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CRISPR-Cas enzymes must recognize a protospacer-adjacent motif (PAM) to edit a genomic site, significantly limiting the range of targetable
sequences in a genome. Machine learning-based protein engineering provides a powerful solution to efficiently generate Cas protein variants
tailored to recognize specific PAMs. Here, we present Protein2PAM, an evolution-informed deep learning model trained on a dataset of
over 45,000 CRISPR-Cas PAMs. Protein2PAM rapidly and accurately predicts PAM specificity directly from Cas proteins across Type I, II,
and V CRISPR-Cas systems. Using in silico deep mutational scanning, we demonstrate that the model can identify residues critical for
PAM recognition in Cas9 without utilizing structural information. As a proof of concept for protein engineering, we employ Protein2PAM to
computationally evolve Nme1Cas9, generating variants with broadened PAM recognition and up to a 50-fold increase in PAM cleavage rates
compared to the wild-type under in vitro conditions. This work represents the first successful application of machine learning to achieve
customization of Cas enzymes for alternate PAM recognition, paving the way for personalized genome editing.
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Introduction1

The protospacer-adjacent motif (PAM) is a short DNA sequence next to a target site that CRISPR-Cas2

proteins must recognize to bind and cleave DNA. PAM binding is essential for initiating DNA unwinding,3

R-loop formation, and efficiently locating a genomic target (1). In nature, bacteria-phage co-evolution4

has driven the diversification of Cas proteins, enabling them to recognize a wide range of PAMs (2–4).5

In genome editing, the PAM is essential for specificity but restricts the range of genomic sites available6

for editing. This poses challenges for modalities like base editing and homology-directed repair, where7

precise positioning of the Cas protein is critical (5). In contrast, strict PAM recognition can be leveraged8

for applications requiring high specificity, such as single-nucleotide allele discrimination and the precise9

targeting of dominant-negative disease-associated mutations (6).10

A variety of experimental approaches have been developed to engineer CRISPR-Cas enzymes with11

altered PAM specificity. Rational engineering approaches have focused on mutating key PAM-interacting12

residues to broaden (7–10) or shift PAM recognition (11). For example, structure-guided mutagenesis13

enabled the engineering of near-PAMless CRISPR-Cas9 enzymes capable of editing most sites in the14

human genome (8). Experimental evolution methods – such as phage-assisted continuous evolution (PACE)15

(12–14) and bacteria-based selection (10) – have also been employed to broaden PAM specificity but require16

labor-intensive and iterative experimentation. Despite these advances, there is still a need for a robust and17

facile method to engineer Cas enzymes with customized PAMs for specific therapeutic targets and scalable18

personalized medicine.19

Large language models provide a powerful framework for protein engineering (15, 16), including for20

genome editors (17, 18). In this study, we explored their potential to predict and customize PAM21

recognition for CRISPR-Cas proteins. To achieve this, we compiled a large and diverse training dataset22

of CRISPR systems and their associated PAMs through systematic genome data mining (17). Using this23
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dataset, we developed Protein2PAM, a machine learning framework that can accurately predict PAMs24

directly from diverse Cas protein sequences. We demonstrate that Protein2PAM had learned biophysical25

principles of PAM recognition and can identify PAM-interacting residues in Cas proteins without utilizing26

structural information. Additionally, we show that Protein2PAM can be utilized to generate highly active,27

PAM-customized enzyme variants in a single step, without iterative experimentation. To support PAM28

identification and accelerate genome editing for the scientific community, we have made Protein2PAM freely29

available at https://protein2pam.profluent.bio.30

Results31

Evolutionary landscape of CRISPR-Cas PAMs. No comprehensive dataset for CRISPR-Cas PAMs existed at32

the time of this study, limiting the ability to model how Cas proteins interact with their PAMs. To overcome33

this, we conducted extensive data mining of 26.2 Tbp of assembled microbial genomes and metagenomes to34

build the CRISPR-Cas Atlas (Fig. 1a) (17). We identified PAMs for CRISPR-Cas Types I, II, and V, which35

are DNA-targeting systems that utilize a PAM during target interference and were well represented in the36

CRISPR-Cas Atlas. We did not predict PAMs for CRISPR-Cas Types III and VI, which target RNA and37

avoid self-immunity through PAM-independent mechanisms (19, 20), as well as Type IV, which was poorly38

represented in the CRISPR-Cas Atlas. To identify PAMs, we searched for the natural targets of CRISPR39

spacers in a database of over 16 million virus and plasmid genomes (21, 22) and looked for conserved motifs40

flanking protospacers (23). This process resulted in 45,816 distinct PAM predictions which formed our41

training dataset and covered 71.6% of CRISPR-Cas operons (Fig. 1b).42

Our dataset represents a 2.8-fold increase over the largest dataset of bioinformatically determined Cas943

PAMs (23) and a ~200-fold increase over the largest dataset of experimentally determined Cas9 PAMs (3)44

(Methods). Collectively, the PAMs in our dataset have the potential to cover all possible 10-bp regions,45

with each site being targetable by a median of 648 Cas enzymes in our training dataset. Discovery of new46

PAMs has plateaued for most CRISPR subtypes, suggesting that our dataset captures a majority of PAM47

diversity in nature (Fig. 1c). The exception was Type V systems, which had the lowest PAM prediction rate48

(Fig. 1b) and where PAM predictions were determined for only four of fifteen literature reported subtypes49

(24).50

Type II CRISPR systems displayed the highest PAM diversity, representing 81.6% of unique consensus51

PAMs. Further, Type II PAMs evolved rapidly over short evolutionary distances (Fig. 1d-e), whereas PAMs52

for Type I and Type V systems were highly conserved (Fig. 1d and Fig. S1). While not fully understood,53

this difference in PAM variability likely reflects distinct evolutionary pressures on each CRISPR-Cas system54

and enables Cas9 to more rapidly adapt to evolving threats from phages and mobile genetic elements.55

A machine learning framework to predict PAMs from Cas proteins. Next, we leveraged protein language56

models (pLMs) to learn the relationship between Cas proteins and their PAMs (Fig. 2a-b). For each57

CRISPR-Cas type, we selected the protein family responsible for PAM recognition during target interference:58

Cas8 for Type I (or Cas10d for Type I-D), Cas9 for Type II, and Cas12 for Type V (28). Cas9 and Cas1259

function as single-protein effectors, while Cas8 operates as part of the multi-subunit Cascade complex. The60

PAM was represented as a sequence of 10 probability vectors over the nucleotides A, C, G, and T, located61

either upstream (Types I and V) or downstream (Type II) of the protospacer. Our approach assumes that62

the nucleotides in the PAM are conditionally independent, given the protein sequence, which is supported63

by experimental evidence that specific residues in the protein interact with individual nucleotides within64

the PAM (28).65

The Protein2PAM model architecture consisted of a pre-trained 650-million-parameter transformer66

encoder (16), followed by a 2-layer multi-layer perceptron (MLP) head responsible for predicting PAM67

nucleotide probabilities (Fig. 2a). The transformer captured key dependencies between amino acid residues68

relevant for PAM recognition, and the [CLS] token from the encoder’s final layer was passed to the MLP,69

which output a 10 x 4 matrix representing the predicted nucleotide probabilities at each PAM position.70
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Figure 1. Systematic identification of CRISPR-Cas PAMs. (a) A bioinformatics pipeline was employed to identify PAMs across diverse
CRISPR-Cas systems. The pipeline aligned CRISPR spacers to a large database of viral and plasmid sequences to detect conserved
flanking motifs. The Cas proteins responsible for PAM recognition during target inference are shown: Cas9 and Cas12 function as
single-protein effectors, while Cas8 operates as part of the multi-subunit Cascade complex. In total, 45,816 distinct PAM predictions
were made (Type I: n = 28, 410, Type II: n = 15, 731, Type V: n = 1, 675). (b) Fraction of CRISPR-Cas operons associated with a PAM
prediction. (c) Accumulation curves of PAM diversity with increasing data volume. Discovery of new PAMs has largely plateaued for
Type I and II systems. (d) PAM similarity was compared between Cas proteins with different levels of relatedness. PAM similarity rapidly
diverges for Type II systems but is highly conserved for Types I and V. (e) A phylogenetic tree of Cas9 proteins clustered at 70% identity
using MMseqs2 (25). Outer rings indicate the information content at each of the first 9 PAM positions. Phylogenetic tree built using
FastTree (26) and visualized using iToL (27).

