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Abstract: Deformation of metals has attracted great interest for a long time. However, the constitutive
models for viscoplastic deformation at high strain rates are still under intensive development, and
more physical mechanisms are expected to be involved. In this work, we employ the newly-proposed
methodology of mesoscience to identify the mechanisms governing the mesoscale complexity of
collective dislocations, and then apply them to improving constitutive models. Through analyzing the
competing effects of various processes on the mesoscale behavior, we have recognized two competing
mechanisms governing the mesoscale complex behavior of dislocations, i.e., maximization of the rate
of plastic work, and minimization of the elastic energy. Relevant understandings have also been dis-
cussed. Extremal expressions have been proposed for these two mesoscale mechanisms, respectively,
and a stability condition for mesoscale structures has been established through a recently-proposed
mathematical technique, considering the compromise between the two competing mechanisms. Such
a stability condition, as an additional constraint, has been employed subsequently to close a two-phase
model mimicking the practical dislocation cells, and thus to take into account the heterogeneous
distributions of dislocations. This scheme has been exemplified in three increasingly complicated
constitutive models, and improves the agreements of their results with experimental ones.

Keywords: dislocation; shock wave; viscoplastic deformation; constitutive model; heterogeneity;
mesoscale

1. Introduction

Understanding the viscoplastic behavior of metals at high strain rates is of critical
importance in many significant fields [1,2], and developing effective Crystal Plasticity (CP)
constitutive models has been a continuous effort for decades [2,3]. Constitutive models
describe the relationship between the stress σ and the strain ε or the strain rate

.
ε, and dis-

locations (in normal cases) are the key media in between, in the cases where twinning and
phase transformation (these two aspects can be significant in special cases) are insignif-
icant. A constitutive model usually consists of three parts: Kinematics (describing the
relationship between

.
ε and dislocation density N and speed v, e.g., the Orowan relation

or its generalized form [4]), kinetics (describing the relationship between σ and N and v),
and the time evolution of N. As for the frequently encountered models, the Johnson-Cook
(JC) [5,6] and Steinberg-Guinan (SG) [7,8] models do not employ dislocations directly, while
Zerilli-Armstrong (ZA) [9,10], Mechanical Threshold Stress (MTS) [11,12], and Preston-Tonks-
Wallace (PTW) [13] models utilize dislocations implicitly, and the Livermore Multiscale
Strength (LMS) [14] and Austin-McDowell (AM) [2] models adopt dislocations explicitly. Ob-
viously, information of dislocations has been involved more and more directly and explicitly,
reflecting the increasingly improved understandings on relevant physical mechanisms.
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However, two aspects of limitations are still apparent, indicating the insufficiency
of our understandings. Firstly, lots of fitting parameters have been used in constitutive
models, which are empirical and poorly transferable. Secondly, heterogeneous structures
have not been well accounted for, and thus size effects have hardly been addressed [15].
This means that more physical mechanisms are still needed to provide more bases or
constraints for the models. To this end, the emerging methodology of mesoscience [16,17]
is helpful.

Based on decades of efforts in modeling several important complex systems in chemi-
cal engineering, mesoscience was proposed and gradually enriched recently [16–20]. In this
methodology, for a system with massive elements, the length scale of an element is called
the element scale, the length scale of the system is called the system scale, both of which
are called boundary scales, and the length scale between the element scale and the system
scale (i.e., two adjacent boundary scales) is called the mesoscale scale. These scales are all
dependent on the system of interest, and thus are relative scales, not absolute sizes. The
element scale, the mesoscale, and the system scale of a system cover a scale level (called
level for brevity). At a level, different systems might exist, and at different levels, different
systems certainly exist. For two adjacent levels, the system scale at the lower level is the
element scale at the higher level.

The starting point in mesoscience begins when modeling a complex system, the
mesoscale heterogeneous structures should be accounted for, and the mean-field approxi-
mation fails. Meanwhile, we need not and usually cannot rely on all the information at the
element scale (the behavior of all elements), but reveal and thus employ the specific laws at
the mesoscale [21]. Accumulated evidence reveals that mesoscale complex structures can be
described with the compromise between different competing extremal mechanisms (called
dominant mechanisms). Since mesoscale complex structures emerge only under specific
conditions, i.e., within specific regimes (called mesoregimes [19]), there is no complexity in
the adjacent trivial regimes (called extreme regimes). Importantly, it is increasingly clear
that there only one dominant mechanism might exist in each extreme regime, and all the
dominant mechanisms in adjacent extreme regimes will probably constitute the multiple
competing dominant mechanisms for the in-between mesoregime. The Compromise in
Competition (CIC) of different dominant mechanisms is expressed as a multi-objective opti-
mization (or variational) problem, and solving it usually needs transforming it further into
a single-objective one (called the stability condition of the mesoscale complex structures).
The expressions of dominant mechanisms are system-specific and thus level-specific, thus
the proper resolution of levels and systems is necessary for the identification of dominant
mechanisms [17]. These points will be employed to analyze the metals deformation here.

