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The overwhelming success of exome- and genome-wide association studies in discovering thousands of disease-associated

genes necessitates developing novel high-throughput functional genomics approaches to elucidate the molecular mecha-

nisms of these genes. Here, we have coupled multiplexed repression of neurodevelopmental disease–associated genes to sin-

gle-cell transcriptional profiling in differentiating human neurons to rapidly assay the functions of multiple genes in a

disease-relevant context, assess potentially convergent mechanisms, and prioritize genes for specific functional assays.

For a set of 13 autism spectrum disorder (ASD)–associated genes, we show that this approach generated important mecha-

nistic insights, revealing two functionally convergent modules of ASD genes: one that delays neuron differentiation and one

that accelerates it. Five genes that delay neuron differentiation (ADNP, ARID1B, ASH1L, CHD2, and DYRK1A) mechanistically con-

verge, as they all dysregulate genes involved in cell-cycle control and progenitor cell proliferation. Live-cell imaging after

individual ASD-gene repression validated this functional module, confirming that these genes reduce neural progenitor

cell proliferation and neurite growth. Finally, these functionally convergent ASD gene modules predicted shared clinical

phenotypes among individuals with mutations in these genes. Altogether, these results show the utility of a novel and simple

approach for the rapid functional elucidation of neurodevelopmental disease-associated genes.

[Supplemental material is available for this article.]

The tremendous progress in identifying disease-associated genes
and variants has far outpaced the discovery of the functions and
pathological mechanisms of these genes. Exome- and genome-
wide sequencing studies have identified approximately 5500 sin-
gle-gene disorders and traits caused by mutations in over 3800
genes (Amberger et al. 2019). Over 1100 of these genes have
been causally linked to neurodevelopmental disorders (Wright
et al. 2015). In autism spectrum disorder (ASD) alone, recent
exome sequencing studies have identified over 100 genes that
cause ASD when a single copy is mutated to a loss-of-function al-
lele (O’Roak et al. 2012; De Rubeis et al. 2014; Iossifov et al.
2014; Satterstrom et al. 2020). This genetic heterogeneity provides
a substantial challenge to the development of broadly useful ther-
apeutics. If, at an extreme, each disease-associated gene follows a
separate mechanistic route, then each will require the develop-
ment of an independent therapeutic. On the other hand, if subsets
of these genes converge in their mechanisms, then these points of
convergence would be logical targets for more broadly applicable
therapeutics that apply to the entire subset. Identifying conver-
gent mechanisms across diverse disease-associated genes first re-
quires establishing a high-throughput and disease-relevant
model system to both perturb numerous genes and systematically
assess the functional consequences.

Although animalmodels and patient-derived induced plurip-
otent stem cell (iPSC) models are powerful tools for the study of
disease mechanisms, these systems are generally low throughput
and require long generation times, and results can vary across lab-
oratories, strains, or individuals (Kilpinen et al. 2017; Zhao and
Bhattacharyya 2018). A rapid, reproducible, and disease-relevant
system in which multiple genes could be studied in parallel would
fill an important gap in the functional genomics toolbox and en-
able direct comparison across genes to assess their mechanistic
convergence. Recent technological advancements coupling
CRISPR-Cas9 transcriptional repression to single-cell RNA se-
quencing (scRNA-seq) enable high-throughput perturbation of
multiple genes in a single batch with a parallel functional readout
of the transcriptional consequences (Gilbert et al. 2013; Adamson
et al. 2016; Dixit et al. 2016; Datlinger et al. 2017). Such an ap-
proach holds great promise for efficiently defining the functional
consequences of dominant loss-of-function mutations, as tran-
scriptional repression can phenocopy haploinsufficiency. As the
pathology of many neurodevelopmental diseases likely arise dur-
ing neural development, especially when proliferating progenitors
are differentiating into postmitotic neurons (Schafer et al. 2019),
we set out to establish a scalable functional genomics approach
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in a simple human cellular model of neuron differentiation.
Further, as a large fraction of causative genes in ASD are haploin-
sufficient transcriptional regulators (De Rubeis et al. 2014;
Willsey et al. 2018; Satterstrom et al. 2020), we aimed to test this
approach on a select subset of such genes to determine what in-
sights into pathological mechanisms can be gleaned bymeasuring
the transcriptional consequences of their perturbation.