Protein2PAM models for Type I and V rapidly converged to their minimum loss, while the more variable71

PAM recognition in Type II systems led to longer training times and a higher final loss (Fig. S2). In72

addition to the PAM prediction model, we trained a separate model that estimates PAM prediction accuracy,73

incorporating both pLM embeddings and amino acid identity to training sequences (Fig. 2b and Fig. S3).74
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Next, we investigated the optimal input sequence for modeling (Fig. S3a). In Type II systems, PAM75

recognition is primarily mediated by Cas9’s PAM-interacting domain (PID) (28, 29). We used a custom76

Hidden Markov Model (HMM) database to identify PID regions and trained a separate model on these77

sequences. The PID-only model outperformed the full-sequence Cas9 model, likely due to more effective78

feature selection. In Type I systems, evidence suggests that Cas5 may also contribute to PAM recognition79

(28). However, including Cas5 alongside Cas8/10d in the model reduced accuracy, especially for sequences80

more distant from the training data. Based on these results, we selected the Cas8/10d-only model for81

Type I, the PID-only model for Type II, and the full-sequence model for Type V, as these configurations82

demonstrated the best generalization to new data.83

Protein2PAM neural models demonstrated high accuracy in predicting PAMs for diverse CRISPR-Cas84

systems, with accuracies of 0.949 for Type I, 0.868 for Type II, and 0.955 for Type V systems (Fig. 2c).85

Accuracy was measured using the cosine similarity between PAMs predicted by the model and PAMs held86

out from the CRISPR-Cas Atlas training dataset (Methods). Protein2PAM models were considerably more87

accurate than a baseline method that predicted PAMs based on the PAM of the nearest protein sequence in88

the training set (Fig. S3a). For proteins with less than 90% sequence identity to the training data, the Type89

II model showed a drop in accuracy, while the Type I and V models remained relatively stable (Fig. 2c),90

reflecting the dynamics observed during model training.91

Model concordance with in vitro determined PAMs. To more robustly evaluate Protein2PAM, we applied92

the models to Cas proteins with experimentally determined PAMs (Fig. 2d-e and Table S1). We first93

applied Protein2PAM to 14 diverse Type I CRISPR and CAST systems experimentally characterized by94

Wimmer et al. (30). Using Cas8 proteins as input, Protein2PAM successfully recapitulated consensus95

PAMs for every active CRISPR system in the study (Fig. S4), including for proteins with as low as 25%96

amino acid identity to a training sequence.97

Next, we applied Protein2PAM to 112 Type II systems, predicting PAMs for diverse Cas9s (3), closely98

related Cas9s (31), and Cas9s used in genome editing (Methods). For these datasets, Protein2PAM achieved99

a median prediction accuracy of 0.797 (Fig. 2d). Utilizing the Protein2PAM confidence model removed100

58 of 112 predictions (52%) but improved the overall median accuracy to 0.883 (Fig. 2d). Among the 79101

diverse Cas9s characterized by Gasiunas et al. (3), Protein2PAM demonstrated the ability to rank its102

own predictions by their accuracy (Spearman’s r = 0.649, p = 1.03 × 10-10; Fig. 2e). Across proteins,103

Protein2PAM confidence scores exhibited a strong correlation with amino acid identity to training sequences104

(Spearman’s r = 0.804, p = 4.52 × 10-19), highlighting novelty as a key and interpretable factor in confidence105

estimation.106

Overall, these results highlight the model’s robust performance for Type I and II systems and demonstrate107

its ability to match experimental outcomes despite being trained exclusively on evolutionary data.108

In contrast, model performance was mixed for experimentally characterized Type V systems (Fig. 2d109

and Fig. S5). We tested Protein2PAM on 45 proteins from 11 Cas12 subtypes characterized in separate110

studies (Methods). Protein2PAM performed well for Cas12b and Cas12f (median accuracy = 0.772, n = 14)111

but was less accurate for Cas12a and other subtypes (median accuracy = 0.460, n = 31). For Cas12a in112

particular, the model tended to over-predict TTTN PAMs, which may be due to their high representation113

in the training dataset (Fig. S1). Overall, proteins from only three Cas12 subtypes were within 40% identity114

of any training sequence, highlighting the rarity of these systems in nature and underscoring the need for115

more training data.116

Finally, we tested Protein2PAM on 20 engineered Cas9 and Cas12 proteins with altered PAM specificities117

from various studies (Methods). In most cases, the model predicted the same PAM as their wild-type118

counterpart with the exception of an Nme2Cas9 variant where Protein2PAM correctly predicted a shift119

from N4CC to N4CN (Fig. S6 and Table S2). Because Protein2PAM was trained on evolutionary data, the120

model may be insensitive to engineered mutations not observed in natural Cas proteins.121
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Figure 2. A machine learning framework to predict PAMs from Cas proteins. (a) The Protein2PAM model architecture consists
of a pre-trained 650-million-parameter transformer encoder (16), followed by a 2-layer multi-layer perceptron (MLP) head responsible
for predicting PAM nucleotide probabilities. (b) Architecture of model for quantifying Protein2PAM’s confidence in its own predictions,
incorporating both protein language model (pLM) embeddings and distance to training sequences. (c) PAM prediction accuracy for
protein:PAM pairs held back from the CRISPR-Cas Atlas training dataset. (d) Prediction accuracy for Cas proteins with experimentally
characterized PAMs. (e) PAM prediction accuracy for 79 diverse Cas9 orthologs experimentally characterized in Gasiunas et al. (21).
Representative examples are indicated below the barplot. In all panels, PAM prediction accuracy was measured using cosine similarity.

Protein2PAM outperforms spacer-based PAM prediction. We compared the performance of Protein2PAM122

with PAMpredict (23), the most accurate bioinformatics tool for PAM prediction. Both tools were applied123

to predict PAMs for 11,381 Cas operons identified from genomic and metagenomic datasets not used for124

model training (Fig. 3a-b and Table S3). Protein2PAM predicted PAMs using protein sequences (Cas8,125

Cas9, and Cas12), while PAMpredict relied on CRISPR spacers aligned to a database of viral and plasmid126

genomes (21, 22). To enhance the sensitivity of Protein2PAM, we re-trained the models by integrating 157127

experimentally characterized PAMs from the literature into the training dataset (Fig. 2d).128

Protein2PAM confidently predicted PAMs for 91.9% of 7,812 CRISPR-associated Cas operons, while129

PAMpredict yielded a confident prediction for only 30.9% (Fig. 3c). The largest difference was observed for130

Type V systems, where Protein2PAM was over 16 times more likely to yield a high-confidence prediction131

(72.5% vs. 4.4%) primarily due to insufficient spacer matches in the viral database using PAMpredict.132

Protein2PAM additionally provided predictions for Cas operons without associated CRISPR arrays, and133

overall produced 4.2 times more high-confidence predictions than PAMpredict (Fig. 3d). Protein2PAM134

predictions closely aligned with those of PAMpredict when both tools reported high-confidence in their135
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Figure 3. Rapid and sensitive PAM prediction with Protein2PAM. (a) We used CCtyper (32) to identify CRISPR-Cas operons in newly
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respective predictions (Fig. 3e-f).136

Lastly, we compared the running times and computational requirements of both approaches. PAMpredict137

was run on a Google Cloud instance with 16 vCPUs, taking 2.7 days to process 7,812 CRISPR-Cas operons138

(Fig. 3g). In contrast, Protein2PAM was run on a Google Cloud instance with one NVIDIA T4 GPU and139

completed the analysis of 11,381 Cas operons in just 5.9 minutes. Generating confidence scores extended140

Protein2PAM’s runtime to 59.8 minutes.141

Together, these results demonstrate that Protein2PAM aligns with the current gold standard for PAM142

prediction, offers greater sensitivity, is independent of CRISPR spacer identification, and is considerably143

faster. For implementation details, refer to Data and Code Availability.144

In silico mutagenesis pinpoints protein-PAM interactions. To investigate whether Protein2PAM models145

have learned biophysical principles of PAM recognition, we performed in silico mutational scanning and146

identified point mutations predicted to alter PAM specificity (Fig. 4a, Table S4). Previous studies have147

identified PAM-interacting residues using Cas9 crystal structures bound to target DNA (29, 33–36) or148

experimental screening of Cas9 mutants (10, 11, 13, 37). In contrast, our models provide a computational149

alternative, enabling the identification of putative protein-DNA interactions across diverse Cas proteins150

without the need for structural or experimental data.151

To comprehensively map the landscape of PAM interactions in Cas9, we used the full-sequence Type II152

PAM model to predict the effects of over 8 million single amino acid substitutions across 336 phylogenetically153

diverse Cas9s, including 15 previously applied in genome editing. We defined PAM-specifying mutations154