The whole work will be presented in the following sequence: In Section 2, we will
distinguish the levels of complexity involved in metals deformation, and point out that
the present focus is on the level corresponding to the collective behavior of dislocations.
In Section 3, we will analyze the involved mesoscale structures at the focused level, and
classify relevant processes into competing groups, according to their different influences on
the mesoscale structures. In Section 4, two dominant mechanisms governing the mesoscale
structures are proposed within the mesoscience framework, based on the preceding analy-
sis on the competing tendencies, and their competition and compromise are described. In
Section 5, we apply the dominant mechanisms to three increasingly complicated consti-
tutive models to validate their significance in accounting for heterogeneous distributions
of dislocations, exemplified with 6061-T6 Al alloy under shock stress amplitudes of 2.1,
3.7, and 9.0 GPa, respectively. Model #1 is typical but simple, taken directly from that of
Molinari and Ravichandran [22]. Model #2 is based on the framework of Molinari and
Ravichandran [22], but incorporates a detailed dislocation-density evolution [2], thus it is a
combined model. Model #3 considers both the complicated evolution of dislocation densi-
ties and the complicated descriptions of the dislocation movements under both thermal
activation and phonon drag, taken essentially from [2], with some values of parameters
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borrowed from Austin and McDowell [4], as well. Finally, we propose our concluding
remarks in Section 6.

2. Two Levels of Mesoscales

To investigate the dislocation-based deformation of metals, we can start from the
atomic scale or usually from the dislocation scale. For the former, an atom is an element, and
our focus might be how the atomic behavior affects a dislocation, thus a dislocation can be a
system, and the mesoscale structure might be the atomic distribution around the dislocation
core, around a kink, around a jog or in the vicinity where the dislocation interacts with
vacancies or interstitials. For the latter, a dislocation is an element, and our focus might
be how the dislocation behavior affects the mechanical performance of the bulk, thus the
bulk is a system, and the mesoscale structure is the dislocation distribution. These form two
levels, as illustrated in Figure 1. Certainly, this is still a much simplified picture without
considering impurities, grain boundaries, bulk surfaces, load distribution, etc. Otherwise,
more mesoscale structures might be involved and more levels might be added.

Figure 1. Two typical levels of mesoscale complexity in metals deformation.

According to such a resolution, Molecular Dynamics (MD) is a model at the element
scale of the first level, as it describes the behavior of each atom. Dislocation Dynamics
(DD) is a model at the system scale of the first level and at the element scale of the second
level, since it describes the behavior of each dislocation. The above-mentioned constitutive
models are at the system scale of the second level, describing the mechanical performance
of the whole bulk. Therefore, MD, DD, and CP constitutive models (normally called
microscopic, mesoscopic, and macroscopic models, respectively) are all at the boundary
scales and the mesoscale information hardly receives special attention though it might be
involved (e.g., through ways of hierarchical correlation).

It is necessary to decouple the two levels of mesoscale complexity during mesoscale
modeling since dominant mechanisms are level-specific. Fortunately, the first level is
almost clear already, and thus the focus can be moved solely onto the second one. In
fact, when the United States boosted wide discussions on mesoscale issues in 2012 [23],
the first “Mastering Defect Mesostructure and its Evolution” of the proposed six priority
research directions in a detailed report [24] is actually the above second level of complexity,
signifying its well-recognized importance. This level will be our topic hereinafter.

3. Mesoscale Structures and Relevant Processes

To reveal the mechanisms governing the mesoscale behavior, we need to identify
the mesoscale structures first, and then analyze the processes producing the mesoscale
structures, and the conditions affecting the processes.

Focusing on the above-mentioned second level, the mesoscale structure is the complex
distribution of dislocations. Large-scale MD simulations have revealed the dramatically
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heterogeneous distributions of dislocations (and their velocities) [25]. Extensive experi-
mental results have also shown structured distributions of dislocations [26,27]. The typical
distributions of dislocations are dislocation cells [28] (with cell walls of high dislocation den-
sity and cell blocks of low dislocation density [29]) though certain variations exist [30,31].
The formation and evolution of such cells are concerned with many dislocation processes,
including nucleation (homogeneous and heterogeneous), movement (glide and climb),
changes (in length, shape, and type), reactions, disappearance on surfaces, etc. Such
processes determine the dislocation density and distribution. Conditions affecting these
processes include temperature, pressure, stress, strain, time, etc. Such conditions affect
the dislocation processes and thus the dislocation densities and distributions (and the cell
characteristics [28]).

According to the thermally-activated glide of dislocations, as expressed in Equations (1)–(3) [2]
(where vw is the average speed of overcoming an obstacle, L is the average distance between
obstacles, tw is the average waiting time, νG is the attempt frequency, ∆G is the free enthalpy of
activation, k is the Boltzmann constant, θ is the absolute temperature, µ is the shear modulus,
τ is the shear stress, b is the magnitude of the Burgers vector, τ0 is the mechanical threshold
stress, and g0, q, and r are fitting parameters), long time, high temperature, large stress, and
low µ (via, e.g., low pressure) will lead to more times of overcoming obstacles, and thus the
long average glide distance (i.e., large strain) that leads to large probability of multiplica-
tion and homogeneous distribution under the applied definitely-directional external stress,
and more structured distribution of dislocations with lower stored elastic energy under the
complex internal stress of the dislocations (climb might be necessary here, but it is thermally
activated as well, and the tendency might be similar).

vw =
L
tw

(1)

tw =
1

νG

[
exp

(
∆G
kθ

)
− 1
]

(2)

∆G = g0µb3
[

1−
(

τ

τ0

)q]r

(3)

Therefore, low external stress or its strain, high internal stress, high temperature, low
pressure, and long-time facilitate the reduction in the dislocation density and the elastic
energy (through enhancing the extent of structurization and ordering), while high external
stress or its strain, low internal stress, high temperature, low pressure, and long-time
tend to increase the dislocation density and promote the homogenization and disordering
of the dislocation distribution. Reduction in the dislocation density and ordering of
the dislocation distribution correspond to the release of the stored elastic energy, and the
relaxation to equilibrium, where principally the complex internal stress (due to the existence
of dislocations) does work and the elastic energy transforms into heat. The increase in
the dislocation density and disordering of the dislocation distribution correspond to the
deviation from the equilibrium, where basically the definitely-directional external stress
does work and the input energy transforms into heat and elastic energy. The internal
elastic stress depends on the dislocation density and distribution (the local magnitudes and
directions of the internal stress depend mainly on the local dislocation density), with the
local magnitude increasing roughly with the local dislocation density (the Taylor relation
(Equation (4)) is a preliminary guide, where µ0 is the shear modulus at 0 K, and α0 is
a fitting parameter), and the directions are usually spatiotemporally different. On the
contrary, the external stress might have definite magnitudes in definite directions.

