g-C3N4/CdS, which can facilitate the separation of photogenerated
charge carrier efficiently, which is beneficial to the photocatalytic activity. Figure 6b exhibits
the degradation efficiency of sono-photocatalysis (PC-Cd-0.1). As revealed, the introducing
of ultrasound can improve the degradation efficiency of PC-Cd-0.1 effectively, which shows
marked improvement over that of single photocatalytic system and single sonocatalytic
system. When the ultrasonic power is 75 W, the highest degradation efficiency of sono-
photocatalytic system was 92% within 15 min, which is almost twice that of a single
photocatalytic system and seven times that of a single sonocatalytic system.
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The lifetime and reusability of the pholocatalysts are very important for the prac-
tical application of sono-photocatalytic reactions. Figure 7a shows little decrease in the
degradation capacity of the PAN/g-C3N4/CdS heterojunction photocatalysts after three
sono-photocatalytic processes, indicating that the PAN/g-C3N4/CdS heterojunction pho-
tocatalysts has very good stability and also predicting promising prospects for future
practical applications of sono-photocatalytic processes.

The stability of PAN/g-C3N4/CdS heterojunctions in sono-photocatalytic process
of acoustic to degrade RhB decreases little after three cycles, further indicating that the
stability of photocatalysts during acoustic to photocatalysis is excellent, which will be
promising for future practical applications of processing RhB.

Free-radical trapping experiments are used for discussing the mechanism of sono-
photocatalytic degradation of RhB with regard to PAN/g-C3N4/CdS heterojunctions (PC-
Cd-0.1) as a photocatalyst. Using diverse trapping agents to investigate carrier trapping
of PC-Cd-0.1 in sono-photocatalytic system is shown in Figure 7b. As displayed, AO
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(trapping agents for h+) and BZQ (trapping agents for ·O2
−), as trapping agents of free

radicals, all exhibit a relatively minor effect, which illustrates that h+ and ·O2
− are not the

most important factors for the sono-photocatalytic system with PC-Cd-0.1. Interestingly
enough, IPA (trapping agents for ·OH) shows the strongest effect, indicating that ·OH is
the real protagonist of sono-photocatalytic system for degradation Rhodamine B.
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The possible mechanism concerning the sono-photocatalytic system degradation
of RhB by PAN/g-C3N4/CdS heterojunction photocatalysts is proposed in Figure 8.
As revealed, bubbled with high temperatures and pressures (generated through ultrasound
cavitation in dye wastewater), this system can generate extremely active free radicals, such
as ·OH and ·H. Subsequently, H takes a combination with O2 to produce ·OOH free radicals.
Both ·OH and ·OOH radicals can degrade RhB effectively [38]. On the other hand, after
the CdS is added into the PAN/g-C3N4, the formed heterojunction is beneficial to boost
the fast separation of photogenerated charge carrier efficiently. Such process is depicted as
follows. Through visible light irradiation, both CdS and g-C3N4 are excited and produce
photogenerated charge carrier. Owing to the well-matched potentials and closely con-
tacted interfaces of the g-C3N4/CdS heterojunction, the electrons (e−) on the CB (g-C3N4)
can quickly migrate to the CB (CdS), and meanwhile, the holes (h+) on the VB (CdS)
rapidly migrate to the VB (g-C3N4), which is conducive to promoting the photogenerated
charge carrier separation effectively, and is beneficial for enhancing sono-photocatalytic
activity [48].

Further, a credible pathway of sono-photocatalytic oxidation of RhB is proposed
as follows:

Ultrasound + H2O→ ·H+ ·OH (1)

·H + O2 → ·OOH (2)

PAN/g-C3N4/CdS + hν→ h+ + e− (3)

h+ + OH− → ·OH (4)

h+ + H2O→ ·OH +·H (5)

O2 + e− → ·O2
− (6)
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·OH + RhB→ CO2 + H2O + Others (7)

·O2
− + RhB→ CO2 + H2O + Others (8)

h+ + RhB→ CO2 + H2O + Others (9)
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4. Conclusions

In summary, an ideal design the PAN/g-C3N4/CdS heterojunction photocatalysts has
been successfully synthesized by simple processes and proved to be highly effective for
the degradation of RhB in sono-photocatalytic system. The main reason can be attributed
to the effective synergy between the ultrasound and photocatalysis. In addition, the
PAN/g-C3N4/CdS heterojunction also plays an important role during the process of sono-
photocatalysis. Herein, the PAN/g-C3N4/CdS heterojunction composite photocatalysts
formed by CdS deposited on the PAN/g-C3N4 can not only increase optical absorption,
but also depress the recombination of photogenerated charge carrier. Therefore, the sono-
photocatalytic system of PAN/g-C3N4/CdS heterojunction can degrade RhB up to 92%
within 15 min. Meanwhile, the experiment data indicate that the different scavengers
would directly affect the degradation efficiency of the sono-photocatalytic system. In the
degradation of RhB, the generated hydroxyl radicals would play a more important role than
the superoxide radicals and photo-generated holes, and a general order can be proposed
as: ·OH > ·O2

− > h+.
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