(PSMs) as those predicted to alter PAM specificity, measured by an L1 distance shift of ≥ 0.5 bits at one or155

more PAM nucleotide positions (Fig. 4a).156

The vast majority of mutations were predicted to have no effect on PAM recognition, with only 0.04%157
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Figure 4. In silico mutagenesis pinpoints protein-PAM interactions. (a) Protein2PAM models were used to predict the effects of
millions of single amino acid variants introduced into diverse Cas proteins. PAM-specifying mutations (PSMs) were defined as single
residue changes that shifted the PAM by at least 0.5 bits at one or more nucleotide positions. (b) Barplots summarizing PSMs. While
most mutations have no effect, most Cas9 proteins have a predicted PSM. Nearly all PSMs are located in the PI domain and are identified
more sensitively using the PID-only Protein2PAM model. Substitutions are more effective than insertions and deletions at changing the
PAM. Double amino acid variants expand the number of PSMs for Nme1Cas9. (c) Top: Volcano plot showing amino acids enriched
at PSMs compared to their background distributions. Glutamine and arginine are notably overrepresented at PSMs. Bottom: Volcano
plot showing the relative frequency of PSM interactions with AT versus GC nucleotides in the PAM. Glutamine PSMs preferentially
interact with AT nucleotides, while arginine PSMs favor interactions with GC nucleotides. (d) Scatterplots depicting the distribution of
mutational effects across eight Cas9 and Cas12 proteins. The y-axis indicates the maximum change in the PAM across all 20 mutations
at each position. Shaded regions indicate PAM-interacting domains. (e) Scatterplot indicating the cumulative effect of single amino acid
substitutions for different Cas proteins. Several proteins are predicted by Protein2PAM to be highly engineerable by single substitutions,
including AceCas9 and Nme1Cas9. (f) The distribution of PSMs across amino acid positions for Nme1Cas9. PSM threshold reduced to
0.25 bits for barplot. (g) The protein structure of Nme1Cas9 superimposed with model predictions. Each amino acid position is colored
by the maximum change in the PAM across all 20 mutations at the given position. Residues harboring PSMs are located in the PI domain
and make hydrogen bonds with PAM DNA. Protein structure was visualized using PyMOL (38).

classified as PSMs (Fig. 4b). Strikingly, large-effect mutations clustered within the PI domain and stood158

out as clear outliers relative to neighboring sites (Fig. 4d). Notably, 99.98% of PSMs were located within159

the annotated PI domain, even though this region accounted for only 23.7% of the cumulative protein160

length. These results suggest that the full-sequence Cas9 model relies almost exclusively on the PI domain,161

reaffirming its critical role in determining PAM specificity.162

In contrast to Cas9, point mutations in Cas8 and Cas12 had minimal impact on the predicted PAM163
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(Fig. 4b). After testing over 500,000 mutations across 40 phylogenetically diverse Cas8 and Cas12 proteins,164

we predicted only two PSMs. However, both mutations were located at the same amino acid position and165

were just above the threshold for classifying a mutation as a PSM. By contrast, we found PSMs for 70% of166

the 336 Cas9 proteins we analyzed. These findings highlight that PAM customization with Protein2PAM167

is limited for Type I and V systems due to PAM conservation (Fig. S1) but likely effective for Type II168

systems.169

To obtain higher resolution of protein-PAM interactions, we applied the PAM model trained specifically170

on Cas9’s PAM-interacting domain (PID-only model). Compared to the full-sequence model, the PID-only171

model predicted 12.9% more PSMs and 30.5% more alternate PAMs (Fig. 4b). Next, we used this model172

to test all possible single amino acid insertions and deletions within the PI domain. However, indels173

were less effective than substitutions for PAM diversification (Fig. 4b) and were predicted to result in174

reduced enzyme fitness (Fig. S7). Interestingly, we identified several Cas9 orthologs that appeared amenable175

to engineering with single substitutions – point mutations resulted in at least eight alternate PAMs for176

previously characterized Cas9s like Nme1Cas9 (39) and AceCas9 (40), as well as for five novel Cas9s177

identified from human microbiome samples (Fig. 4e). We expect further computational screening to uncover178

additional Cas9 orthologs with broad potential for PAM engineering with Protein2PAM.179

Next, we examined whether any patterns emerged among the predicted PSMs. Several amino acids were180

highly overrepresented among PSMs (Fig. 4c), such as glutamine and arginine, which were 3.4x and 1.9x181

more likely to be found at a PSM position compared to the rest of the PI domain (X2, q-values < 5 × 10−6).182

We also observed strong preferences between these amino acids and specific nucleotides (Fig. 4c), consistent183

with previously observed amino-acid nucleotide interactions (41), including the propensity for glutamine in184

Cas9 to recognize adenine in the major groove of DNA (29).185

Finally, we analyzed the locations of PSMs in crystal structures of eight Cas9 proteins. (33, 34). Strikingly,186

many top-ranked mutations identified by Protein2PAM occurred at residues forming sequence-specific187

contacts with PAM DNA (Fig. S8). In total, 58.5% of the 159 identified PSMs in these proteins were located188

at residues that form hydrogen bonds with PAM nucleotides (X2, p-value < 2.2×10−16), and this percentage189

increased to 80.0% when considering only the 50 PSMs with the largest effect. Notably, PSMs were not190

found at all PAM-interacting positions. For example, in SpCas9, Arg1333 forms a critical interaction with191

the guanine at the second PAM position (NGG), but due to its high conservation in nature, mutations were192

not predicted to alter PAM recognition. Overall, these findings suggest that our evolutionary-informed193

models have captured key biophysical interactions governing protein-to-PAM recognition across diverse194

Cas9 proteins.195

Computational evolution of PAM-customized Nme1Cas9 variants. We hypothesized that Protein2PAM196

models could be used to generate PAM-customized enzyme variants. To test this hypothesis, we focused197

on Nme1Cas9, for which single amino acid mutations yielded several alternate PAMs (Fig. 4e) and high198

PAM diversity has been observed among closely related orthologs in nature (31). We initially selected four199

Nme1Cas9 point mutations (N1029A, Q981A, H1024D, and H1024E) predicted to induce large shifts in200

PAM specificity and produce distinct PAMs (Fig. 4f). Enzyme variants were experimentally characterized201

using the high-throughput PAM determination assay (HT-PAMDA) in human cell lysate (8, 42), which202

measured Cas9-mediated depletion of target sequences flanked by a library of all possible PAMs (Fig. 5a).203

Deep sequencing at four time points was used to calculate the cleavage rates for each enzyme on a library204

of substrates encoding all possible PAMs (Table S8).205

Two of the four mutants (N1029A and Q981A) exhibited robust cleavage along with a shift in PAM206

preferences that closely aligned with model predictions (Fig. 5b-d). N1029A and Q981A cleaved their207

predicted PAMs — N4GNAT and N4GNTA — at rates 270x and 9.4x higher than wild-type Nme1Cas9208

(Fig. 5d and Table S5), while showing 4.7x and 13.9x lower cleavage rates at the preferred PAM of Nme1Cas9209

(N4GATT). Examining Nme1Cas9’s crystal structure, the side chains of N1029 and Q981 form base contacts210

with PAM nucleotides 7 and 8 (Fig. 4g), while Protein2PAM predicted that mutations at these residues211

would result in shifts at the corresponding PAM nucleotides. In contrast, the two H1024 mutations abolished212

8 | Nayfach et al.

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 6, 2025. ; https://doi.org/10.1101/2025.01.06.631536doi: bioRxiv preprint 

https://doi.org/10.1101/2025.01.06.631536
http://creativecommons.org/licenses/by-nc-nd/4.0/


N
m

e1
C

as
9

N
m

e2
C

as
9

N
10

29
A

Q
98

1A
H

10
24

D
H

10
24

E

N
4G

.1
N

4G
.2

N
4G

.3
N

4G
.4

N
4C

.1
N

4C
.2

N
4C

.3
N

4C
.4

N
7A

.1
N

7A
.2

N
7A

.3
N

7A
.4

N
4C

N
N

T.
1

N
4C

N
N

T.
2

N
4C

N
N

T.
3

N
4C

N
N

T.
4

N
6T

A.
1

N
6T

A.
2

N
6T

A.
3

N
6T

A.
4

N
6T

T.
1

N
6T

T.
2

eN
m
e2
−C

0
10
20
30
40
50
60
70

Cleavage Rate
Fast
Medium
Slow

Wild
type

Lab
evolved

c

0.0
1.0
2.0

bi
ts

N1029ANme1Cas9 WT Q981A

1 2 3 4 5 6 7 8 9 10

0.0
1.0
2.0

bi
ts

Protein2PAM
Logos

Nme1Cas9 WT7,8

5,6

Nme2Cas9 WT eNme2-C

N1029A Q981A

NmeN4G.1 NmeN4C.1

NmeN7A.1

NmeN4CNNT.1

d
log10(rate)