τ0 = α0µ0b
√

N (4)

In other words, the effects of temperature, pressure, and time on the dislocation move-
ment are independent of what stress (external or internal) drives the movement. Therefore,
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these factors show no tendency in changing the dislocation density and distribution (favor-
ing neither homogenization (disordering) nor structurization (ordering) of the dislocation
distribution, and neither increase nor decrease in the dislocation density) though taking
proper values of them might be necessary to the realization of certain tendencies (called
allowable conditions hereinafter). The different tendencies of the dislocation density and
distribution originate from the relative dominance between the external stress and the
internal stress. When the external stress is much higher than the internal stress, the dis-
location behavior will be dominated by the external stress, tending to homogenize the
dislocation distribution and enhance the dislocation density. The increase in the dislocation
density will improve the internal stress, and thus the tendency of ordering of the dislocation
distribution and decreasing of the dislocation density. When the internal stress is much
higher than the external stress and dominates the dislocation behavior, under allowable
conditions, ordering and decreasing of dislocations will be dominant. Roughly speaking,
during loading the overall external stress is higher than the overall internal stress, and the
dislocation movement is mainly driven by the external stress. Whereas, during unloading
the overall internal stress is higher than the overall external stress, and the dislocation
movement is probably driven by the internal stress. However, the situation might depend
on the specific loading and unloading conditions and might be much more complex locally
(during loading the internal stress might drive some dislocations somewhere sometime,
e.g., when the obstacle ahead of a pileup of dislocations is broken).

The extreme case where the internal stress exclusively dominates might be that the
external stress is zero. This can be at the end of unloading, and the internal stress will solely
drive the system to the equilibrium state of low elastic energy (strictly speaking, of low
free energy but the entropy effects might be negligible due to the commonly negligible
dislocation inertia and thus the negligibly low dislocation temperature). The extreme case
where the external stress exclusively dominates might be approximately encountered when
the applied stress is very high while the dislocation density is still very low. These constitute
the two extreme regimes, and the wide in-between is the mesoregime where the external
stress and the internal one coexist and both shape the dislocation density and distribution.

For the phonon-drag processes, as expressed in Equations (5)–(11) [2] (where vr is the
average glide speed between obstacles, tr is the average glide time between obstacles, τeff
is the effective stress, τµ is the long-range resistance, B is the damping coefficient, B0 is
the nominal value of B, cs is the shear (or transverse) wave speed, ρ is the mass density,
z is the number of atoms per unit cell, and β0 is a fitting parameter), high τ still leads
to high vr, but high θ leads to large B0 and thus low vr. Large pressure causes large µ
and thus low τeff, leading to low vr (when neglecting its effects on cs), which is the same
trend as in thermally-activated processes. Usually the internal stress cannot reach the
magnitude of driving the dislocations in the regime of phonon drag, so it is assumed that
the internal stress still drive the dislocations through thermal activation when the external
stress drives the dislocations in the phonon drag regime. Therefore, high external stress
and low temperature will tend to increase the dislocation density and homogenize the
dislocation distribution. Whereas, high internal stress and high temperature will facilitate
reduction in the dislocation density and ordering of the dislocation distribution. In the
phonon-drag regime, the external stress might be much higher than the internal stress,
which seems to bring the dominant tendency of disordering of the dislocation distribution,
but the accompanying high temperature facilitates the ordering, so the case might still lie
in the mesoregime. By the way, the z value can also affect B0 and thus the realization of
the homogenization tendency. It is 4 for face-centered cubic (fcc) metals, while only 2 for
body-centered cubic (bcc) ones, which might provide another origin (in addition to the
stacking fault energy) for the easier emergence of heterogeneous dislocation distributions
in fcc metals than in bcc ones within the phonon-drag regime.

vr =
L
tr

(5)
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vr =
τeffb

B
(6)

B =
B0

1− (vr/cs)
2 (7)

B0 =
3kθz

20csb2 (8)

cs =

√
µ

ρ
(9)

τeff =
√

τ2 − τ2
µ (10)

τµ =
µ

µ0
β0τ0 (11)

4. Dominant Mechanisms and Their Compromise in Competition

Based on the above analysis, it is clear that under either thermal activation or phonon
drag, the increase in the external stress will promote the increase in the dislocation density
and the disordering of the dislocation distribution. Actually, the corresponding overall
process is the absorption of the input mechanical energy through the entity of dislocation
due to its proper absorption spectrum (overlapping well with the input energy spectrum).
To maximize the absorption, the rate of plastic work maximizes under the fixed external
stress (this seems consistent with the MaxEPP proposal of Ziegler [32] since the energy
dissipation rate might maximize, as well). Therefore, this first tendency of disordering
and increasing of dislocations might be expressed as Equation (12) when considering
a two-phase structure (as illustrated in Figure 2), where the subscript “w” means the
dense wall phase, and “b” means the dilute block phase or the maximization of the rate
of plastic work under the external stress, as expressed in Equation (13) for uniaxial-strain
conditions (where λ1 is the longitudinal stretch, and φ is the plastic shearing rate) or the
maximization of the total energy dissipation rate Σ, as in Equation (14). This is the first
dominant mechanism.

min

.
Nw −

.
Nb

.
N

=
dNw − dNb

dN
(12)

max
.

