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Methanogenic archaea are a group of strictly anaerobic microorganisms characterized by their strict dependence on the process of
methanogenesis for energy conservation. Among the archaea, they are also the only known group synthesizing proteins containing
selenocysteine or pyrrolysine. All but one of the known archaeal pyrrolysine-containing and all but two of the confirmed archaeal
selenocysteine-containing protein are involved in methanogenesis. Synthesis of these proteins proceeds through suppression of
translational stop codons but otherwise the two systems are fundamentally different. This paper highlights these differences and
summarizes the recent developments in selenocysteine- and pyrrolysine-related research on archaea and aims to put this knowledge
into the context of their unique energy metabolism.

1. Introduction

Expansion of the amino acid repertoire of proteins beyond
the 20 “canonical” amino acids is a phenomenon observed
almost 50 years ago [1]. Numerous modifications of the
carboxyl- or amino-terminals or the individual side chains
of amino acids after ribosomal synthesis of the respective
polypeptide had finished were identified and the biosynthetic
path elucidated (reviewed in [2]). It is thus not surprising
that a similar process was assumed when selenocysteine,
2-selenoalanine, was discovered as constituent of eukaryal
and bacterial proteins [3]. What made selenocysteine special
is that subsequent efforts established the cotranslational
nature of its insertion into proteins at the position of a
UGA stop codon on the respective mRNA [4, 5]. Thus,
selenocysteine was designated the 21st proteinogenic amino
acid [6]. Discovery of pyrrolysine, lysine with εN in
amide linkage to (4R,5R)-4-methyl-pyrroline-5-carboxylate,
occurred in a different order, a single in-frame amber codon
within the gene encoding the monomethylamine (MMA)
methyltransferase in Methanosarcina barkeri [7, 8] was later

found to correspond to pyrrolysine in the crystal structure
[9, 10] and have its own tRNA [11]. As pyrrolysine was also
shown to be inserted cotranslationally, it was designated the
22nd proteinogenic amino acid [10]. Beside the fact that
translation of selenocysteine and pyrrolysine both involves
suppression of stop codons the two systems have little in
common (also reviewed in [12, 13]). To emphasize the dif-
ferences between the mechanisms underlying selenocysteine
and pyrrolysine translation, to summarize recent insights
from efforts to better understand the biology of these two
unusual amino acids, and to put this knowledge into the
physiological context of the unique energy metabolism of
methanogenesis are the aims of this paper.

2. Selenocysteine and Methanogenesis

The early observation that selenium supply influences
growth performance of some methanogens [14–16] is due
to the fact that most of their selenocysteine-(Sec-)containing
enzymes are involved in the organism’s primary metabolism,
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methanogenesis. This process is of profound global impor-
tance as ca. 2% of the net CO2 fixed into biomass is recycled
through methane [17, 18]. All known methanogens are
members of the domain archaea. The range of substrates
methanogenic archaea use for methanogenesis is rather
limited reflecting the narrow ecological niche methanogens
occupy; mostly simple C1- and C2-compounds such as
CO2 (with hydrogen as reductant), carbon monoxide,
methanol, methylamines (mono-, di-, and trimethylamine,
as well as tetramethylammonium ion), methylsulfides, and
acetate are converted to methane. The different substrate
classes are metabolized via distinct, but overlapping, path-
ways of methanogenesis (for reviews, see [19–21]). Of
the five established orders of methanogenic archaea [22],
the Methanococcales, Methanobacterales, Methanomicrobiales,
Methanopyrales, and Methanosarcinales, all (with very few
exceptions) but the latter are strictly hydrogenotrophic, that
is, only H2 + CO2 and/or formate serve as energy substrates.

It is intriguing that before Böck’s and Stadtman’s labo-
ratories became famous for their selenium-related research
they both studied (among other things) different aspects of
methanogens [32–34]. It, thus, seems a striking coincidence
that within the Archaea proteins containing selenocysteine
[35], are until now restricted to methanogens (Methanococ-
cales and the related Methanopyrales) [36, 37]. The known
archaeal Sec-containing proteins are listed in Table 1. It
should be emphasized that most methanogens do not employ
selenocysteine, which poses the question as to why they get
along just fine without it while others employ, and sometimes
even depend on, the residue. There is no straightforward
answer to this question but some considerations will be given
below.

If the methanogenic growth substrate is formate, it
is first oxidized to CO2 via (sometimes Sec-containing)
formate dehydrogenase (FDH, Figure 1) [24]. In the hydro-
genotrophic pathway of methanogenesis, CO2 is sequentially
reduced to methane in seven steps via coenzyme-bound
intermediates using H2 as the electron donor (Figure 1).
The eight-electron reduction proceeds through the redox
levels of formate, formaldehyde, and methanol. Formyl-
MF dehydrogenase (FMD), of which a subunit (FwuB) can
contain Sec [25] catalyzes CO2 reduction to the formyl-level
and attachment to methanofuran (a 2-aminomethylfuran
derivative). Of the three hydrogenases responsible for hydro-
gen activation in Methanococcus, subunits of two can contain
Sec. These are the large subunit of the F420-dependent hydro-
genase Fru (FruA, F420 is a hydride carrier functionally anal-
ogous to dinucleotide cofactors) [38] and two subunits of the
F420-independent Vhu hydrogenase (VhuU and VhuD) [39].
Vhu and the heterodisulfide reductase (HDR), of which the
large subunit (HdrA) can contain Sec [40], form a tight com-
plex [41]. The heterodisulfide of coenzyme M and coenzyme
B formed in the last step of methanogenesis serves as the
terminal electron acceptor, which is reduced by HDR [18].