-1.5
-2.0

-2.5

-3.0

-3.5

-4.0

log10(rate)
-1.5
-2.0

-2.5

-3.0

-3.5

-4.0

log10(rate)
-1.5
-2.0

-2.5

-3.0

-3.5

-4.0

7,8

5,6

7,8

5,6

7,8

5,6

7,8

5,6

7,8

5,6

7,8

5,6

7,8

5,6

7,8

5,6

HT-PAMDA
Logos

1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10

1 2 3 4 5 6 7 8 9 10
PAM Position

1 2 3 4 5 6 7 8 9 10
PAM Position

1 2 3 4 5 6 7 8 9 10
PAM Position

1 2 3 4 5 6 7 8 9 10
PAM Position

1 2 3 4 5 6 7 8 9 10
PAM Position

1 2 3 4 5 6 7 8 9 10
PAM Position

1 2 3 4 5 6 7 8 9 10
PAM Position

NmeN4G.1 NmeN4C.1 NmeN7A.1 NmeN4CNNT.1

Time

Fast cleavage P
AM

 C
ou

nt
s

Enzyme 1

Medium

Slow

Sequence 
Library

Protein2PAM
engineered

Wild-type
NmeCas9

Lab evolved
(Huang et al.)

+

a

b

Protein2PAM 
point mutants

Protein2PAM 
computationally evolved (MCMC)

PA
M

s 
cl

ea
ve

d 
(o

ut
 o

f 2
56

)

multiple 
time 
points

Cleavage Kinetics

Cas9s and sgRNAs

PAM Library Spacer PAM

NNNNNNNNNN

Figure 5. Computational evolution of PAM-customized NmeCas9 variants. (a) Proteins were characterized using the high-throughput
PAM determination assay (HT-PAMDA) in human cell lysate, measuring Cas9 cleavage rates on substrates with all possible PAMs.
Cleavage rates were quantified at positions 5 to 8 of the PAM library after deep sequencing at four time points. (b) Activity landscape
across Nme1Cas9 enzyme variants. The cleavage rate of each PAM is derived by tracking depletion over four time points (Fast: rate >
1e-3, Medium: rate > 1e-4, Slow: rate > 5e-5). (c) Top: PAM logos predicted using Protein2PAM. Bottom: PAM logos generated from
HT-PAMDA data. For HT-PAMDA logos, each four-nucleotide PAM was weighted by its corresponding rate constant, nucleotide counts
were normalized to frequencies summing to 1.0 per position, and frequencies were converted to information content. (d) HT-PAMDA
heatmaps which display rate constants for different enzyme variants at PAM positions 5-8.

activity in the HT-PAMDA assay, even though H1024D is observed in Nme orthologs that recognize N4C213

PAMs (31). While H1024 is involved in PAM recognition (33), this single mutation alone appears insufficient214

for recognizing N4C PAMs.215

Next, we harnessed Protein2PAM models to design variants for PAMs not achievable by single substitu-216

tions. While Nme1Cas9 has been used for genome editing due to its small size and high specificity (39), its217

long PAM (N4GATT) limits the number of editable sites in the human genome. Our objective was to use218

Protein2PAM to engineer Nme1Cas9 variants with broader PAM compatibility, specifically targeting three219

single-nucleotide PAMs (N4G, N4C, N7A) and three di-nucleotide PAMs (N6TT, N6TA, N4CNNT). These220

PAMs were chosen after examining nucleotide conservation patterns across PAMs from Nme orthologs.221

To computationally evolve Nme1, we employed the Gibbs with Gradients Markov Chain Monte Carlo222

(MCMC) algorithm (43), iteratively introducing mutations within the PI domain to guide each protein223

variant toward its target PAM while maintaining fitness, as estimated by ProGen2 (15). To increase224

sensitivity, we trained and utilized a variant of the Protein2PAM model in which Nme1Cas9 orthologs were225

upweighted, and to preserve enzymatic function, we sampled candidate mutations from a multiple sequence226

alignment of closely related Nme orthologs. MCMC trajectories were terminated after 2000 steps, at which227

point most had converged, and we considered variants at all points along the trajectories.228

We used our pipeline to run 30 trajectories per PAM, generating 30,000 Nme1Cas9 variant enzymes,229

and selected 22 variants targeting the six PAMs for experimental characterization (N4G, N4C, N7A, N6TT,230
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N6TA, N4CNNT). Variants contained an average of 11.6 mutations (range: 5–18) and were selected based231

on their predicted similarity to the target PAM, pLM log-likelihood, and mutation count. Engineered232

variants were experimentally characterized using HT-PAMDA with two guide RNAs (gRNA), alongside233

Nme1Cas9 and Nme2Cas9 wild-type enzymes (Fig. S9). An enzyme was deemed active in the HT-PAMDA234

assay if it cleaved at least one PAM with a rate constant (k) > 5 × 10−5 (Methods).235

Strikingly, among the 22 tested enzymes, 50% exhibited activity, with 6 showing cleavage rates surpassing236

those of the wild-type enzymes. (Fig. 5b). Across design targets, a high fraction of the sequences were237

active for N4G, N4C, and N4CNNT PAMs (10/12), while few enzymes were active for other target PAMs,238

including N7A, N6TT, and N6TA (1/10). This indicates that despite an overall high hit rate, certain239

PAMs were difficult to achieve using Protein2PAM. Sequence logos generated from HT-PAMDA data for240

active enzymes generally aligned with model predictions, though there was some evidence of overfitting to241

sequences generated during MCMC (Fig. S10).242

The most active variant was designed for N4G PAMs and contained 13 mutations relative to Nme1Cas9243

(D957G, V979I, V980K, Q981A, Q989T, N996E, S1000V, M1016K, G1018A, N1029A, N1031S, I1041V,244

E1048Q). We named this enzyme NmeN4G.1. NmeN4G.1 had a considerably broadened PAM, exhibiting245

cleavage at 42 N4G PAMs, compared to just 7 for Nme1Cas9 (Fig. 5b). It also demonstrated significantly246

higher peak activity, cleaving its top 10 PAMs 56.4x faster than Nme1Cas9’s top 10 PAMs. However,247

NmeN4G.1 did display a preference for A at position 7 of the PAM (N4GNAN) suggesting that further248

optimization is required to fully meet the design goal (Fig. 5c-d). Our most active enzyme designed for N4C249

PAMs, NmeN4C.1, also showed a clear shift in specificity towards its design target, cleaving 21 N4C PAMs250

compared to 14 for Nme2Cas9 and 0 for Nme1Cas9. NmeN4C.1 also exhibited enhanced peak activity, with251

its top 10 PAMs cleaved 9.6x faster than Nme2Cas9’s top 10. Notably, all N4C designed enzymes contained252

the H1024D mutation, despite the H1024D single point mutant being completely inactive.253

Next, we compared the NmeN4G.1 and NmeN4C.1 variants to eNme2-C, a broad-PAM Nme2Cas9254

variant engineered over multiple rounds of phage-assisted directed evolution to yield a N4C PAM (13).255

While eNme2-C cleaved a greater number of PAMs (n = 59) compared to NmeN4G.1 (n = 42) and256

NmeN4C.1(n = 21), it exhibited significantly slower kinetics in the HT-PAMDA assay. eNme2-C cleaved its257

top 10 PAMs 21.5x slower than NmeN4G.1 and 2.7x slower than NmeN4C.1. We also tested the eNme2-T.1258

PAM-engineered variant (13), but the enzyme displayed no activity in HT-PAMDA. These results highlight259

the ability of Protein2PAM to efficiently engineer Cas enzymes with novel PAMs and enhanced activity260

without the need for experimental training data, iterative screening, or structural modeling.261

Having achieved customization for specific, user-defined PAMs, we aimed to design enzyme variants that262

maximized PAM diversity. To this end, we adopted a new design strategy, generating 37 million variants263

with up to 5 combinations of 102 PAM-specifying mutations (PSMs). To broaden PAM diversity, we relaxed264

constraints by allowing mutations beyond those observed in Nme1 orthologs and lowered the threshold for265

defining a PSM to 0.25 bits. For experimental validation, we selected 178 variant enzymes, each containing266

1 to 5 PSMs which targeted 64 alternate PAMs. Enzymes were selected to maximize pLM log likelihoods267

and minimize mutation count.268

In contrast to our computationally evolved enzymes, the combinatorial mutants showed a markedly lower269

success rate, despite having fewer mutations and higher pLM log likelihoods (Fig. S11). Among the 178270

tested enzymes, only 18 were active (10.1%), and just 8 displayed cleavage rates exceeding those of the271

wild-type enzymes (4.5%). Notably, a significant fraction of enzymes contained one or more “non-natural”272

mutations absent from closely related Nme1 orthologs. Activity was substantially lower for these enzymes273