Wp = −4
3

λ1τϕ (13)

maxΣ (14)

Figure 2. Illustration of the two-phase distribution of dislocations.

The other tendency of ordering of the dislocation distribution and the reduction in the
dislocation density might be expressed as Equation (15), corresponding to the minimization
of the elastic energy. Alternatively, it corresponds to the minimization of the rate of plastic
work under the external stress, as in Equation (16), due to the reduced dislocation density
and increased glide resistance. Although the evolution processes might correspond to the
maximization of the rate of plastic work under the instantaneously fixed internal stress,
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the overall tendency is towards the equilibrium state with the minimum total energy
dissipation rate, as expressed in Equation (17), which seems to coincide with the MinEPP
proposal of Prigogine [33]. This is the second dominant mechanism. As Equations (14)
and (17) signify, the two dominant mechanisms correspond to the maximization and
minimization of the total energy dissipation rate, respectively, which agrees with our
previous findings in other complex systems [34], as well.

max

.
Nw −

.
Nb

.
N

=
dNw − dNb

dN
(15)

min
.

Wp = −4
3

λ1τϕ (16)

minΣ (17)

It is interesting to mention that the fourth-power law [35,36] might be related with the
first dominant mechanism. This law relates the stress jump (∆σ) through a steady shock
wave and the maximum strain rate (

.
εmax) through a fourth power, as in Equation (18),

where s1 and c0 are material constants, A is an assumed invariant, ρ0 is the initial mass
density, and O(x) means the term of the same order as the involved expression x. It is
further revealed that A has dimensions of a specific action [36], and might be taken as a
dissipative action [37]. If the principle of least action [38] works here, the invariance of A
might actually mean its minimization. According to Equations (19) and (20) [35,36] (where
δE is the dissipated energy, dt is the rise time of the wave, and εH is the Hugoniot strain),
δE is constant for a specific shock. Therefore, the minimization of A might correspond to
the minimization of dt, and the maximization of δE/dt, i.e., the maximization of the energy
dissipation rate.

.
εmax =

s1

3A
(
ρ0c2

0
)3 (∆σ)4 + O

(
(∆σ)5

)
(18)

A = δE dt (19)

δE = 1/3ρ0 c0
2 s1 εH

3 + O(εH
4) (20)

When the first dominant mechanism solely works, the plastic shearing rate maximizes
under fixed τ and λ1. According to the Orowan relation, as described in the preceding
section, the dislocation density and the dislocation speed will maximize. The maximiza-
tion of the dislocation speed and the compatibility of deformation [39] homogenize the
dislocation distribution.

When the second dominant mechanism solely works, the dislocation density tends to
decrease (the global minimum is zero), and the dislocation distribution tends to heterogenize,
enhancing the difference of the dislocation density between the two phases in Figure 2.

When the two dominant mechanisms co-work, they compromise through competition.
The dislocation density can reach neither the minimum nor the maximum. The dislocation
distribution can reach neither the optimal configuration with minimum elastic energy
nor the random configuration with high elastic energy. Maximization of the dislocation
speed hinders the ordering of the dislocation distribution. Meanwhile, as indicated in
Equations (1)–(11), under either thermal activation or phonon drag, the increase in the
dislocation density will reduce the dislocation speed.

The above descriptions are illustrated in Figure 3. It is apparent that the realization of
both the two dominant mechanisms is based on dislocation behaviors, and the compromise
in competition between these two dominant mechanisms is also reflected in their effects on
the dislocation density, distribution, and speed.
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Figure 3. Compromise in competition between the two dominant mechanisms.

5. Applications to Constitutive Models

Based on the dominant mechanisms, under the mesoscience framework, we can
establish the stability condition and thus the mesoscale model for the steady state, which
can be developed further to describe the dynamic states through proper routes, e.g.,
applying it to each computational grid of a dynamic model. Another convenient route
might be adopting the dominant mechanisms directly in the dynamic constitutive models
or establishing the stability condition to improve the existent constitutive models.

The first dominant mechanism has actually been employed in several constitutive
models though not through its extremal form. For example, Ziegler’s MaxEPP, as a stricter
form of this dominant mechanism, has been used in [31,32,40]. The fourth-power law,
seemingly related with this dominant mechanism, has also been employed in [41] and
possibly in the PTW model for the overdriven-shock regime [13].

The second dominant mechanism has been adopted partially through the equations
describing the evolution of dislocation density (not through the extremal form either), e.g.,
in [2,4,31]. However, a fixed volume fraction of cell blocks has been adopted in [31], and
the recovery rate is assumed to be zero in [2], which might be possible points to further
improve the models.

Since these two dominant mechanisms co-work in the mesoregime, it is better to
take into account both of them simultaneously and completely, i.e., to incorporate their
CIC in an extremal form. Here, we propose a scheme of employing these two dominant
mechanisms to account for the heterogeneous distribution of dislocations. We model
the heterogeneous dislocation distribution as a two-phase structure: A dense phase with
high dislocation density corresponding to the cell walls, and a dilute phase with low
dislocation density corresponding to the cell block, as illustrated in Figure 2. The mass
fraction of the dense phase is f w. The proposed scheme will be applied to the following
three increasingly complicated constitutive models, and exemplified with 6061-T6 Al alloy
under shock magnitudes of 2.1, 3.7, and 9.0 GPa to facilitate the comparison with the
existing experimental data.