3. Pyrrolysine and Methanogenesis

The Methanosarcinales have the most diverse catabolism of
all methanogens, largely due to the ability to use methy-

lated substrates. Methylotrophic methanogenesis requires
simultaneous oxidation and reduction of the methyl group
(Figure 2) on the same C1 carriers employed during
hydrogenotrophic methanogenesis. The reducing equiva-
lents from the oxidation of one methyl group, at least
some of which are produced as hydrogen [42], are used
to reduce three methyl groups to methane. Several steps
of both the reductive and oxidative branches of methy-
lotrophic methanogenesis may rely on distinct isozymes
from those essential for acetotrophic or hydrogenotrophic
methanogenesis [43]. Both oxidative and reductive branches
originate with methyl-Coenzyme M (methyl-CoM); thus,
key to the diverse substrate range of Methanosarcinales are a
number of methyltransferases with specificity for a particular
methylated substrate such as methanol [44, 45], MMA [46],
dimethylamine (DMA) [47], or trimethylamine (TMA) [48].
Each methyltransferase methylates a dedicated cognate cor-
rinoid protein, subsequently demethylated by one of several
corrinoid protein:CoM methyltransferases, such as MtbA,
or MtaA [49]. An iron-sulfur protein, RamA, reductively
activates the methylamine corrinoid proteins prior to initial
methyl transfer [50]. The corrinoid proteins are homologous
to the B12-binding domain of methionine synthase [7, 8,
51, 52] and share the double Rossman fold which binds
the cofactor, while the corrinoid:CoM methyltransferases
are closely related to uroporphorinogen decarboxylases
[51, 53]. Both corrinoid proteins and CoM methylases
are often erroneously classified as their more commonly
known homologs in genome annotations. In contrast, the
methanol, MMA, DMA, and TMA methyltransferases share
no sequence similarity with each other [7, 8]. However, both
the methanol [54] and MMA methyltransferases [9] have
TIM barrel structures in common with methyltransferases
interacting with homologous corrinoid proteins [55].

Multiple isoforms of each type of methyltransferase and
cognate corrinoid protein are often encoded in different
Methanosarcinales genomes [56–59]. Mutagenesis of all three
methanol methyltransferase genes is required to eliminate
methanol dependent growth in Methanosarcina acetivorans
[60]. Although two MMA methyltransferase genes (mtmB1
and mtmB2) are found in M. barkeri MS, only MtmB1 is
isolated as an abundant protein during growth on MMA [46,
61]. The mtmB2 gene of Methanosarcina mazei is most highly
expressed during growth on methanol, possibly representing
a nitrogen scavenging strategy [62]. MttB1, the predominant
TMA methyltransferase isoform [48, 61], may preferentially
interact with a TMA-specific permease in Methanococcoides
burtonii [63].

The abundance of the isolated methylamine methyltrans-
ferases added to the initial surprise of finding a single in-
frame amber codon in mtmB1 in two different strains of M.
barkeri [7]. An amber codon was also found in the M. barkeri
mtbB1, mtbB2, and mtbB3 genes encoding isozymes of DMA
methyltransferase, and the M. barkeri and Methanosarcina
thermophila TMA methyltransferase gene mttB [8]. The
genomes of M. barkeri, M. acetivorans, M. mazei, and M.
burtonii have since shown the amber codon is a conserved
trait in all methylamine methyltransferase genes [56–59]. In
each class of methyltransferase the amber codon placement
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Table 1: Sec-containing proteins of archaea.

Selenoprotein-containing enzyme Subunit Function Characteristic organism Reference

Formate dehydrogenase FdhA Methanogenesis Methanococcus vannielii [23, 24]

Formyl-methanofuran dehydrogenase FwuB Methanogenesis Methanopyrus kandleri [25]

F420-reducing hydrogenase FruA Methanogenesis Methanococcus voltae [26]

F420-nonreducing hydrogenase
VhuD Methanogenesis

Methanococcus voltae [26, 27]
VhuU Methanogenesis

Heterodisulfide reductase HdrA Methanogenesis Methanocaldococcusa jannaschii [28]

Selenophosphate synthetase homomeric Sec synthesis Methanococcus maripaludis [28, 29]

HesB-like protein unknown Unknown (iron/sulfur cluster assembly?) Methanococcus maripaludis [29, 30]
aMethanococcus jannaschii was placed in a separate genus, Methanocaldococcus [31].
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Figure 1: Scheme of hydrogenotrophic methanogenesis involving Sec-containing proteins (orange); the Cys-containing isoforms are in
white. CoM-S-S-CoB, heterodisulfide of coenzyme M and coenzyme B; Fd, ferredoxin; Fdox, oxidized Fd; Fdred, reduced Fd; FDH, formate
dehydrogenase; FMD, formyl-methanofuran dehydrogenase; Fru, F420-reducing hydrogenase; F420, (oxidized) 8-hydroxy-5-deazariboflavin
derivative; F420H2, reduced coenzyme F420; H4MPT, tetrahydromethanopterin, HDR, heterodisulfide reductase; HS-CoB, coenzyme B (N-
7-mercaptoheptanoyl-O-phospho-L-threonine); HS-CoM, coenzyme M (2-mercaptoethanesulfonic acid); MF, methanofuran; Vhu, F420-
nonreducing hydrogenase.