Here, we used catalytically inactive Cas9-based transcription-
al repression (dCas9-KRAB) to knockdown the expression of 13
ASD-related genes in a human cellular model of neuronal differen-
tiation and captured the resulting transcriptional consequences
using scRNA-seq. We sought to identify individual transcriptional
signatures after repression for each candidate gene, compare these
signatures to discover shared transcriptional changes, and exam-
ine the impact of knockdown on the trajectory of neuronal differ-
entiation. We sought to generate mechanistic predictions from
transcriptional profiling and test these by combining individual
knockdown experiments with live-cell imaging. Finally, we aimed
to compare our functional data to clinical phenotypes in individ-
uals with mutations in these genes.

Results

Establishing a human model of neuronal differentiation for

high-throughput disease gene perturbation

Human neuronal models are needed for studying neurodevelop-
mental disorders such as ASD (Zhao and Bhattacharyya 2018).
Although human iPSC-derived neurons are a powerful cellular
model system, the genetic heterogeneity, variability of neuronal
differentiation, and technical difficulties achieving efficient tran-
scriptional modulation in these cells complicate multiplexed tran-
scriptional and phenotypic analyses (Ho et al. 2017; Hoffman et al.
2017). Therefore, we aimed to establish a tractable human neuro-
nal model amenable to differentiation and transcriptional pertur-
bation to enable high-throughput evaluation of the consequences
of disease-associated gene repression. We selected the LUHMES
neural progenitor cell line as such a model for their ease of use, ca-
pacity for rapid differentiation into postmitotic neurons, and suit-
ability for high-content imaging (Scholz et al. 2011; Höllerhage
et al. 2017; Tong et al. 2017; Pierce et al. 2018). Unlike many im-
mortalized lines, LUHMES have a stable diploid karyotype and
have been maintained by others in continuous culture for >5 yr
without acquiring chromosomal abnormalities (Paul et al. 2007).
Recent studies have used LUHMES to model neurodevelopmental
disorders and their underlying pathways (Shah et al. 2016;
Matelski et al. 2020).

To further validate the relevance of these cells, we performed
RNA sequencing (RNA-seq) analysis of LUHMES cells at multiple
time points after inducing differentiation. Hierarchical clustering
analysis of differentially expressed genes across the differentiation
time course confirmed that differentiation of LUHMES was rapid
and reproducible (Pearson’s r2 between replicates >0.99), with bio-
logical replicates clustering together and samples arranged tempo-
rally by their day of differentiation (Fig. 1A; Supplemental Fig.
S1A). Genes that were down-regulated during differentiation
were enriched for cell-cycle markers such as CCND2, genes in-
volved in proliferation (MKI67 and TP53), and the canonical neu-
ral stem cell marker gene SOX2. Genes that increased expression
during differentiation included known neuronal markers MAP2
and DCX, and were heavily enriched for critical neurodevelop-
mental pathways including axon growth, synaptic development,

and neuronmigration (Fig. 1B, left). Genes expressed during differ-
entiation were strongly enriched for genes implicated in a variety
of neurological disorders, including schizophrenia, bipolar disor-
der, and ASD (Fig. 1C, right).