5.1. Application to Model #1

For each phase, we adopt the constitutive model of Molinari and Ravichandran [22] for
the uniaxial strain conditions, as expressed in Equations (21)–(46), where (and hereinafter)
in the subscripts i = w, b, and “HEL” mean the Hugoniot elastic limit at the rear of the elastic
precursor, which is the initial state here. The meanings of the quantities not introduced
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before are given in Tables 1 and 2, where the shock stress magnitude σ1,– = −T1,– for the
present compression cases (the subscript “–” means the final Hugoniot state).

dλ1,p,i

dξ
=

2
3C

λ1,p,i ϕi (21)

ϕi = bNm,ivi (22)

Nm,i = Nm,HEL,i

(
1 +

αbγp,i

bNHEL,i

)
exp

(
−αtαbγp,i

)
(23)

γp,i = −
3
2

ln λ1,p,i (24)

vi = c1

(
|τi + τa,i|

T∗1

)M
(25)

τi =
1
2

(
T1,i −

T2,i

λ1,i

)
(26)

τa,i = τa0

[
1 +

(
γp,i

γ0

)1/n
]

(27)

T1,i = ρ0
F1,i

λ1,p,i
(28)

T2,i = ρ0F2,i

√
λ1,p,i (29)

λ1,i = (ε1,e,i + 1)λ1,p,i (30)

F1,i = a1 + A1ε1,e,i + A2ε2
1,e,i + B1ε2,e,i + B2ε2

2,e,i + Dε1,e,iε2,e,i (31)

F2,i = a1n + A1nε1,e,i + A2nε2
1,e,i + B1nε2,e,i + B2nε2

2,e,i + Dnε1,e,iε2,e,i (32)

ε1,e,i =
−Bi +

√
B2

i − 4A2Gi

2A2
(33)

ε2,e,i =
√

λ1,p,i − 1 (34)

Bi = A1 + Dε2,e,i − C2(1 + ε2,e,i)
4 (35)

Gi = B1ε2,e,i + B2ε2
2,e,i +

(
C2λ1,HEL −

T1,HEL

ρ0

)
(1 + ε2,e,i)

2 − C2(1 + ε2,e,i)
4 (36)

A1 = 2a2 (37)

A2 = 3a4 (38)

B1 = 4a2 + 2a3 (39)

B2 = 12a4 + 5a5 + a6 (40)

D = 12a4 + 4a5 (41)

A1n = 2a2 + a3 (42)

A2n = 3a4 + a5 (43)

B1n = 4a2 + a3 (44)

B2n = 12a4 + 3a5 (45)

Dn = 12a4 + 5a5 + a6 (46)
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Table 1. Definitions of relevant quantities in Equations (21)–(46) [22].

Quantity Definition

λ1,p longitudinal plastic stretch
ξ coordinate moving with C

Nm mobile dislocation density
γp plastic shear strain
τa yield shear stress
T1 longitudinal Piola-Kirchhoff stress
T2 transverse Piola-Kirchhoff stress
F1 function for elastic deformation
F2 function for elastic deformation
ε1,e longitudinal elastic strain
ε2,e transverse elastic strain

A1, A2, B1, B2, D intermediate parameters
A1n, A2n, B1n, B2n, Dn intermediate parameters

B, G intermediate parameters
up particle speed

The adopted values of relevant parameters are listed in Table 2 for 6061-T6 Al alloy [22].
The values of λ1,HEL and T1,HEL are obtained by solving Equation (47) with λ1,p,HEL = 1,
using the Newton-Raphson method. The value of up,HEL is calculated accordingly via
Equations (48) and (49), where Ce is the speed of the elastic precursor. The C values in
Table 2 are calculated with the Rayleigh-line constraint, i.e., Equation (50), where T1,– is
assigned (through σ1,– = 2.1, 3.7, and 9.0 GPa, respectively) and λ1,– is calculated via the
yield condition, i.e., Equation (51), along with Equations (26)–(28).

1
2

(
T1,HEL −

T2,HEL

λ1,HEL

)
+ τa0 = 0 (47)

up,HEL = (1− λ1,HEL)Ce (48)

Ce =

√
−T1,HEL

(1− λ1,HEL)ρ0
(49)

C =

√
T1,− − T1,HEL

(λ1,− − λ1,HEL)ρ0
(50)

τ− + τa,− = 0 (51)

The values of Nm,HEL,w and NHEL,w in Table 2 are taken from [22], and those of
Nm,HEL,b and NHEL,b have been set to be around 2% smaller (some other values have been
tested as well, and the results are qualitatively consistent), reflecting reasonably the spatial
fluctuation of the dislocation density. These are the only differences assumed between the
two phases. Subsequently, each phase evolves through the integration of Equation (21) from
the initial HEL state to the final Hugoniot state, via the fourth-order Runge-Kutta method.
The mass fraction f w evolves as well, and the profiles of all average quantities can be
achieved. For instance, the average particle speed up can be calculated using Equation (52),
based on Equation (53).

up = fwup,w + (1− fw)up,b (52)

up,i = up,HEL − (λ1,i − λ1,HEL)C (53)

Due to the introduction of the variable f w, the above model is not closed anymore.
Therefore, to determine f w, additional constraints are needed. We will use the dominant
mechanisms to build the stability condition as an additional constraint.
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Table 2. Material and operating parameters in Equations (21)–(46) and their values for 6061-T6 Al
alloy at ambient conditions (taken from [22] unless specified otherwise).