is different, but conserved in genes encoding isozymes of a
particular methyltransferase. A single exception is the mttB3
gene of M. burtonii that lacks an in-frame amber codon
[63]. This gene is not expressed during growth on TMA
[63], but may instead be specific for a known or unknown
methylotrophic substrate. For example, the encoding gene
for tetramethylammonium chloride methyltransferase is not
yet identified [64]. The UAG codon remains in methylamine

methyltransferase transcripts [8], yet little detectable UAG
termination product of mtmB is detectable in cell extracts
[65, 66]. Peptide sequencing of HPLC isolated peptides
revealed the reading frame conserved before and after the
UAG-encoded position [8, 65], with a lysine observed at
the UAG-encoded position. Lysine codon usage is normal
in other genes in M. barkeri, and the possibility that a labile
lysine residue could be present at the UAG position that was
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Figure 2: Scheme of methylotrophic methanogenesis. Methyl groups from methanol, TMA, DMA, and MMA are mobilized into metabolism
by the action of a substrate-specific methyltransferase interacting with its cognate corrinoid protein in which the cofactor’s cobalt ion
cycles between methyl-Co(III) and Co(I) states. Methyltransferases that are pyrrolysyl-proteins are marked with an asterisk. The corrinoid
cofactor is then demethylated by the action of a methylcobamide:CoM methyltransferase such as MtbA (for methylamines) or MtaA (for
methanol). Adventitious oxidation can inactive the corrinoid proteins to the Co(II) state, which can be reductively reactivated by RamA (for
methylamines) and possibly by RamA homologs for other pathways. Reducing equivalents in the form of hydrogen, F420H2, or Fdred from the
oxidation of methyl-CoM are used to reduce methanophenazine (MP) and subsequently CoM-S-S-CoB, thereby generating ATP via electron
transport phosphorylation and the free HS-CoM and HS-CoB cofactors; CoM-S-S-CoB is then recycled by the reduction of methyl-CoM to
methane. See Figure 1 for cofactor abbreviations.

destroyed during peptide isolation [65] was addressed by
the structure of MtmB and the subsequent visualization of
pyrrolysine [9, 10]. Mass spectroscopy of MtmB, MtbB, and
MttB confirmed the mass of pyrrolysine corresponding to the
proposed structure at the UAG encoded position of all three
proteins [61].

4. Peculiarities of Archaeal Selenocysteine
Synthesis and Incorporation

The pathway of Sec biosynthesis and incorporation is well
understood in E. coli [67]. First, Sec-specific tRNA (tRNAsec)
is charged with serine by seryl-tRNA synthetase, and the
seryl moiety is subsequently converted to a selenocysteyl-
moiety by Sec synthase (SS). The selenium donor is
selenomonophosphate generated by selenophosphate syn-
thetase (SPS). The specialized translation elongation factor
SelB (homologous to EF-Tu) delivers in its GTP-bound form
the selenocysteylated tRNA to the ribosome via binding of a
secondary structure on the selenoprotein mRNA, the SECIS
element, located immediately adjacent to the UGA codon
[68–71]. This binding triggers a conformational change

in the quaternary Sec-tRNAsec-SelB-GTP-SECIS complex,
which allows for insertion of the charged tRNA into the
ribosomal A site [72, 73].

Both Sec synthesis and Sec insertion differ in Archaea
from the bacterial path (Figure 3). In fact, identical strategies
appear to be employed by archaea and eukarya—to the
exclusion of bacteria. Conversion of the seryl-moiety to Sec
proceeds via two steps: seryl-tRNAsec is phosphorylated to
O-phosphoseryl-tRNAsec in an ATP-dependent reaction by
phosphoseryl-tRNAsec kinase (PSTK) [74, 75]; subsequently,
the O-phosphoseryl-moiety is converted to the Sec-moiety
by O-phosphoseryl-tRNAsec:Sec synthase (SepSecS) [76].
SepSecS (also named SecS in the eukaryal system [77])
is (like SS) a pyridoxal phosphate-dependent enzyme, and
its proposed reaction mechanism is analogous to that
proposed for bacterial SS [76, 78]. Although it has been
shown for Trypanosoma brucei that only the PSTK- and
SepSecS-dependent pathway is present [79], and although
high-resolution structures of both enzymes have recently
become available [80–84], the physiological function of O-
phosphoseryl-tRNAsec and, thus, the selective advantage for
investing an additional ATP in Sec synthesis (as compared to
the bacterial system) is not evident. The possibility that this
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Figure 3: Schematic representation of selenocysteine biosyn-
thesis and incorporation in Archaea. 3′UTR, 3′-untranslated
region; PSTK, seryl-tRNAsec kinase, [Se], reduced Se-species; SelB,
Sec-specific elongation factor; SepSecS, O-phosphoseryl-tRNAsec:
selenocysteine synthase; Ser, serine; Se-P, seleno(mono)phosphate;
SerRS, seryl-tRNA synthetase; SPS, selenophosphate synthetase; see
text for details.

pathway renders activation of selenium in the SPS reaction
unnecessary [85, 86], turned out not to apply [29]. Severely
selenium deprived rats were shown to incorporate cysteine
at the selenocysteine-position of selenium-dependent thiore-
doxin reductase, probably in order to salvage at least some
enzymatic activity [87]. Furthermore, it was suggested that
O-phosphoseryl-tRNAsec might be converted to cysteinyl-
tRNAsec in Methanococcus maripaludis [88]. However, if
no highly stringent mechanisms to ensure the fidelity of
codon/amino acid correlation during translation under
“normal” physiological conditions were operative, such a
possibility would render any UGA codon within a seleno-
protein mRNA ambiguous for the amino acid to be inserted,
which in turn would have detrimental effects on the “mis-
translated” protein’s activity. Fortunately, M. maripaludis,
for which this scenario was proposed, is the ideal model to
study it and exciting new insights regarding the physiological
meaningfulness of the additional phosphorylation step await
us. The same is true for the in vivo role of selenium-binding
protein (SeBP), a 81 amino acid polypeptide which binds
one reduced selenium per tetrameric protein in vitro [89, 90]
and could therefore be involved in transport and intracellular
trafficking of selenium.