Despite being a mesencephalic-derived neuronal progenitor
line best characterized for its ability to differentiate into dopami-
nergic neurons, cell type–specific expression analysis (CSEA) of
differentiated LUHMES revealed that these neurons have tran-
scriptional profiles that are highly similar to a range of neuronal
subtypes relevant to neurological disorders (Supplemental Fig.
S1B; Xu et al. 2014). Specifically, transcriptomes of differentiated
cells resembled striatal dopaminergic neurons as expected but
also matched some cortical, forebrain, and spinal cord neuron
types. Differentiated LUHMES also expressed many markers of ex-
citatory neurons (Supplemental Fig. S1C). Next, to assess the ex-
tent to which in vitro differentiation of LUHMES cells captures
aspects of human brain development, we performed a transition-
mapping approach comparing differentially expressed genes dur-
ing LUHMES differentiation to the BrainSpan Atlas of Developing
Human Brain (Stein et al. 2014; https://www.brainspan.org/). We
found that changes in gene expression during in vitro differentia-
tion closelymirror transcriptional differences that occur in the ear-
ly developing human fetal neocortex (Pearson’s r= 0.69) (Fig. 1C).
This strong overlap indicates that LUHMES differentiation faith-
fully recapitulates many of the transcriptional pathways that are
used during this critical neurodevelopmental window (Supple-
mental Fig. S1D–G). Because LUHMES in vitro differentiation
produces only a single neuronal cell type, some important dis-
ease-associated phenomena such as shifts in neuronal cell fate de-
cisions or aberrations in region-specific gene regulatory networks
will not be captured by this system.However, as core transcription-
al programs that control neuronal differentiation and maturation
are largely conserved across neuronal subtypes (Li et al. 2018),
we can model these critical disease-relevant processes using a sim-
ple in vitro system.

To establish that LUHMES cells are an appropriate model spe-
cifically for the study of ASD genes, we analyzed 25 high-confi-
dence autism-causing genes in the SFARI database, a manually
curated database of ASD-associated genes (Abrahams et al. 2013).
We found that 22/25 (88%) were highly expressed in these cells
across differentiation time points. We selected 13 of these genes
for perturbation experiments (Table 1; Fig. 1D). HDAC5 was in-
cluded as a nonassociated gene that is highly expressed in neuro-
nal progenitors, where it may regulate stem cell proliferation
(Sun et al. 2007). Genes were selected because of their roles in tran-
scriptional regulation (10/14) (O’Leary et al. 2016) and because
they are highly likely to act through haploinsufficiency (Table 1;
Lek et al. 2016). Although many of these genes are coexpressed
during neurodevelopment, module assignment of these genes by
integrative bioinformatics approaches has not enabled specific
mechanistic predictions about the potential convergence of their
molecular targets (Parikshak et al. 2013; Li et al. 2018). We expect
this set of genes to be broadly representative of transcriptional reg-
ulators implicated in neurodevelopmental disorders and well suit-
ed to show the feasibility of our approach.

We next sought to determine whether the expression of can-
didate genes could be efficiently knocked down in LUHMES cells
using CRISPR interference-mediated transcriptional repression
(Gilbert et al. 2013), a prerequisite for perturbation assays. Three
guide RNAs (gRNAs) per candidate gene were cloned into a
CRISPR-repression optimized vector that also allows recovery of
the gRNA from scRNA-seq (Hill et al. 2018; Sanson et al. 2018;
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Xie et al. 2018). We validated the efficacy of repression for two
gRNAs targeting each of six candidate genes using quantitative
real-time PCR (qRT-PCR) in LUHMES neural progenitor cells con-
stitutively expressing dCas9-KRAB. All tested gRNAs induced sig-
nificant down-regulation of their target gene, with 11/12
eliciting a knockdown >50% (Fig. 1E), a level that should pheno-
copy the autosomal-dominant loss-of-function modes of our can-
didate genes. Altogether, these data support LUHMES as a relevant
and facile cellular model to evaluate the downstream consequenc-
es of transcriptional perturbation of neurodevelopmental genes.