(12 out of 166) compared to those containing only natural mutations (6 out of 11). These findings suggest274

that sampling from natural mutation distributions may be crucial for achieving effective single-shot PAM275

customization with Protein2PAM.276
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Discussion277

Protein2PAM is a protein language model that efficiently predicts the PAM specificity of CRISPR-Cas278

systems directly from Cas protein sequences. We demonstrated that Protein2PAM accurately predicts the279

PAMs of naturally occurring proteins and identifies PAM-interacting residues without relying on structural280

information. Using Protein2PAM, we computationally evolved Nme1Cas9 enzyme variants that, through281

experimental validation with HT-PAMDA, exhibited both higher activity and broadened PAM specificity282

compared to wild-type enzymes. This work represents the first successful demonstration of machine learning283

being used to precisely alter DNA recognition in Cas enzymes in a single step and without relying on284

laboratory training data.285

While powerful, current Protein2PAM models have several limitations. Most notably, they are constrained286

by the natural co-variation of Cas proteins and their PAMs. PAMs for Type II systems were found to287

rapidly shift over evolution, enabling Protein2PAM to learn which residues in Cas9 are important for PAM288

specificity. However, the high conservation of PAMs in Type I and Type V systems limits protein-PAM289

covariation, making the current models unsuitable for engineering these systems. Using HT-PAMDA, we290

experimentally validated the model’s capability to guide the engineering of PAM-customized Nme1Cas9291

variants. However, this process may be more challenging for other Cas9 orthologs with fewer training292

examples or reduced protein-PAM co-variation. Finally, Protein2PAM models do not account for protein293

fitness, sometimes predicting alternate PAMs for enzymatically inactive mutants. To address this, it will294

be important to couple Protein2PAM with methods that reliably predict mutational fitness within the295

hypervariable PAM-interacting domain.296

We see several promising future directions. With the exponential growth of genomic databases, we aim to297

automate model updates, enabling Protein2PAM to evolve alongside data growth and continually enhance298

its understanding of protein-PAM interactions across the tree of life. Furthermore, our models have the299

potential to incorporate data from experimental screening of enzyme variants, which could establish a300

feedback loop to optimize Protein2PAM for more efficient protein engineering. We also envision exciting301

applications of Protein2PAM, including engineering a library of PAM-specific enzyme variants capable of302

targeting any site in the human genome and optimizing Cas9 variants for specific therapeutic targets. Finally,303

our framework could be adapted for other DNA-binding proteins, such as recombinases, transcription304

factors, and zinc fingers, paving the way for machine learning to precisely tailor diverse DNA-binding305

proteins for therapeutic applications.306

Methods307

Curation of CRISPR-Cas sequences. Cas proteins and their associated CRISPR arrays were identified308

from the CRISPR-Cas Atlas, as previously described (17). The resource contains 1,246,163 CRISPR-Cas309

operons that were derived from 26.2 Tbp of genome and metagenomic assemblies. For modeling PAMs,310

we focused on a subset of 653,991 operons from CRISPR Types I, II, and V where we could confidently311

identify an effector protein linked to a CRISPR array.312

For Cas9 proteins, we also identified PI domains using a custom-built database of 123 profile HMMs. PI313

domain sequences were sourced for 9,161 diverse proteins (3), de-replicated at 90% identity using CD-HIT314

v4.8.1 (44), aligned using DIAMOND v2.1.6 (options: –query-cover 80 –subject-cover 80 –very-sensitive)315

(45), and clustered using MCL v22.282 (options: -I 1.5) (46). Multiple sequence alignments (MSAs) were316

created with FAMSA v2.2.2 (47) and used as input to hmmbuild v3.4 (48). HMMs were aligned to Cas9s317

from the CRISPR-Cas Atlas using hmmsearch with a 1e-5 E-value threshold. For proteins lacking a valid318

PI domain alignment, we instead extracted the region downstream of RuvC III based on alignment to the319

RuvC Pfam domain (PF18541).320

Bioinformatic PAM determination. PAMs for CRISPR-Cas systems were characterized by aligning CRISPR321

spacers to viral and plasmid genomes and performing statistical analysis of regions flanking protospacers.322

To enhance the number of spacers associated with each Cas ortholog, we pooled CRISPR arrays from323
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closely related Cas proteins. Cas proteins included Cas8 for Type I systems, Cas9 for Type II systems, and324

Cas12 for Type V systems. Proteins were clustered using MMseqs2 13.45111 with default parameters (25)325

at 100%, 99%, and 98% amino acid identity (see below for details).326

Each pool of spacers contained CRISPR arrays in varying orientations. To address this, CRISPR repeats327

associated with each Cas protein cluster were aligned using CD-HIT (options: cd-hit-est -c 0.95 -s 1.0) (44)328

and CRISPR spacers were consistently oriented based on the orientation of aligned repeats. CD-HIT was329

also used to de-replicate CRISPR spacers within each cluster to minimize the impact of overrepresented330

sequences (cd-hit-est -c 0.90 -T 1 -s 0.90).331

Oriented and de-replicated pools of CRISPR spacers were input to PAMpredict v1.0.2 (23). This tool332

aligned spacers to a database of 16 million virus and plasmids genomes from IMG/VR v4 (21) and IMG/PR333

(22), extracted 10-nt protospacer flanking regions, computed nucleotide frequencies, and identified sequence334

motifs. PAMs were detected upstream of protospacers for Type I and V systems and downstream for Type335

II systems. The strand of the PAM was determined based on the 10-nt region containing a more conserved336

DNA motif. A PAM was classified as high-confidence based on two criteria. First, it needed to be identified337

from at least 10 unique protospacers, following the recommendation of Ciciani et al. (23). Second, we338

required a signal-to-noise ratio greater than 2.0 (Fig. S1). For Type II systems, the signal-to-noise ratio was339

calculated as the ratio of the maximum information content across the 10 nucleotide positions upstream and340

downstream of the protospacer, and conversely, for Type I and Type V systems, the ratio was calculated in341

the opposite direction.342

Each Cas protein was associated with multiple PAM predictions due to the varying MMseqs2 clustering343

thresholds. Clustering at lower identity thresholds increases the number of CRISPR spacers linked to a344

protein, improving the likelihood of PAM detection, but also increasing the chances of pooling Cas variants345

with different PAM specificities. To mitigate this, we selected the PAM prediction at the highest percent346

identity clustering threshold that met our prediction quality criteria. We compared our PAM dataset to347

two previously published studies. In the study by Ciciani et al., PAMs were bioinformatically quantified for348

Cas9 proteins clustered at 98% amino acid identity. Using this threshold, Ciciani et al. identified PAMs for349

2,546 Cas9 protein clusters with at least 10 mapped spacers, whereas our study reported PAMs for 7,229350

Cas9s clustered at 98% identity (2.8x increase). Similarly, Gasiunas et al. experimentally characterized351

PAMs for 79 unique Cas9 proteins, compared to the 15,731 unique Cas9 proteins with bioinformatically352

characterized PAMs in our study (199x increase).353

Training the Protein2PAM models. Both the PAM prediction and PAM confidence models consist of a 650354

million parameter transformer encoder (16) with an MLP head, which has one hidden layer with embedding355

dimension 1280 (matching that of the transformer encoder). In all cases, we evaluated our models using356

10-fold cross-validation and ensured that the validation data came from different 90% identity clusters from357

the training data.358

For Protein2PAM, the MLP head takes as input the [CLS] embedding vector from the transformer359

encoder and has an output dimension of 40. The output is reshaped into a 10x4 matrix and transformed360

into a sequence of probability distributions over nucleotides with a softmax (Fig. 2a). The transformer361

encoder was initialized with the pretrained ESM-2 model, but its weights received gradient updates during362

training. We trained each model to maximize the sum of the negative cross entropy and PAM similarity363

between true and predicted PAMs, using PyTorch Distributed Data Parallel on machines with 2 A100364

GPUs. Each training batch contained up to 2500 tokens, and we accumulated the gradient for 4 steps365

before updating model weights. We used the Adam optimizer with a learning rate of 0.0001 (all other366

hyperparameters set to PyTorch defaults). Training was stopped when the validation loss did not improve367

for 5000 steps, and we used the checkpoints with the best validation loss. See Table S9 for a full list of368

different Protein2PAM models and manuscript analyses they are associated with.369