Parameter Value Unit Definition

ρ0 2703 kg/m3 initial density
b 2.86 × 10−10 m Burgers’ vector magnitude
a1 0 m2/s2 elastic constant
a1n 0 m2/s2 elastic constant
a2 2.028 × 107 m2/s2 elastic constant
a3 −2.044 × 107 m2/s2 elastic constant
a4 −6.64 × 107 m2/s2 elastic constant
a5 1.575 × 108 m2/s2 elastic constant
a6 −1.428 × 108 m2/s2 elastic constant
c1 0.168 m/s fitting parameter
T∗1 1.6 MPa fitting parameter
M 1.78 inverse of the strain rate sensitivity
τa0 120 MPa initial back stress
γ0 0.52 reference strain
n 1.55 hardening parameter

Nm,HEL,w 8.18 × 1012 1/m2 initial mobile dislocation density in the cell wall
Nm,HEL,b 8.00 × 1012 1/m2 initial mobile dislocation density in the cell block

αb 3.5 × 105 1/m breeding coefficient
αt 0 trapping coefficient

NHEL,w 8.18 × 1012 1/m2 initial total dislocation density in the cell wall
NHEL,b 8.00 × 1012 1/m2 initial total dislocation density in the cell block
λ1,HEL 0.995758 HEL longitudinal stretch
T1,HEL −475 MPa HEL longitudinal Piola-Kirchhoff stress

C
5457.3146

m/s
shock wave speed at σ1,– = 2.1 GPa

5600.2774 shock wave speed at σ1,– = 3.7 GPa
6018.3672 shock wave speed at σ1,– = 9.0 GPa

up,HEL 27.295879 m/s HEL particle speed

As proposed above, for such a two-phase system, the first dominant mechanism
can be expressed as Equation (54) along with Equation (55), and the second one can be
expressed as Equation (56) supported by Equation (57). The CIC between these two
dominant mechanisms can be expressed as Equation (58). To transform this bi-objective
optimization into a single-objective one, we adopt our previous technique [42], and the
resultant stability condition is shown in Equation (59), where mj,min and mj,max (j = 1, 2)
mean the minimum and maximum of mj, respectively.

minm1 =

.
Nw −

.
Nb

.
N

=
dNw − dNb

dN
(54)

N = fwNw + (1− fw)Nb (55)

minm2 =
.

Wp = fw
.

Wp,w + (1− fw)
.

Wp,b (56)

.
Wp,i = −

4
3

λ1,iτi ϕi (57)

min
(

m1
m2

)
(58)

min
(

m1 −m1,min

m1,max −m1,min
+

m2 −m2,min

m2,max −m2,min

)
(59)

Along with such a stability condition (Equation (59)), the two-phase model is closed,
and all the quantities can be determined along the profile. The particle speed profiles
thus obtained are presented in Figure 4 for 6061-T6 Al alloy at shock stress amplitudes
σ1,– = 2.1, 3.7, and 9.0 GPa, in comparison with those calculated from the original model of
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Molinari and Ravichandran [22], and the experimental results of Johnson and Barker [43].
It is interesting to note that rather than the single-phase assumption in the original model
of Molinari and Ravichandran [22], the present model considers a two-phase distribution
where the second phase is introduced via a negligible change in the initial dislocation
density. Such a simple modification has brought the profiles closer to the experimental ones.
If more sophisticated schemes are adopted, e.g., considering the interphase interactions,
more improvements might be expected.

Figure 4. Particle speed profiles for 6061-T6 Al alloy at shock stress amplitudes of (a) 2.1, (b) 3.7, and (c) 9.0 GPa. The
present scheme has been applied to model #1 [22], and the results are compared with those from model #1 [22] and the
experimental ones [43].

5.2. Application to Model #2

The above constitutive model of Molinari and Ravichandran [22] contains only one
ordinary differential equation (Equation (21)) for each phase, and the detailed evolution of
dislocation density has not been accounted for. In this application, we adopt the descrip-
tions of dislocation evolution in the literature [2]. Accordingly, in addition to Equation (21),
two more ordinary differential equations have been introduced, i.e., Equations (60) and (61),
to replace Equation (23), and supporting equations are given in Equations (62)–(70), where
Nim is the immobile dislocation density, subscripts “nuc”, “multi”, “ann”, and “trap” mean
the nucleation, multiplication, annihilation, and trapping of dislocations, respectively, and
f het is the probability distribution function for heterogeneous nucleation. The definitions
and values of other relevant parameters are listed in Table 3. Since τ < 0 for compression in
the present work, its absolute value is adopted. Homogeneous nucleation cannot occur
within the present range of shock stresses [4], so only heterogeneous nucleation has been
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taken into account in Equation (64). The data in Table 2 excluding those specifically for
Equation (23) (Nm,HEL,i, αb, αt) are employed, as well.

dNm,i

dξ
= − 1

C

.
Nm,i (60)

dNim,i

dξ
= − 1

C

.
Nim,i (61)

.
Nm,i =

.
Nnuc,i +

.
Nmulti,i −

.
Nann,i −

.
Ntrap,i (62)

.
Nim,i =

.
Ntrap,i (63)

.
Nnuc,i =

{
αhet fhet,i

∣∣ .
τi
∣∣ .

τi < 0
0 otherwise

(64)

.
Nmulti,i =

δ

b
ϕi (65)

.
Nann,i = αannNm,i ϕi (66)

.
Ntrap,i =

ϕi
b

[
αdis

√
Ni +

αpπdp(
λp + dp

)2 +
1
d

]
(67)

fhet,i =


m+1

(τb−τa)
m+1 (|τi| − τa)

m τa < |τi| ≤ τb

0 otherwise
(68)

Nm,HEL,i = fHELNHEL,i (69)

Nim,HEL,i = (1− fHEL)NHEL,i (70)

Table 3. Parameters in Equations (64)–(70) and their values for 6061-T6 Al alloy at ambient conditions [2,22].