Pooled repression of ASD genes and scRNA-seq

We produced a lentivirus pool that contained vectors expressing
gRNAs targeting all 14 candidate genes (three gRNAs per gene),
along with five nontargeting control gRNA sequences, for a total
of 47 gRNAs. Because of the high success rate of gene knockdown
in dCas9-KRAB LUHMES by all tested gRNAs and because we
wanted to enable high-scale perturbation screening experiments,
we did not validate the repression efficiency of all gRNAs individ-
ually. We infected dCas9-KRAB expressing LUHMES neuronal
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D

Figure 1. LUHMES are a tractable, disease-relevantmodel of human neuronal differentiation amenable to perturbation. (A) Hierarchical clustering of bulk
RNA-seq time course expression data indicates rapid and reproducible neuronal differentiation. Two replicates for each time point were performed. (B)
Genes induced during LUHMES differentiation are enriched for relevant biological processes (left) and neurological disorders (right). (C ) Differentially ex-
pressed genes during LUHMES differentiation are highly correlated with transcriptional changes that occur during early human fetal corticogenesis
(Pearson’s rho = 0.69, P=2.2 × 1016). (logFC) log2 fold-change of differential expression between indicated time points; (pcw) postconception week.
(D) High-confidence autism-causing genes, selected for perturbation experiments, are highly expressed at baseline or are increasingly expressed in
LUHMES during differentiation and were selected for roles in transcriptional regulation. (E) Efficient dCas9-KRAB repression of individual target genes using
the designated guide RNAs. n=3 biological replicates for all qPCR experiments. Values represent mean± SEM. (NT1) Nontargeting control gRNA; (G1)
gRNA 1; (G2) gRNA 2.
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progenitors at a low multiplicity of infection such that most cells
received zero or one gRNAs according to a Poisson distribution.
Cells infected by a gRNA-expressing lentivirus were selected by
growth in media containing puromycin for 4 d, and then the cells
were induced to differentiate according to published protocols
(Scholz et al. 2011). To allow sufficient time for CRISPR repression,
we differentiated LUHMES for 7 d, a time point when differentia-
tion appeared largely complete by RNA-seq. We then profiled
the transcriptomes of more than 14,000 cells at this time point us-
ing droplet-based scRNA-seq across two replicate experiments (Fig.
2A,B; Zheng et al. 2017).

By using a specific gRNA enrichment PCR, we were able to
detect gRNA expression for the vast majority (∼80%) of cells and
restricted our analysis to the 8780 high-quality cells with only a
single gRNA to ensure only one perturbation per cell (Fig. 2B).
Cells with gRNAs targeting all candidate genes, and nontargeting
controls, were represented in this data set (Fig. 2C). To evaluate
the efficacy of ASD-gene repression in the pooled experiment,
we grouped single cells by their detected gRNAs and visualized ex-
pression of all targeted genes across these groups using Seurat
(Supplemental Fig. S2A; Satija et al. 2015; Stuart et al. 2019). This
analysis revealed efficient on-target repression for 13/14 genes in
our library. The detection of RELN was too low in single-cell data
to evaluate efficiency of repression owing to its low expression lev-
el. We used the MIMOSCA pipeline to further evaluate the knock-
down efficiency of gRNAs on their target genes, which confirmed
strong on-target repression (Fig. 2D; Dixit et al. 2016). Almost all
individual gRNAs elicited repression of their target genes
(Supplemental Fig. S2B–E).

ASD-gene repression alters trajectory of neuronal differentiation

The efficient repression of targeted genes in the pooled experiment
shown above led us to assess the unique and shared downstream
consequences of ASD-gene repression in human neurons.
Specifically, we wanted to directly test the hypothesis that some
of the ASD genes might alter the dynamics of neuronal differenti-