Estimating Protein2PAM prediction confidence. For Protein2PAM confidence estimation, we first calculated370

the percent identity between the input sequence and its 10 nearest neighbors in the training data. These 10371
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percent identities were encoded into a 200-dimensional vector using piecewise linear embeddings (PLE),372

which was then projected into a 1280-dimensional space via a linear layer. This vector was added to373

the 1280-dimensional [CLS] embedding from the transformer encoder before passing the combined vector374

through a 2-layer MLP. A sigmoid activation was applied to the MLP output, constraining it to the [0, 1]375

range, where it could be interpreted as the predicted PAM similarity (Fig. 2b).376

For each CRISPR-Cas type, we first trained a CasEncoder, a 650-million parameter transformer initialized377

from a pretrained ESM-2 checkpoint. The CasEncoder was fine-tuned using the masked language modeling378

loss on proteins from the CRISPR-Cas database to learn a consistent representation of the relevant protein379

family. Once trained, the CasEncoder weights were frozen, and the proteins were encoded using their380

[CLS] token embeddings. We computed the percent identity between each sequence and the 10 most381

similar sequences in the training dataset, embedding these values using PLE and combining them with the382

CasEncoder embeddings.383

The combined embeddings were passed through a 2-layer MLP, which was trained by minimizing the384

mean squared error between the predicted PAM similarity and the accuracy of Protein2PAM’s prediction.385

We used the Adam optimizer with a learning rate of 0.0003 and a batch size of 1024. The best performing386

confidence model was selected based on the checkpoint with the lowest validation loss.387

Quantifying PAM similarity. We quantified the similarity between two PAMs based on their information388

content rather than probability distributions. Information content is measured using the relative entropy389

between P and a background distribution Q, where Q is uniformly distributed across A, C, G, and T . Specifi-390

cally, the information content of nucleotide n at position i is calculated as: Ii,n(P ) = P [n] ∑
n′ P [n′] log P [n′]

Q[n′] .391

Given two 10 × 4 PAM information matrices, I(1) and I(2), the cosine similarity between their vectorized392

forms provides a natural similarity metric. However, this fails to distinguish between positions where393

one PAM has low information (denoted as N) and the other has high information. To address this, we394

augmented each position in the matrix with the information content of a fictitious N nucleotide. This N395

content is high when the original PAM has low information at that position, but the comparison PAM has396

high information, and low when both PAMs have either high or low information.397

J
(k)
i,n

(
I(1), I(2)) =


I

(k)
i,n n ∈ {A, C, G, T}

maxℓ
∑

n′ I
(ℓ)
i,n′ − I

(k)
i,n′ n = N

398

Finally, we computed the cosine similarity between the vectorized forms of the augmented information399

matrices, J (1) and J (2), to obtain the PAM similarity. This augmented similarity metric is used to determine400

accuracy when comparing to a ground truth PAM and is referenced throughout this paper.401

Benchmarking on experimental datasets. Protein2PAM models were evaluated on experimentally deter-402

mined PAMs for diverse CRISPR systems (Table S1). For Type I systems, Protein2PAM was applied to403

14 Cas8 proteins with characterized PAMs (30). For Type II systems, Protein2PAM was applied to 79404

Cas9 proteins spanning the phylogeny (3), 23 Cas9 proteins from closely related Type II-C systems (31)405

and 10 Cas9 proteins used as genome editors, including: SpCas9, St1Cas9 and St3Cas9 (2), Nme1Cas9406

and Nme2Cas9 (49), AceCas9 (50), FnCas9 (51), FrCas9 (52), CjCas9 (53), and CdCas9 (54). For Type407

V systems, Protein2PAM was applied to 45 Cas12s with experimentally characterized PAMs, including:408

Cas12a (55, 56), Cas12b (57), Cas12d (58, 59), Cas12f (60), Cas12h and Cas12i (4), Cas12j (61), Cas12k409

(62), Cas12l (63), Cas12m (64), and Cas-lambda (65). Lastly, Protein2PAM was applied to 20 engineered410

proteins from the literature with altered PAM specificities, including variants of: SpCas9 (7, 8, 11), SaCas9411

(10), St1Cas9 (66), Nme2Cas9 (13), CjCas9 (37), and Cas12a (9, 67, 68).412

In silico mutational scanning. We performed a large-scale mutagenesis experiment to identify point413

mutations predicted to change the PAM. Diverse wild-type proteins were selected for Cas8, Cas9, and414
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Cas12 from 70% identity protein clusters from the CRISPR-Cas Atlas training dataset. For Cas9, we415

selected proteins from 336 clusters containing at least 20 members. These were supplemented with 15416

Cas9s from the literature that have been used in genome editing and include: AceCas9, CdCas9, CjCas9,417

FnCas9, FrCas9, GeoCas9, Nme1Cas9, Nme2Cas9, PrCas9, SaCas9, ScCas9, SpCas9, St1Cas9, St3Cas9,418

and TnCas9. For Cas8 and Cas12, we selected proteins from the top-20 largest clusters. We generated all419

possible single amino acid variants – including substitutions, insertions, and deletions – from each wild-type420

protein sequence. For Nme1Cas9, we additionally generated all possible double amino acid substitution421

variants. Cas8, Cas9, and Cas12 wild-type and mutant proteins were used as input to the corresponding422

full-sequence Protein2PAM models. For Cas9, annotated PI domain regions were also used as input to423

Protein2PAM PID-only Cas9 model.424

To evaluate the impact of mutations on PAM specificity, we compared the Protein2PAM-predicted PAM425

profiles for wild-type sequences and their corresponding single amino acid mutants. The effect size of426

each mutation was quantified using the maximum L1 distance across the 10 PAM positions, defined as:427

maxi∈{1,2,...,10}
(∑

n∈{A,C,G,T }

∣∣∣ICi
n,WT − ICi

n,Mut

∣∣∣), where ICi
n,WT and ICi

n,Mut represent the information428

content for nucleotide n at position i in the wild-type and mutant sequences, respectively. PAM-specifying429

mutations (PSMs) were classified if they caused a measurable shift in PAM specificity, indicated by an L1430

distance change of ≥ 0.5 bits at one or more nucleotide positions in the predicted PAM.431

Design of PAM-customized Nme1Cas9 variants. To design proteins that targeted specific PAMs, we432

leveraged the Gibbs with Gradients Markov Chain Monte Carlo (MCMC) algorithm (43). MCMC provides433

a stochastic method that iteratively introduces in silico mutations to a protein sequence that are expected434

to improve its score according to an oracle model. We averaged two components to compute a score for a435

protein sequence: the Protein2PAM loss between the predicted PAM and a target PAM, and the language436

modeling loss of ProGen2 (15) fine-tuned on the CRISPR-Cas Atlas (17). To increase sensitivity, we trained437

and utilized a variant of the Protein2PAM model where NmeCas9 orthologs were upweighted in the training438

data. To preserve enzymatic function, we only sampled candidate mutations in the PI domain (positions:439

937–1082) from a multiple sequence alignment of NmeCas9 orthologs that had at least 70% identity to440

Nme1Cas9. We ran all MCMC trajectories for 2000 steps. For each target PAM, we selected the variants441

at any point along the trajectories which individually minimized the Protein2PAM loss, the fine-tuned442

ProGen2 model’s loss, and the aggregate score.443

To design proteins targeting diverse PAMs, we adopted a combinatorial mutagenesis approach. We444

first identified a minimal set of 102 PSMs that shifted Nme1Cas9’s PAM preference by at least 0.25 bits.445

Notably, 73 of these mutations were concentrated at seven key sites, including three (Q981, H1024, N1029)446

that form hydrogen bonds with PAM DNA in Nme1Cas9’s WT structure. Pairwise combinations of these447

102 mutations yielded 9,464 double, 132,838 triple, 2,530,861 quadruple, and 34,777,000 quintuple mutants448

which were predicted to collectively target 177 alternative PAMs. For experimental validation, we selected449

178 of these variants, each containing 1 to 5 PSMs which targeted 64 alternate PAMs. Enzymes were450

selected to maximize PAM diversity, minimize mutation count, and maximize pLM log likelihoods as451

measured by ProGen2 fine-tuned on the CRISPR-Cas Atlas. All NmeCas9 variants are listed in Table S5.452

Plasmid construction and gRNA in vitro transcription. pCMV-Nme1Cas9-P2A-EGFP was synthesized by453

Twist Biosciences and designed to harbor the wild-type Nme1Cas9 sequence and serve as our expression454

plasmid (Table S6). The PAM-interacting domain regions of computationally designed enzymes were455

codon-optimized for Homo sapiens and synthesized by Twist Biosciences. DNA was ordered as an arrayed,456

lyophilized, double-stranded DNA fragment library. DNA fragments contained two flanking regions with457

complementary overlap to the wild-type WED domain (57 bp complementarity) and the pCMV plasmid458