In eukarya and archaea, the SECIS element is located
in the nontranslated regions of selenoprotein mRNAs; note-
worthy, there is no relation between the SECIS elements in

terms of structure and/or sequence, which indicates that they
have distinct evolutionary origins [67] and that the modes
of SECIS-function, that is, SECIS recognition, might differ.
While the bacterial SECIS is specifically bound by the Sec-
specific translation elongation factor SelB, the archaeal and
eukaryal counterparts are not; there, the respective SelBs do
not contain a C-terminal extension shown to be responsible
for SECIS-binding in E. coli [91–93]. Instead eukaryal SECIS
elements are bound by “SECIS-binding protein 2” (SBP2)
and the ribosomal protein L30 [94, 95]. Other factors have
also been shown to be involved in SECIS-dependent UGA
recoding, but their exact function is not clear yet (current
knowledge is summarized in [96, 97]). So far, no SECIS-
binding factor has been identified in Archaea. Homologs of
SBP2 are not encoded in any available archaeal genome and
the two L30 homologs of Methanococcus maripaludis appear
not to be involved in selenocysteine insertion because their
homologous overproduction had no effect on selenoprotein
formation of the organism (Sattler and Rother, unpublished
data). Further, Methanocaldococcus jannaschii encodes three
L30 homologes [40] and the one most similar to SBP2 was
tested whether it could function in eukaryal selenoprotein
synthesis but did not [94]. This may not be too surprising as
both the structure/sequence and the distance of the archaeal
SECIS elements to the respective UGA codons they recode is
different to the eukaryal SECS elements [67], which may be
as far as 5.4 kb downstream of their cognate UGA [98] with
an average distance of 500–2,500 nt [30, 99]; the archaeal
SECIS structures are usually located in closer proximity
(80–1,300 nt [40, 100, 101]). It is possible that a distance
constraint is the reason for a unique situation regarding
the selenoprotein FdhA (encoding a subunit of formate
dehydrogenase; see Table 1); the putative SECIS element
is located in the 5′-nontranslated region of the respective
deduced mRNA, maybe because the distance of the Sec
codon and the 3′-nontranslated (>1,600 nt) region would
be too great. However, this scenario needs to be verified by
experimentation and fortunately, the tools required for such
an in vivo analysis are now available [102, 103].

5. Pyrrolysine Synthesis and
Incorporation Is Different from Sec

An amber decoding tRNAPyl (then called tRNACUA) was
identified as the product of the pylT gene [11] simultane-
ously with the discovery of pyrrolysine. This gene is the
first of the pylTSBCD gene cluster found in representative
Methanosarcinales [11]. The five pyl genes have proven
sufficient for the biosynthesis and genetic encoding of
pyrrolysine [66].

Initial scenarios suggested that tRNAPyl might be charged
with lysine, either by a complex of class I and class II lysyl-
tRNA synthetases [104], or by the pylS gene product, iden-
tified as a homolog of class II aminoacyl-tRNA synthetases
[11]. Both ideas proved incorrect. Loss of the genes encoding
one or the other LysRS from Methanosarcina acetivorans does
not affect UAG translation as pyrrolysine [105], and the
substrate of PylS is not lysine, but pyrrolysine itself [106].
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Figure 4: Schematic representation of pyrrolysine incorporation
into protein. The pylB, pylC, and pylD genes have been shown to
enable pyrrolysine biosynthesis in E. coli, but their exact roles are
unknown. A conceptual and speculative scheme is shown which is
keeping with the activities of proteins in their respective proteins
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products of the split gene pylSc and pylSn. The direct formation of
pyl-tRNAPyl is likely followed by binding to the elongation factor
used by the canonical amino acids, that is, EF-1α in Archaea.
The common bacterial elongation factor EF-Tu can bind charged
tRNAPyl both in vivo and in vitro. The recognition of pyl-tRNAPyl

by non-specialized elongation factors underlies the relatively high
level of UAG translation in a reporter gene such as uidA with
an introduced amber codon in organisms having tRNAPyl, PylS,
and pyrrolysine or an analog to charge tRNAPyl. The PYLIS is not
essential for this level of translation, as shown by replacement of
PYLIS in mtmB1, but may enhance UAG translation to some extent.
This effect is unlikely to require the structure formed by PYLIS. See
text for further details.

Quite unexpected by analogy to selenocysteine, pyrrolysine
is not made on tRNAPyl, but as a free amino acid which is
directly ligated to the tRNA (Figure 4).

PylS is a pyrrolysyl-tRNA synthetase, as shown by in
vitro activity with chemically synthesized pyrrolysine [10,
107, 108]. The 50 μM Km of PylS for stereochemically pure
pyrrolysine remains the lowest observed for any substrate or
pyrrolysine analog tested [107]. The function of the pylS and
pylT gene products was confirmed by in vivo synthesis of
pyrrolysine-containing proteins in E. coli transformed with
pylT and pylS and supplemented with exogenous pyrrolysine
[107]. As an orthologous pair, PylS and tRNAPyl have been
exploited in recent years to incorporate Pyl analogs with

modifiable tags for production of recombinant proteins
with derivatizable residues [109–111]. Several structures of
the catalytic core of M. mazei PylRS enzymes are now
available, although these lack the first 180 residues of the
protein [112–115]. The activated pyrrolysyl-adenylate made
prior to ligation to tRNAPyl lies in a deep groove with
the pyrroline ring buried in a hydrophobic pocket [113,
114]. A mobile loop can bring a tyrosine into H-bonding
distance of the imine nitrogen of pyrrolysine [113], but is
not essential for activity [114]. Analogs of pyrrolysine lacking
an electronegative group at this position are recognized
with a lowered specificity constant [116]. Mutation of the
hydrophobic pocket has led to enhanced activity with a
derivatizable pyrrolysine analog [117], or εN-acetyl-lysine
[118].