ation. To this end, we used Monocle to reconstruct a pseudotem-
poral trajectory reflecting gene expression changes in our data
set and projected cells onto this pseudotime path (Fig. 3A;
Trapnell et al. 2014). Recent single-cell CRISPR experiments have
shown the advantages of trajectory analysis over global cluster-
ing-based approaches, which can be insensitive to detecting
more subtle phenotypes in pooled experiments (Supplemental
Fig. S3; Duan et al. 2019; McFaline-Figueroa et al. 2019; Yang
et al. 2020). As all cells were differentiated for 7 d, >99% of single
cells were postmitotic as assessed by the absence of proliferation
markers MKI67 and TOP2A (Supplemental Fig. S3B). However,
pseudotime and global clustering analysis indicated heterogeneity
in the progression of differentiation at the single-cell level
(Supplemental Fig. S3C–E). Two neuronal marker genes (MAP2
and DCX) showed a gradual increase in expression across pseudo-
time (Fig. 3B). In contrast, two genes known to be important for
neural progenitor cell proliferation (TP53 and CDK4) showed a
rapid drop in expression across pseudotime (Fig. 3B). These obser-
vations suggested the axis of pseudotime corresponds to the pro-
gression of neuronal differentiation. Consistent with this notion,
these four genes show a similar pattern of expression over a
time course of LUHMES differentiation (Fig. 3C). To further
examine the relationship between pseudotime and neuronal dif-
ferentiation, we identified the marker genes for each pseudotime
state and plotted their expression across the differentiation time
course RNA-seq data set. This analysis showed that marker genes
of early pseudotime (states 1–3) are highly expressed in early neu-
ron differentiation (differentiation days 0–4) (Supplemental Fig.
S4A–C). Marker genes of late pseudotime (states 4–6) are highly
expressed during later neuron differentiation (days 4–8)
(Supplemental Fig. S4D–F). Altogether, these data support the in-
terpretation of pseudotime as an axis corresponding to the progres-
sion of neuronal differentiation after cells have completed their
final division.

To assess whether any candidate gene knockdown shifted the
developmental trajectory of the differentiating neurons, we com-
pared the proportions of cells in each pseudotime state across

Table 1. Description of candidate genes selected for perturbation experiments

Gene
symbol Gene name Annotated function

SFARI
score

LoF intolerance
(pLI)

ADNP Activity dependent neuroprotector homeobox Transcription factor 1 1.00
ARID1B AT-rich interaction domain 1B SWI/SNF chromatin remodeling 1 1.00
ASH1L ASH1 like histone lysine methyltransferase Trithorax transcriptional activator 1 1.00
CHD2 Chromodomain helicase DNA binding protein 2 SNF2-related chromatin

remodeling
1 1.00

CHD8 Chromodomain helicase DNA binding protein 8 SNF2-related chromatin
remodeling

1 1.00

CTNND2 Catenin delta 2 Adhesive junction protein 2 1.00
DYRK1A Dual specificity tyrosine phosphorylation regulated kinase

1A
Nuclear expressed kinase 1 1.00

HDAC5 Histone deacetylase 5 Histone deacetylase NA 1.00
MECP2 Methyl-CpG binding protein 2 Methylated DNA–binding protein 1 0.7
MYT1L Myelin transcription factor 1 like Transcription factor 1 1.00
POGZ Pogo transposable element derived with ZNF domain Transcription factor 1 1.00
PTEN Phosphatase and tensin homolog Phosphatase 1 0.98
RELN Reelin Secreted ECM protein 1 1.00
SETD5 SET domain containing 5 Histone methyltransferase 1 1.00

Annotated functions are derived from RefSeq (O’Leary et al. 2016). Simons Foundation Autism Research Initiative (SFARI) gene scores reflect the
strength of evidence of each gene’s implication in ASD. Category 1 is the highest confidence level, with genes typically having three or more literature
reports of likely gene-disrupting mutations and a genome-wide false-discovery rate of < 0.1. Category 2 are strong candidates with two literature
reports. Probability of loss-of-function (LoF) intolerance (pLI) is derived by the observed versus expected number of protein truncating variants in
60,706 exomes (Lek et al. 2016).
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each knockdown condition. Indeed, we found that several pertur-
bations significantly altered the proportions of cells in specific
pseudotime states (Fig. 3D). As an indicator of differentiation sta-
tus, we next computed the average value of pseudotime across all
cells in each knockdown condition. By this metric, we found
that four of the ASD genes (CHD2, ASH1L, ARID1B, and DYRK1A)
delayed neuronal differentiation when repressed, whereas two
genes (PTEN and CHD8) accelerated neuronal differentiation
(Fig. 3E). Estimated knockdown efficiencies and effects on pseudo-
time were highly reproducible between replicate experiments and
concordant across individual gRNAs. (Supplemental Fig. S5A–E).
These results show the utility of pseudotime analysis to investigate
whether subsets of disease-associated genes alter the progression of
neuronal differentiation in a pooled perturbation experiment.