(30 bp complementarity) for downstream cloning. To generate the arrayed plasmid variant library, the459

expression plasmid was first linearized with inverse PCR to remove the wild-type PID with the following460

recipe: 25 µL 2x Platinum SuperFi II PCR master mix (Invitrogen), 1.25 µL 10 µM forward primer, 1.25 µL461

10 µM reverse primer, 10 ng of template, and nuclease-free water to a final volume of 25 µL per reaction.462
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The following PCR parameters were then applied: initial denaturation at 98C for 30 s, followed by 15463

cycles of denaturation at 98C for 10 s, annealing at 60C for 30 s, extension at 72C for 4.2 min, and a final464

extension at 72C for 5 min. The PCR linearized backbone was then incubated with DpnI (NEB) at 37C for465

1 hr to digest the residual template.466

PID variant fragments were resuspended to a concentration of 20 ng/µL in 50 µL of 10 mM Tris-Cl,467

pH 8.5, then introduced into the linearized expression plasmid through HiFi assembly (NEB) with a 10:1468

insert-to-vector ratio. Reactions were incubated at 50C for 20 min, then transformed into NEB® Turbo469

Competent E. coli cells. Colony PCR was performed to screen clones for proper assembly (REDTaq® DNA470

Polymerase Master Mix, VWR), and passing clones were mini-prepped (Qiagen) and validated with whole471

plasmid sequencing (Table S6).472

The two plasmid libraries encoding 10-nt randomized PAMs and different spacer sequences were generated473

similar to previously described (8, 42). Briefly, the plasmid p11-lacY-wtx1 (69) (Addgene ID 69056) was474

digested with EcoRI-HF, SpeI-HF, and SphI-HF (NEB) and purified. The PAM libraries were generated475

by annealing oNK507 or oNK508 with oBK984 (Table S7) and performing an extension reaction with476

Klenow fragment (3' to 5' exo-) (NEB) prior to digestion with EcoRI-HF. The digested duplexed libraries477

were ligated into the digested p11-lacY-wtx1 backbone, with the ligations cleaned up and transformed into478

XL1-Blue electrocompetent cells. The resulting transformation was grown overnight and maxiprepped.479

For in vitro transcription of gRNAs, the pT7-SpCas9-sgRNA-scaffold plasmid (MSP3485; Addgene ID480

140082) was digested with NheI-HF and HindIII-HF (NEB) to remove the T7 promoter and SpCas9 gRNA481

scaffold. Pairs of oligonucleotides encoding the T7 promoter, spacer sequences, and Nme1Cas9 gRNA482

scaffold (Table S7) were annealed and ligated into the digested MSP3485 plasmid to generate the final483

gRNA IVT plasmids (Table S6). gRNA transcription reactions were performed by digesting these IVT484

template plasmids with DraI, utilizing 10 µL of digested plasmid as template in reactions from the T7485

RiboMAX Express Large Scale RNA Production System kit (Promega) for 19 hours at 37C, cleaning up486

the IVT reactions via MinElute PCR Purification Kit (QIAGEN), and quantifying gRNA yield.487

HT-PAMDA screening. HEK 293T cells (ATCC) were maintained at 37 °C and 5% CO2 in DMEM (Gibco)488

supplemented with 10% FBS (Gibco) and 1% penicillin/streptomycin. For mycoplasma testing, supernatant489

media was analyzed via PCR.490

To generate human cell lysates containing Nme1Cas9 variant enzymes, HEK 293T cells were seeded at a491

density of ∼1.5 × 105 cells per well in a 24-well plate ∼20 hours prior to transfection, and transfected with492

a mixture of approximately 800 ng of nuclease-P2A-EGFP expression plasmid (Table S6) and 1.5 µl of493

TransIT-X2 (Mirus) in a total of 50 µl of Opti-MEM (ThermoFisher). After 48 hours following transfection,494

cells were lysed using 100 µl of lysis buffer [final concentration of 20 mM Hepes, pH 7.5; 100 mM KCl;495

5 mM MgCl2; 5% (vol/vol) glycerol; 1 mM DTT; 0.1% (vol/vol) Triton X-100; and 1x SigmaFast Protease496

Inhibitor Cocktail tablet (EDTA-free)] and normalized using a DTX 880 Multimode Plate Reader (Beckman497

Coulter) based on EGFP fluorescence to 150 nM Fluorescein (Sigma).498

HT-PAMDA reactions were performed similar to previously described (8, 42). Briefly, the PAM library499

plasmids were linearized with PvuI-HF (NEB). For each HT-PAMDA reaction, 5.625 µl of normalized cell500

lysate and 4.5 µl of in vitro transcribed 2.5 µM gRNAs were incubated at 37 °C for 10 min to pre-form the501

Cas9 RNPs, and the buffer and 56.25 fmols of linearized PAM library plasmid were added to initiate in502

vitro cleavage reactions. The cleavage reactions were performed at 37 °C, and 5 µl were removed at 1 min,503

8 min, 32 min, and 135 min and terminated by adding 5 µl of stop buffer (50 mM EDTA and 2 mg/ml504

proteinase K (NEB)).505

The remaining uncleaved PAM library from each reaction time point for each Nme1Cas9 variant were506

PCR amplified with Q5 polymerase (NEB) using cycling conditions of 98 °C for 2 min, 30 cycles of 98507

°C for 10 s, 67 °C for 10 s and 72 °C for 10 s, and 72 °C for 1 min, and the PCR primers encoding 5 nt508

barcodes (Table S7). For each time point, PCR products were pooled, purified with paramagnetic beads509

(prepared as previously described (9, 70) and PCR amplified using primers encoding Illumina i5 and i7510

indexes (Table S7) using cycling conditions of 98 °C for 2 min, 10 cycles of 98 °C 10 s, 65 °C for 30 s and511
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72 °C for 30 s, and 72 °C for 5 min. The libraries were sequenced on a NovaSeq X Plus (Illumina).512

Analysis of HT-PAMDA data. The sequencing results were analyzed using a modified version of the HT-513

PAMDA analysis scripts, available at: https://github.com/RachelSilverstein/HT-PAMDA-2. HT-PAMDA514

results for all enzymes analyzed via this method are available in Table S8. For each enzyme tested, the515

pipeline calculated cleavage rate constants (k) for all four-nucleotide PAMs in the library (positions 5–8),516

using two distinct spacer sequences. Rate constants for each PAM were averaged across spacer sequences.517

We observed low technical variability between spacer sequences, with a mean r2 = 0.976 when comparing518

PAM cleavage rates between the gRNAs for each active enzyme.519

We categorized cleavage rates as follows: High (k > 10−3), Medium (10−3 ≥ k > 10−4), and Slow520

(5 × 10−5 ≤ k < 10−4) (Fig. 5a). These thresholds were chosen based on the PAM cleavage rate distribution521

for wild-type Nme1Cas9, for which only one PAM (N4GATT) exceeded the High cleavage rate threshold522

(k = 3.4 × 10−3) and cleavage rates were categorized as Slow for 97% of PAMs. To summarize activity, we523

counted the number of PAMs at each activity level for each enzyme (Fig. 5b).524

To compare experimental data with Protein2PAM model predictions, we generated sequence logos to525

visualize PAM preferences from HT-PAMDA datasets (Fig. 5c). For each enzyme, we identified all four-526

nucleotide PAM sequences (positions 5–8) that showed cleavage activity (k > 5×10−5). Each four-nucleotide527

sequence was weighted by its rate constant, and these weighted sequences were used to calculate a matrix528

of nucleotide counts, per position. The counts were normalized to frequencies summing to 1.0 per PAM529

position and then converted to information content for visualization using Logomaker.530

Data and code availability531

The training dataset of PAMs was obtained from the CRISPR-Cas Atlas. The Protein2PAM code will532

be made available upon publication at https://github.com/Profluent-AI/protein2pam, and the machine533

learning models can be freely accessed through our web server at https://protein2pam.profluent.bio.534
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Supplementary Information