Parameter Value Unit Definition

αhet 7.4 × 1013 1/m2 heterogeneous nucleation coefficient
αann 0.5 annihilation coefficient
αdis 0.015 network trapping coefficient
αp 0.02 precipitate trapping coefficient
dp 1.0 × 10−8 m precipitate size
λp 7.0 × 10−8 m precipitate spacing
d 4.0 × 10−5 m mean grain size
m 1.0 shape constant

f HEL 1.0 initial fraction of mobile dislocations
δ 3.5 × 105 1/m multiplication coefficient

τa 106 MPa lower-bound shear stress for heterogeneous nucleation
τb 920 MPa upper-bound shear stress for heterogeneous nucleation

Along with Equations (47)–(59), the whole has been solved, and the results have been
presented in Figure 5. It is observed that in this model considering detailed dislocation
processes, involving the CIC of the two dominant mechanisms to account for the hetero-
geneous distribution of dislocations can improve the agreement of the calculated profiles
with the experimental results, as well.
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Figure 5. Particle speed profiles for 6061-T6 Al alloy at shock stress amplitudes of (a) 2.1, (b) 3.7, and (c) 9.0 GPa. The
present scheme has been applied to model #2 [2,22], and the results are compared with those from model #2 [2,22] and the
experimental ones [43].

5.3. Application to Model #3

The present scheme has been applied further to the complete model of Austin and Mc-
Dowell [2]. In comparison with the above model #2, the dislocation speed in Equation (25)
has been replaced with Equation (71), and supporting expressions have been given in
Equations (72)–(80). Since the temperature increase has been involved, Equation (81) is
adopted to account for the contribution from the thermoelastic effect, and an additional
ordinary differential equation is adopted to account for the contribution from the plastic
work, as in Equation (82). The definitions and values of relevant parameters have been
given in Table 4. The profile of the particle speed is sensitive to α0 though insensitive to β0
when α0 is high, as illustrated in Figure 6a. The values of α0 and β0 proposed by Austin
and McDowell [4] have been employed, and the other values in Table 4 are all taken from
Austin and McDowell [2] (the α0 and β0 values therein do not work well) if not described
otherwise. The profile is sensitive to C as well, as shown in Figure 6b. The C values in
Table 2 are obtained with Equation (50), but not all of them result in satisfactory agreement
with the experimental profiles under the setting of other parameters in Table 4. Therefore,
some C values have been modified a little as Austin and McDowell did [2], based on the
empirical equation of state, as in Equation (83), and the adopted ones have also been listed
in Table 4. According to the model of Austin and McDowell [2], the initial state is at the
onset of the main plastic wave, denoted with a subscript “+” in Table 4, rather than the HEL
state, and relevant values have been calculated using the parameter values of Austin and
McDowell [2] and given in Table 4 as well, corresponding to Equations (84)–(86). The value
of N+,b is set a little (about 5%) smaller than that [2] of N+,w. Since a certain extent of work
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hardening should occur in the plastic precursor, the value of N+,w (corresponding to the “+”
state at the rear of the plastic precursor) in Table 4 is set to be much higher than that (taken
from [22] and actually based on experimental results [43]) of NHEL,w (corresponding to the
HEL state at the rear of the elastic precursor) in Table 2, based on reasonable calculations [2].
However, the value of Nm,HEL,w in Table 2 or from Equation (69) is close to that of Nm,+,w
from Equation (84), indicating the large increase in the immobile dislocation density in the
plastic precursor. The values of b1–b3 in Table 4 are taken from the article of Molinari and
Ravichandran [22].

vi =
cs,ihi[

exp
(

∆Gi
kθi

)
− 1
]

cs,ihi
χνDb + 1

(71)

cs,i =

√
µi
ρi

(72)

µi = µ0

[
1 +

1
µ0

∂µ

∂p
(pi − p0)

(
Vi
V0

)1/3
+

1
µ0

∂µ

∂θ
(θi − θ0)

]
(73)

θi = θ0 + ∆θe,i + ∆θp,i (74)

hi =
√

ζ2
i + 1− ζi (75)

ζi =
B0,ics,i

2b
√

τ2
i − τ2

µ,i

(76)

τµ,i =
µi
µ0

(
β0τdis,0,i + τp,0

)
(77)

∆Gi = g0µib3
[

1−
(

τi
τdis,0,i + τp,0

)q]r

(78)

τdis,0,i = α0µ0b
√

Ni (79)

τp,0 = βp
µ0b
λp

(80)

∆θe,i = b1(ε1,e,i + 2ε2,e,i) + b2(ε1,e,i + 2ε2,e,i)
2 + b3(ε1,e,i + 2ε2,e,i)ε2,e,i (81)

d
(
∆θp,i

)
dξ

=
4β

3ρ0cηC
λ1,iτi ϕi (82)

C = c0 + s1up,− (83)

Nm,+,i = f+N+,i (84)

Nim,+,i = (1− f+)N+,i (85)

up,i = up,+ − (λ1,i − λ1,+)C (86)
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Table 4. Material and operating parameters in Equations (71)–(86) and their values for 6061-T6 Al
alloy at ambient conditions (taken from [2,4] unless described otherwise).