In contrast to the single archaeal pylS gene, bacteria such
as Desulfitobacterium hafniense encode pylS in two separate
genes, with the catalytic domain encoded by pylSc and the
N-terminal region encoded by pylSn [11, 13, 106]. PylSc is
competent in vitro as a pyrrolysyl-tRNA synthetase, but has
minimal detectable activity in vivo [115, 119]. This may be
due to high affinity binding of tRNAPyl by PylSn which pre-
sumably interacts with PylSc (Jiang and Krzycki, manuscript
in preparation). The structure of PylSc and tRNAPyl complex
[115] revealed the compact core of tRNAPyl enhancing
interaction with the catalytic domain. Interestingly, unique
elements of tRNAPyl such as the elongated anticodon stem,
small variable loop, and T-loop without the classical TψC
sequence [11, 120], were not directly contacted by PylSc.

Recombinant expression of pylTSBCD in E. coli results in
translation of UAG as internally biosynthesized pyrrolysine
in reporter proteins [66]. Transformation of only pylBCD
leads to pyrrolysine production, as determined by PylS-based
charging and amino acid activation assays [66]. The recom-
binantly produced amino acid comigrates with synthetic
pyrrolysine in TLC (Gaston and Krzycki, unpublished data).
The enzymatic activities of the pyrrolysine biosynthetic
genes, that is, PylB, PylC, and PylD are yet unknown but
they share homologies that lead to logical possibilities [11,
66, 121]. The pylB gene product is highly similar to biotin
synthase, while lacking key residues for binding dethiobiotin
but it has all other hallmarks of the radical SAM family whose
members catalyze various intramolecular rearrangements,
reductions, and methylation reactions [122]. PylB may
catalyze formation of the methylated ring or ring precursor.
The pylC gene product is related to the carbamoyl-phosphate
synthetase and D-alanine-D-alanine ligase superfamily and
might play a role in amide bond of pyrrolysine between lysine
and the ring precursor. PylD has an NAD-binding signature,
and could be involved in formation of the imine bond.

The ability of a single gene cluster, pylTSBCD, to trans-
form a naı̈ve organism to incorporate genetically encoded
biosynthesized pyrrolysine could underlie the far-flung dis-
tribution of pyrrolysine genes in microbes [66]. Although
only Methanosarcinales are known to have pyl genes in the
Archaea, all five pyl genes have been noted in Gram-positive
bacteria such as Desulfitobacterium hafniense [11], Desulfo-
tomaculum acetoxidans, and Acetohalobium arabaticum [13].
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A recently sequenced genome also reveals a complete pyl
operon in Thermincola sp. JR as well. Examples of pyl
genes are also found in Gram-negative bacteria such as a
δ-proteobacterial worm intestinal symbiont [123]. In the
Gram-positive bacteria, pylScBCDSn typically form a single
gene cluster (with the exception of A. arabaticum where pylSn
precedes pylSc), whereas in the δ-proteobacterium separate
pylBCD and pylTScSn gene clusters are found on different
contigs of the unclosed genome sequence.

UAG appears to serve globally as both sense and stop
codon in archaea having the pyl genes. An E. coli uidA
gene with an introduced amber codon transformed into M.
acetivorans resulted in mostly amber-terminated gene prod-
uct, but also produced full-length active β-glucuronidase,
complete with pyrrolysine, at an apparent efficiency of 20%–
30% [124]. When this data is considered in light of the
translation of mtmB1 or reporter genes with introduced
amber codons in E. coli dependent on pylT and pylS [66, 107,
124], it appears very likely that amber suppression underlies
this relatively high level of pyrrolysine incorporation.

Sec incorporation into protein requires the presence of
the SECIS element in the transcript as discussed above. An
analogous pyrrolysine insertion sequence (PYLIS) element
was proposed [125] whose basic structure exists in solution
[126]. In the initial sequencing of the first mtmB and mttB
genes, this same element was observed, but nothing similar
could be seen in mtbB [127], a result that was further
emphasized by a later more exhaustive bioinformatics study
[12]. Direct replacement of the PYLIS confirmed it was not
essential for incorporation of pyrrolysine into MtmB, albeit
with a decrease in full-length product in the absence of the
element [124]. Concomitant increase in amber-truncated
mtmB1 product indicated that some portion of the PYLIS
might enhance UAG translation or diminish UAG-directed
termination. The effect observed is unlikely to require the
entire structure formed by the PYLIS as comparison of the
PYLIS from ten methanogen mtmB genes shows only limited
evidence of covariance [128].

Again, unlike Sec, factors that might participate in
highly efficient translation of UAG as pyrrolysine during
mtmB expression have not been identified. Two release
factors are encoded in the genomes of M. mazei and M.
acetivorans, which were proposed to possibly participate in
UAG translation as pyrrolysine by differential recognition of
stop codons [12], but only one of these homologs is found in
the genomes of M. barkeri, M. burtonii, or Methanohalophilus
mahii suggesting this could not be a general method of
enhancing UAG translation. The two release factors from M.
acetivorans were tested and one was capable of recognizing all
three stop codons, whereas the other had no activity, leaving
its function an open question [129].