Fig. S1. Phylogenetic distribution of PAMs from the CRISPR-Cas Atlas. (a) Phylogenetic trees were built for Cas8, Cas9, and
Cas12 proteins. Proteins were first clustered using MMseqs2 (25) at 70% identity for Cas8 and Cas9 and at 95% identity for Cas12.
Phylogenetic trees were built using FastTree (26) and visualized using iToL (27). Colored strips indicate the information content at
PAM positions. (b) Distribution of high-information content positions across PAMs from Type I, II, and V systems. In Type I systems,
the PAM is predominantly restricted to positions -1 to -3 relative to the protospacer, while in Type II systems, the distribution of high
information content PAM positions is more variable. (c) Distribution of the number of spacers aligned to virus and plasmid genomes for
PAMs predictions from the CRISPR-Cas Atlas. (d) Signal-to-noise ratio comparing nucleotide conservation upstream and downstream of
the protospacer for PAMs predictions from the CRISPR-Cas Atlas. In Type II systems, a downstream motif is expected, while in Type I
and V systems, the motif is upstream. Bioinformatic PAM predictions are based on a high number of aligned CRISPR spacers, resulting
in strong signal-to-noise ratios and providing a robust training dataset for Protein2PAM.
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Fig. S2. Training loss curves for Protein2PAM models. Each Protein2PAM model predicts nucleotide distributions at 10 PAM positions
based on inputted Cas proteins. The architecture integrates a pre-trained 650M-parameter transformer encoder and a 2-layer MLP head.
The Type I and V models very quickly converged to their minimum loss, while the Type II model took much longer to optimize. These
training dynamics mirror the cross-validation results and show that it is much more challenging to model PAMs for Type II systems than
for Type I or Type V systems.
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Fig. S3. Cross-validation accuracy for Protein2PAM models. (a) PAM prediction accuracy. Each panel indicates the cosine similarity
between true and predicted PAMs as a function of distance from the training data. Neural models consistently outperform a baseline in
which a sequence is assigned the PAM of the nearest neighbor (NN) in the training dataset. The Cas9 PID-only model outperforms
the Cas9 full-sequence model for Type II systems. The Cas8-only model outperforms the Cas8+Cas5 model for Type I systems. (b)
Confidence prediction accuracy. True positive rate (TPR), true negative rate (TNR), and balanced accuracy (Bal. Acc.) when determining
if a PAM prediction result is high-confidence or not. High-confidence predictions are defined as those with accuracy above 0.80, while
accuracy is defined as the cosine similarity between predicted and true PAM. Especially for Type II systems, the confidence model
accurately discriminates between accurate and inaccurate Protein2PAM predictions.
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Fig. S4. Concordance with experimentally determined PAMs for diverse Type I CRISPR systems. Wimmer et al. characterized
PAMs for diverse Type I systems using a rapid cell-free protocol, PAM-DETECT (30). Top panels show nucleotide-enrichment plots from
Wimmer et al. for 14 Type I systems subjected to PAM-DETECT. Bottom panels show Protein2PAM predictions for the corresponding
Type I systems using Cas8 proteins as input. For two Type I-E systems (Ac1 and Sr), the cell-free assay failed to identify a PAM due to
low binding affinity, whereas Protein2PAM was able to confidently predict both PAMs as AAG.
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Fig. S5. Concordance with experimentally determined PAMs for diverse Type V CRISPR systems. Protein2PAM was applied to 45
Cas12 proteins from 12 different published studies. Protein2PAM predictions were compared to the experimentally determined PAMs
using the cosine similarity metric. Figure panels indicate Protein2PAM predictions for 27 of 45 Cas12 proteins. (a) Evaluation of PAM
predictions for Cas12f proteins (60). (b) Evaluation of PAM predictions for Cas12a proteins (55). (c) Evaluation of a PAM prediction for
Cas12j (61). (d) Evaluation of PAM predictions for Cas12b proteins (57). (e) Evaluation of PAM predictions for Cas12k proteins (62). (f)
Evaluation of PAM predictions for Cas12i and Cas12h proteins (4).

S4 | Nayfach et al.

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 6, 2025. ; https://doi.org/10.1101/2025.01.06.631536doi: bioRxiv preprint 

https://doi.org/10.1101/2025.01.06.631536
http://creativecommons.org/licenses/by-nc-nd/4.0/


Gao et al. 2017Kleinstiver et al. 2015

Kleinstiver et al. 2019

Wild Type AsCas12aWild Type SpCas9 Wild Type SaCas9 Wild Type Nme2Cas9

Huang et al. 2023

Wild Type LbCas12a

Walton et al. 2020

Nishimasu et al. 2018

Kleinstiver et al. 2016

Wild Type St1Cas9

Zhang et al. 2020 and Zhang et al. 2022
Wild Type CjCas9

Schmidheini et al. 2023

Tran et al. 2021

Fig. S6. Protein2PAM predictions for previously-engineered Cas enzymes with altered PAMs. We tested Protein2PAM on 20
engineered Cas9 and Cas12 proteins with altered PAM specificities from 10 studies (Methods). These included variants of SpCas9
(7, 8, 11), SaCas9 (10), St1Cas9 (66), Nme2Cas9 (13), CjCas9 (37), and Cas12a (9, 67, 68). In most cases, the model predicted the
same PAMs as the wild-type counterparts with the exception of an Nme2Cas9 variant where Protein2PAM correctly predicted a shift from
N4CC to N4CN.
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Fig. S8. PAM specifying amino acids make hydrogen bonds with specific PAM nucleotides. Four Cas9 crystal structures are
shown. Positions are colored by the maximum predicted change to the PAM, in bits, after in silico saturation mutagenesis and evaluation
with Protein2PAM. Top ranked positions are shown in barplots that result in the greatest predicted change in the PAM after in silico
saturation mutagenesis. Positions highlighted in red make hydrogen bonds with specific PAM nucleotides in the corresponding crystal
structures.
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Fig. S9. Heatmaps of rate constants from HT-PAMDA data for computationally evolved enzymes. Each panel shows rate constants
for Cas9-mediated cleavage at PAM positions 5-8. (a) Wild type and engineered enzymes. (b) Four single amino acid variants. (c-h)
22 Computationally evolved enzyme variants. Overall 11 variants displayed activity in the HT-PAMDA assay with 6 exceeding that of
wild-type enzymes. (c) Variants computationally evolved towards N4G PAMs. (d) Variants computationally evolved towards N4C PAMs.
(e) Variants computationally evolved towards N4CNNT PAMs. (f) Variants computationally evolved towards N7A PAMs. (g) Variants
computationally evolved towards N6TA PAMs. (h) Variants computationally evolved towards N6TT PAMs. See Table S8 for the complete
set of HT-PAMDA data for all enzymes.
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Fig. S10. Comparison of PAM predictions between Protein2PAM models for computationally-evolved, active enzymes. Protein
names are indicated by plot titles. The first row displays PAMs predicted by the Protein2PAM model used as an oracle during
computational evolution with MCMC. In this model, NmeCas9 orthologs were upweighted among the protein:PAM pairs used for training.
The second row displays PAMs predicted by the standard Protein2PAM model, which did not include upweighting for NmeCas9 orthologs.
Both Protein2PAM models utilized Cas9 PAM-interacting domain sequences for training and inference. The third row displays PAM logos
derived from experimental data. The standard Protein2PAM model, which was not used as an oracle in the MCMC process, shows
better alignment with the experimental data. The reduced performance of the Nme-specialized model is likely due to extended MCMC
trajectories that resulted in overfitting of sequences to the model’s own PAM predictions.
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Active Enzyme Type

5
5

Fast
Medium
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Inactive

Yes
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Maximum 
Cleavage Rate

Natural 
Source

MCMC
(n = 22)

SSM
(n = 178)

11 (50%

7 
(32%)4

160 (90%)
8

MCMC
(n = 255)

SSM
(n = 667)
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201
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Peak Activity Per Enzyme Mutation Type Distributionb c

a

Controls (n = 4)
MCMC (n = 11)
SSM (n = 18)

Fig. S11. Peak activity of NmeCas9 enzymes across PAMs in HT-PAMDA assay. (a) Each bar represents a single enzyme
experimentally characterized by HT-PAMDA. Control enzymes include Nme1Cas9 WT, Nme2Cas9 WT, and eNme2-C and eNme2-T.1
(13). The MCMC sequence category includes 11 active enzyme variants computationally evolved towards six target PAMs. The SSM
sequence category includes 18 active enzyme variants containing up to 5 combinations of 102 predicted PAM-specifying mutations.
The vertical axis indicates the maximum cleavage rate, k, of each enzyme across all 256 PAM in the library, considering only positions
5-8. Enzymes are ranked by sequence type and then by their maximum cleavage rate. (b) Summary of activity rates across all MCMC
(n = 22) and SSM (n = 178) sequences (Fast: k > 1 × 10−3, Medium: k > 1 × 10−4, Slow: k > 5 × 10−5, Inactive: k ≤ 5 × 10−5).
(c) Summary of mutation source across mutations found in MCMC (n = 255) or SSM (n = 667) sequences. A mutation was classified
as natural if it was found in a multiple sequence alignment of natural orthologs within 70% amino acid identity of Nme1Cas9.
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