Recurrently dysregulated genes highlight convergent mechanisms

of ASD genes

Wenoticed that specific pseudotime state enrichment or depletion
was not perfectly shared among the sets of genes that accelerated
or delayed differentiation (Fig. 3D). This raises the possibility
that although groups of genes may act similarly to promote (or de-
lay) neuron differentiation, they may do so through different mo-
lecular mechanisms. We therefore sought to further dissect the
transcriptional networks affected by gene perturbation using dif-
ferential gene expression analysis to learn whether these networks
converge across sets of ASD genes. Because of the low number of
cells available for analysis of SETD5 and POGZ (Fig. 2C; Vieth
et al. 2017), we excluded these cells from differential expression

analyses. For each of the remaining genes, we found dozens to
hundreds of differentially expressed genes for each knockdown
(Supplemental Table S1).

To identify potential transcriptional convergence of diverse
ASD-causing genes, we grouped cells by targeted gene and then
clustered these aggregate transcriptional profiles using only genes
that were found to be differentially expressed across three or more
ASD-gene knockdowns. The grouping of ASD genes via hierarchi-
cal clustering largely recapitulated the results of pseudotime anal-
ysis (Supplemental Fig. S6A). Gene Ontology analysis of the set of
dysregulated genes showed an enrichment of neuronal differenti-
ation terms in the perturbed transcriptomes, supporting the inter-
pretation that the misregulation of these ASD-associated genes
alters neuronal differentiation (Supplemental Fig. S6B). This anal-
ysis identified ADNP as another gene delaying neuronal
differentiation.

Heterogeneity in the progression of neuronal differentiation
dominated the global differential gene expression analysis, and
this may mask the discovery of distinct transcriptional changes
that occurred early or later in neuronal differentiation. To address
this possibility, we leveraged the power of single-cell data to explic-
itly account for differences in neuronal maturity across cells by
stratifying samples based on pseudotime (Supplemental Fig.
S6C). To retain enough cells per group required for differential
gene expression analysis, we dichotomized pseudotime into two
stages: “early” (states 1–3) and “late” (states 4–6). This stratification
allowed us to evaluate gene expression differences across condi-
tions within the same broad stage of differentiation without con-
founding by genes that are highly variable across the entire

BA
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Figure 2. Single-cell RNA-seq is an efficient readout of multiplexed gene repression in a human model of neuronal differentiation. (A) Schematic of
pooled repression of ASD genes in LUHMES. (B) The numbers of total single cells that were collected (purple area), express at least one gRNA (red),
and express a single unique gRNA (yellow) show the efficient recovery of gRNAs from single-cell RNA-seq data. (C) Hundreds of cells targeting all 14 genes
were recovered, as well as 939 cells with nontargeting gRNAs. (D) Scaled MIMOSCA beta coefficients for targeting and nontargeting guides are shown for
each targeted gene. Three targeting gRNAs for each gene are merged. Beta less than zero represents repression. In all cases, targeting gRNAs (red dots)
have negative beta coefficients on target gene expression.
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differentiation time course. To do so, we then recomputed differ-
entially expressed genes for sets of cells within each pseudotime
stage for each ASD-gene knockdown condition (Supplemental
Tables S2, S3).