Unlike Sec-tRNASec, Pyl-tRNApyl can be recognized by
bacterial EF-Tu in vitro [120] and in vivo [107], and by
eukaryotic EF-1α as well [110, 111]. This would seem to
obviate the need for another elongation factor, although it
would be possible that an elongation factor with a higher
affinity for Pyl-tRNAPyl could function in pyrrolysine-
utilizing archaea or bacteria. The pyl genes-containing

Methanosarcinales encode an archaeal EF1α, as well as a SelB
homolog that could enhance recognition of Pyl-tRNAPyl

[130]. This idea has not yet been tested, but it should be
noted that close homologs of this same SelB-like protein
could be found in other methanogens that lack pyl genes,
indicating the role of this factor may not be connected to
pyrrolysine metabolism.

6. Why Use Sec?

Most of the organisms for which genome information is
available obviously do not employ Sec at all. Although
not abided by all bioinformaticians, more than a TGA-
interrupted gene and an orphan translation factor are needed
to conclude that an organism synthesizes selenoproteins
[131]. The simplest way would be to conduct an experiment
but at least tRNAsec and the Sec-biosynthesis factors (SS or
PSTK/SepSecS) have to be encoded as well.

Why organisms use Sec is still not understood, mostly
because for most characterized selenoproteins the specific
functions of Sec are still unknown. Furthermore, for all but
one of the selenoproteins of prokaryotes (clostridial glycine
reductase), homologous proteins with cysteine (Cys) at the
respective position exist [132]. This is true even within one
organism in Sec-utilizing methanogens. In M. maripaludis
strain JJ, for example, all of its selenoproteins are dispensable
during growth with H2 + CO2 because they can be substi-
tuted by a set of Cys-isoforms. On the other hand, a very
close relative, M. maripaludis strain S2, cannot do without
its selenoproteins, probably because for at least one of them
no complementing Cys-isoform exists or is sufficiently active
[29]. It was shown for strain JJ that the Cys-isoforms are
present at a much higher level than the selenoproteins they
replace, which was interpreted as a means to counteract
decreased kinetic efficiency of the Cys-containing proteins
in order to retain competitive substrate flux through the
methanogenic pathway [133]. Thus, using selenoproteins
could be a strategy to avoid unnecessary protein synthesis.
However, the notion that selenoenzymes are “super-cysteine-
enzymes”, an argument often used and derived from the
observed drastically lower enzymatic efficiencies of Sec to
Cys mutant variants of selenoproteins [134, 135], is proven
to not always be correct [136]. It can, thus, not be the sole
explanation for the use of Sec. The same is true for the
argument that Sec is more reactive than Cys due to the fact
that the selenol group is mostly deprotonated at physiological
pH while the thiol group is mostly protonated due to the
different pKa values (5.2 for Sec, 8.3 for Cys) [137, 138].
However, measuring the respective values in different Cys-
and Sec-containing peptide- and protein-contexts showed
that pKa cannot serve as the sole explanation for the
use of Sec [139, 140]. Selenoproteins have a lower redox
potential than their Cys-homologs in the cases where this
was determined [141, 142], a feature that is also often
used to explain the use of Sec. It was recently pointed
out that Sec has a higher nucleophilic character than Cys
and as a consequence might better facilitate initial high
rates in redox catalysis [143]. On the other hand, it has
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been argued that higher electophilicity of Sec than Cys
and ultimately protection of a Sec-containing enzyme from
overoxidation could be the “biological rationale” to employ
Sec [144]. However, all these arguments may be true for
some, but most probably not for all Sec-containing proteins.
Furthermore, a much more facile accessibility of the radical
oxidation state of Sec as compared to Cys has been observed
and although no known selenoproteins has been shown to
use a radical mechanism, the electrochemical difference is
remarkable. Therefore, it may have biological implications,
such as in mediation of one-electron- and two-electron-
transfer processes [145]. All of the mentioned potential
advantages of Sec over Cys might apply for methanogenic
archaea employing Sec, as most of the selenoproteins act
in the central metabolic pathway, methanogenesis, and the
organisms thrive at lowered redox potential conditions [146].
As such, methanogenic archaea would be ideal to study
the differences between selenoproteins and their cysteine-
containing isoforms in a naturally occurring system.

Today, there is broad consensus that Sec constitutes a very
ancient trait, present already in the last universal common
ancestor [76, 147, 148]. A simple explanation of why some
methanogens use Sec and others do not is unequal loss of
the trait due to different selective pressures during evolution.
Closely related Methanococcus species, or even strains of the
same species probably represent “moments” in this process
[29, 149]. The Sec-utilization trait was and is being lost in
archaea—and those still synthesizing selenoproteins might
just thrive under conditions, like permanent absence of
oxygen and low reductant concentration, which are not
selecting against this trait. On the other hand, very low
selenium availability should rapidly select against this trait
and with typical environmental concentrations of selenate
ranging from 20 nM to less than 100 pM [150, 151] such a
scenario is plausible. Furthermore, microbial and chemical
reduction of selenate [152, 153] and selenite [154] to
insoluble elemental selenium and gaseous hydrogen selenide
can deplete bioavailable selenium even further.

7. Why Use Pyl?

The major physiological reason apparent for pyrrolysine
remains methylamine methyltransfer. The pyl operon lies
adjacent to a separately transcribed MMA methyltransferase
operon in all Methanosarcina species examined to date [11].
The only essential activity lost by deletion of pylT and
the pyl promoter from M. acetivorans is the ability to use
methylamines, resulting in cells unable to grow on MMA,
DMA, or TMA, yet with no apparent defect in growth
or methanogenesis from methanol or acetate, save that
methylamines no longer are a nitrogen source [155]. This
result suggests that the only viable routes to metabolism of
methylamines in this organism are the corrinoid-dependent
methyltransferases made via UAG translation as pyrrolysine.