Parameter Value Unit Definition

k 1.380649 × 10−23 J/K Boltzmann’s constant
χ 0.05 scaling parameter

νD 8.0 × 1012 1/s Debye’s frequency
g0 0.65 thermal activation parameter
q 0.5 thermal activation parameter
r 2.0 thermal activation parameter

µ0 27.627 GPa initial shear modulus
1/µ0 (∂µ/∂p) 65 × 10−3 1/GPa pressure coefficient of shear modulus
1/µ0 (∂µ/∂θ) −0.62 × 10−3 1/K temperature coefficient of shear modulus

θ0 300.0 K initial temperature
p0 0.0 Pa initial pressure
z 4.0 number of atoms per unit cell

α0 1.0 dislocation interaction coefficient
β0 0.0 long-range interaction factor
βp 0.84 Orowan looping factor

C
5457.3146

m/s
shock wave speed at σ1,– = 2.1 GPa

5606.2939 shock wave speed at σ1,– = 3.7 GPa
6011.1869 shock wave speed at σ1,– = 9.0 GPa

c0 5350.0 m/s material constant
s1 1.34 material constant

N+,w 2.0 × 1014 1/m2 initial total dislocation density in the cell wall
N+,b 1.9 × 1014 1/m2 initial total dislocation density in the cell block
f + 0.006 initial fraction of mobile dislocations

λ1,+ 0.993711 initial longitudinal stretch
T1,+ −675 MPa HEL longitudinal Piola-Kirchhoff stress

λ1,p,+ 0.9994002 initial longitudinal plastic stretch
up,+ 39.629214 m/s initial particle speed
b1 −593 K thermomechanical parameter
b2 −130 K thermomechanical parameter
b3 1350 K thermomechanical parameter
β 1.0 Taylor-Quinney coefficient
cη 880.0 J/(g K) specific heat at constant configuration

Figure 6. Particle speed profiles for 6061-T6 Al alloy at shock stress amplitude of 2.1 GPa, calculated with the model of
Austin and McDowell [2], (a) with C = 5353 m/s, where setting #1 means α0 = 1.0, β0 = 0.1, setting #2 means α0 = 0.9,
β0 = 0.1, setting #3 means α0 = 0.9, β0 = 0.2, setting #4 means α0 = 0.8, β0 = 0.1, setting #5 means α0 = 0.8, β0 = 0.2, setting
#6 means α0 = 0.7, β0 = 0.1, setting #7 means α0 = 0.7, β0 = 0.2, and (b) with α0 = 1.0, β0 = 0.1, where speed #1 means
C = 5353 m/s, speed #2 means C = 5383 m/s, speed #3 means C = 5407 m/s, speed #4 means C = 5437 m/s, speed #5 means
C = 5457 m/s, speed #6 means C = 5477 m/s, speed #7 means C = 5519 m/s, speed #8 means C = 5535 m/s. The experimental
results [43] have been presented for comparison.

The particle speeds obtained via integrating from the “+” state to the “−” state are
given in Figure 7. Since the “+” state is different from the HEL state, the profiles here do not
cover the first several experimental points, as in the results of Austin and McDowell [2]. It
is observed that considering the two-phase structure and introducing the stability condition
of Equation (59), can improve the agreement of this model with the experiments, as well.
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Figure 7. Particle speed profiles for 6061-T6 Al alloy at shock stress amplitudes of (a) 2.1, (b) 3.7, and (c) 9.0 GPa. The
present scheme has been applied to model #3 [2,4], and the results are compared with those from model #3 [2,4] and the
experimental ones [43].

5.4. Summary

The results of the above three models have been put together in Figure 8. Among
these three models, as shown in Figure 8a, for σ1,– = 2.1 GPa, the results calculated with the
model of Molinari and Ravichandran [22] seems to agree best with the experimental ones.
For σ1,– = 3.7 GPa, as in Figure 8b, the results from the model of Austin and McDowell [2]
seems to agree best with the experimental ones. However, for σ1,– = 9.0 GPa, as in Figure 8c,
the best results come from the model of Molinari and Ravichandran [22], combined with
the dislocation processes taken from the model of Austin and McDowell [2]. In other
words, none of the above three models can reproduce the experimental results satisfactorily
for all the three shock stress amplitudes. In contrast, via accounting for the two-phase
heterogeneity and introducing the stability condition, the present work improves the
agreement for all cases, as shown in Figures 4, 5 and 7.
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Figure 8. Particle speed profiles for 6061-T6 Al alloy at shock stress amplitudes of (a) 2.1, (b) 3.7, and (c) 9.0 GPa. The results
of the three models [2,4,22] are compared with the experimental ones [43].

It is necessary to note that although the first and the second dominant mechanisms have
been given three possible expressions each as in Equations (12)–(14) and Equations (15)–(17),
respectively, we actually adopted Equations (12) and (16) in the above applications. The
reason lies in three aspects. Firstly, it is apparent that to build a computable CIC combi-
nation, the two dominant mechanisms should not be expressed with the same quantity.
Secondly, since the calculation of Σ is not straightforward, Equations (14) and (17) have
been abandoned here. Thirdly, the combination of Equations (13) and (15) results in only
trivial solutions in the above applications, which should be discarded.

6. Conclusions

In this work, we have elucidated the mesoscale complexity in the viscoplastic deformation
of metals, under the framework of mesoscience. Based on analyzing the processes that determine
the dislocation density and distributions, two competing dominant mechanisms have been
revealed, i.e., maximization of the rate of plastic work, and minimization of the elastic energy,
which lead to extreme results individually, but produce complexity when co-working.

Mathematical expressions have been proposed to reflect the dominant mechanisms,
and subsequently a stability condition has been established as the CIC between them. Such
a stability condition has been further used to close two-phase models, and the results have
shown improvement over the original constitutive models. In the near future, the present
scheme will be adopted to develop more sophisticated models, through improved routes
of applying the stability condition, and more advantages are expected to emerge.
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