To date, every bacterial species found to have a pyl operon
has also had homologs of methylamine methyltransferase
genes with conserved amber codons. Nearby genes often
encode corrinoid proteins, and occasionally bacterial RamA

homologs, and corrinoid:pterin methyltransferases. These
genes suggest some of these bacteria have pathways to mobi-
lize methylamine into metabolism as methylated pterins to
serve as electron donors for anaerobic respirations and as
a source of cellular carbon and nitrogen. Few examples
exist of bacteria that use CoM (e.g., see [156]), however,
in D. acetoxidans a cluster of genes encoding homologs of
MtmB, its cognate corrinoid protein MttC, CoM methylase
MtbA, and bacterial RamA are found. It is tempting to
suggest this organism could employ CoM as a methyl-
donor. At times, the link between methylamine metabolism
and the pyl operon is even more intimate than seen with
the methylamine utilizing methanogens. For example, the
pyl gene cluster of A. arabaticum is interspersed with a
gene encoding a trimethylamine methyltransferase homolog
[13], and in D. acetoxidans an iron-sulfur protein encoded
between pylT and pylS is a member of the bacterial family
of proteins that are close homologs of RamA, demonstrated
to activate the methylamine:corrinoid methyltransferase
reaction in methanogenic archaea [50].

Homologs of the methanogen methylamine methyltrans-
ferases whose genes lack an amber codon are found in
the genomes of many bacteria and a few nonmethanogenic
archaea [11, 12, 123]. Such genomes always lack a complete
set of pyl genes, unless they also possess methylamine
methyltransferase genes with amber codons. Genes pre-
sumably encoding pyrrolysine-free homologs of the TMA
methyltransferase are relatively prevalent, and BLAST [157]
searches will readily retrieve such homologs predominantly
from various α-proteobacteria, as well as in Bacteriodes spp,
and the crenarchaeote Thermofilum pendulans. Rarer exam-
ples of DMA methyltransferase and MMA methyltransferase
gene homologs lacking the amber codon can also be found.
These proteins are diverged from the methylamine methyl-
transferases with pyrrolysine, and it remains to be seen if
these genes are actual methylamine methyltransferases. The
methylamine methyltransferases without amber codons have
at the site corresponding to pyrrolysine a small or bulky
hydrophobic residue, suggesting that these proteins will not
have similar chemistry.

This begs the question as to what function pyrrolysine
could serve in the demonstrated methylamine methyltrans-
ferases. Pyrrolysine brings a unique electrophilic nature to
the repertoire of genetically encoded amino acids, one that
can otherwise only be introduced into proteins by cofactors
or residue modification [158]. Pyrrolysine reactivity with
nucleophiles [9, 10] suggests the ability to participate in
corrinoid dependent methylamine methyltransferase reac-
tions by interacting with either the methylamine substrate or
product. In the case of the MMA methyltransferase, pyrroly-
sine lies in the bottom of an anionic cleft that corresponds
to the active site in corrinoid-dependent methyltransferases
that are structurally analogous to MtmB [9, 10]. The
pyrroline ring rotates by 90◦ upon forming an adduct
with a nucleophile such as ammonia or hydroxylamine,
and it is postulated that such a methylamine-pyrrolysine
adduct could facilitate methyltransfer to the Co(I) form
of the cognate corrinoid protein [9]. The ring rotation
would bring the methyl-group of the MMA-pyrrolysine
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adduct into roughly the same position occupied prior to
corrinoid transfer of the methyl-group during function
of the methyl-tetrahydrofolate:corrinoid methyltransferase
domain of methionine synthase [55]. Recently, site directed
mutagenesis and inhibitor studies showed that pyrrolysine
is crucial for rapid transfer of the methyl-group to corri-
noid cofactor or protein (Longstaff, Soares, and Krzycki,
manuscript in preparation). However, while these studies
will demonstrate the importance of pyrrolysine in methyl-
transfer, many aspects of the proposed model for pyrrolysine
function remain completely untested and are a priority for
the field.

Pyrrolysine has been physically observed in one protein
beyond methylamine methyltransferases, Thg1 from M.
acetivorans [159, 160]. Thg1 homologs are present in a
diverse number of methanogens, and in M. acetivorans only,
the gene has acquired an in-frame amber codon that can
be translated as pyrrolysine and is not essential for activity.
This result is not surprising, considering Methanosarcina
acetivorans will incorporate pyrrolysine into a recombinant
bacterial reporter protein whose gene has an introduced
amber codon [124]. Other examples of the ambiguity of UAG
codons in M. acetivorans are readily found. The pyl genes
themselves contain an example of a UAG codon serving as
stop rather than sense codon. The pylB gene has a TAA codon
ending the open reading frame in M. barkeri, but a TAG
codon corresponds to the same position in M. mazei, M.
acetivorans, and M. burtonii, and when the M. acetivorans
gene is expressed in E. coli with TAG changed to TAA,
the protein is functional in pyrrolysine biosynthesis [66]. A
family of transposase genes derived from a Bacillus insertion
element found in M. acetivorans and M. mazei [12, 56, 58]
may also prove an interesting story when the functionality
of these genes is investigated. Each representative has a
conserved in-frame amber codon. One of the M. acetivorans
transposase genes with an amber codon is most similar
to several from M. mazei, indicating possible transfer of
this transposase gene between species. The same family of
transposases is found in M. burtonii, but in spite of the
presence of pyl genes in this organism, these highly similar
genes lack the amber codon [128].

8. Conclusion

Selenocysteine and pyrrolysine are powerful examples of the
versatility inherent in the genetic code. They further provide
examples of how precedent, though valuable, is not always
the best predictor in scientific investigation, and that unpre-
dicted paths can often be found as solutions for apparently
similar phenomena. Selenocysteine was first thought to be
another example of a posttranslationally modified amino
acid, and was later found to be a genetically encoded amino
acid made and incorporated into protein in a way unlike the
canonical twenty amino acids. Pyrrolysine was subsequently
thought to be most likely analogous to selenocysteine, yet it is
biosynthesized and ligated to tRNA in a manner much more
reminiscent of the common twenty amino acids. The story
of each of these residues illustrates the immense information

and opportunity found in the sequenced genomes, but also
provides a reminder of the obligate pairing of prediction with
experimental investigation.
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synthesis in archaea,” Biofactors, vol. 14, no. 1–4, pp. 75–83,
2001.

[37] T. Stock and M. Rother, “Selenoproteins in Archaea and
Gram-positive bacteria,” Biochimica et Biophysica Acta, vol.
1790, pp. 1520–1532, 2009.

[38] L. D. Eirich, “Proposed structure for coenzyme F420 from
methanobacterium,” Biochemistry, vol. 17, no. 22, pp.
4583–4593, 1978.

[39] O. Sorgenfrei, S. Müller, M. Pfeiffer, I. Sniezko, and A. Klein,
“The [NiFe] hydrogenases of Methanococcus voltae: genes,
enzymes and regulation,” Archives of Microbiology, vol. 167,
no. 4, pp. 189–195, 1997.

[40] C. J. Bult, O. White, G. J. Olsen et al., “Complete genome
sequence of the Methanogenic archaeon, Methanococcus
jannaschii,” Science, vol. 273, no. 5278, pp. 1058–1073, 1996.

[41] E. Setzke, R. Hedderich, S. Heiden, and R. K. Thauer,
“H2: heterodisulfide oxidoreductase complex from
Methanobacterium thermoautotrophicum. Composition
and properties,” European Journal of Biochemistry, vol. 220,
no. 1, pp. 139–148, 1994.

[42] G. Kulkarni, D. M. Kridelbaugh, A. M. Guss, and W. W.
Metcalf, “Hydrogen is a preferred intermediate in the energy-
conserving electron transport chain of Methanosarcina
barkeri,” Proceedings of the National Academy of Sciences
of the United States of America, vol. 106, no. 37, pp.
15915–15920, 2009.

[43] P. V. Welander and W. W. Metcalf, “Mutagenesis of the C1
oxidation pathway in Methanosarcina barkeri: new insights
into the Mtr/Mer bypass pathway,” Journal of Bacteriology,
vol. 190, no. 6, pp. 1928–1936, 2008.

[44] P. van der Meijden, H. J. Heythuysen, A. Pouwels, F. Houwen,
C. van der Drift, and G. D. Vogels, “Methyltransferases
involved in methanol conversion by Methanosarcina barkeri,”
Archives of Microbiology, vol. 134, no. 3, pp. 238–242, 1983.



Archaea 11

[45] K. Sauer, U. Harms, and R. K. Thauer, “Methanol:
coenzyme M methyltransferase from Methanosarcina
barkeri purification, properties and encoding genes of the
corrinoid protein MT1,” European Journal of Biochemistry,
vol. 243, no. 3, pp. 670–677, 1997.

[46] S. A. Burke and J. A. Krzycki, “Reconstitution of
monomethylamine:coenzyme M methyl transfer with a
corrinoid protein and two methyltransferases purified from
Methanosarcina barkeri,” Journal of Biological Chemistry, vol.
272, no. 26, pp. 16570–16577, 1997.

[47] D. J. Ferguson Jr., N. Gorlatova, D. A. Grahame, and J.
A. Krzycki, “Reconstitution of dimethylamine:coenzyme
M methyl transfer with a discrete corrinoid protein and
two methyltransferases purified from Methanosarcina
barkeri,” Journal of Biological Chemistry, vol. 275, no. 37, pp.
29053–29060, 2000.

[48] D. J. Ferguson Jr. and J. A. Krzycki, “Reconstitution of
trimethylamine-dependent coenzyme M methylation with
the trimethylamine corrinoid protein and the isozymes of
methyltransferase II from Methanosarcina barkeri,” Journal
of Bacteriology, vol. 179, no. 3, pp. 846–852, 1997.

[49] D. J. Ferguson Jr., J. A. Krzycki, and D. A. Grahame, “Specific
roles of methylcobamide:coenzyme M methyltransferase
isozymes in metabolism of methanol and methylamines in
Methanosarcina barkeri,” Journal of Biological Chemistry, vol.
271, no. 9, pp. 5189–5194, 1996.

[50] T. Ferguson, J. A. Soares, T. Lienard, G. Gottschalk, and J. A.
Krzycki, “RamA, a protein required for reductive activation
of corrinoid-dependent methylamine methyltransferase
reactions in methanogenic archaea,” Journal of Biological
Chemistry, vol. 284, no. 4, pp. 2285–2295, 2009.

[51] L. Paul and J. A. Krzycki, “Sequence and transcript analysis
of a novel Methanosarcina barkeri methyltransferase II
homolog and its associated corrinoid protein homologous to
methionine synthase,” Journal of Bacteriology, vol. 178, no.
22, pp. 6599–6607, 1996.

[52] C. L. Drennan, S. Huang, J. T. Drummond, R. G. Matthews,
and M. L. Ludwig, “How a protein binds B12: A 3.0 Å X-ray
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