To investigate stage-specific convergence of ASD genes, we
then clustered pseudotime-stratified samples based on recurrently
dysregulated genes (i.e., genes that were differentially expressed in
three or more ASD-gene knockdown samples) and found shared
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Figure 3. Pseudotime analysis reveals ASD-gene repression–induced alterations in differentiation trajectory and modules of ASD genes delaying or ac-
celerating neuronal differentiation. (A) Pseudotime ordering of all single cells reveals a continuous trajectory of cell states corresponding to neuronal dif-
ferentiation. Line segments along the trajectory are called “pseudotime states,” and cells are colored by these states. (B) Neuronal markers (MAP2 andDCX)
increase along the pseudotime trajectory, whereas progenitormarkers (TP53 and CDK4) decrease. (C) Thesemarker genes show correlated patterns in time
course bulk RNA expression. n=2 replicates for each time point. Expression values, mean ± SEM. (D) Repression of some genes alter pseudotime statemem-
bership proportions. Significant enrichments and depletions aremarkedwith asterisks and triangles, respectively (χ-squared test, P<0.05). (E) Significantly
decreased or increased average pseudotime scores relative to cells with nontargeting gRNAs (t-test, P<0.01) indicate delayed or accelerated neuronal mat-
uration. Boxed in purple is a set of ASD genes that delay neuronal differentiation by this metric. Boxed in red is a pair of genes, CHD8 and PTEN, that pro-
mote neuronal maturation. Overall (all gRNAs) and individual gRNA estimates of pseudotime are shown. Individual gRNAs numbers for each gene are
indicated.
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and distinct patterns of transcriptional dysregulation (Fig. 4A).
This analysis grouped samples first by early and late pseudotime
stage and then into stage-specific subsets of ASD genes. Because
genes that acted to delay differentiation clustered together at the
early stage, we can infer that the delayed neuronal maturation de-
tected in our pseudotime analysis is a consequence of early-stage
transcriptional dysregulation. Furthermore, the sets of transcrip-
tional targets of these genes shared significant overlap (all pair-
wise hypergeometric P-values < 10−22) (Fig. 4B), implying that
these genes act through a convergent regulatory pathway that
functions in early neuronal differentiation. This analysis also pro-
vided information about the regulatory hierarchy of these genes,
with CHD2 down-regulated by ADNP or ARID1B repression and
ASH1L down-regulated by ARID1B repression. Despite the cells be-
ing postmitotic, Gene Ontology enrichment of the recurrently

dysregulated genes in the early-stage samples highlighted specifi-
cally disrupted processes, namely, theG2/M transition of cell cycle
and negative regulation of cell development (Fig. 4C). The disrupt-
ed genes themselves are not core cell-cycle regulators so this signa-
ture may rather reflect cell-cycle disruptions that occurred earlier
in the differentiation protocol (Supplemental Table S4). Together
these results suggest that CHD2, ASH1L, ARID1B, DYRK1A, and
ADNP comprise a convergent functional module of ASD genes act-
ing on a shared gene regulatory pathway active in early neurode-
velopment and that their haploinsufficiency impedes neuronal
differentiation. Furthermore, our single-cell transcriptional analy-
ses allowed us to make several explicit predictions about the con-
sequences of ASD-gene repression on cellular phenotypes.
Specifically, we predicted that if ADNP, ARID1B, ASH1L, CHD2,
or DYRK1A are repressed, then we would observe a reduction in
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Figure 4. Single-cell differential gene expression analysis identifies early- and late-stage convergent modules of ASD genes. (A) Hierarchical clustering of
ASD knockdown profiles using genes differentially expressed in three or more ASD-candidate perturbations reveals a convergence of the transcriptional
pathways dysregulated at early and late stages. At the early stage (left column), ADNP, CHD2, ASH1L, DYRK1A, and ARID1B form a transcriptionally conver-
gentmodule of “delayed differentiation” (purple). At the late stage (right column), ADNP, CHD2, and ASH1L continue to converge. (B) Venn diagram shows
significant overlap of differentially expressed genes across five ASD genes at the early stage. All pairwise overlaps have P-values <10−22 by hypergeometric
testing. (C) Gene Ontology enrichment analysis of early-stage recurrently dysregulated genes highlights relevant biological processes disrupted and pre-
dicts disrupted G2/M transition and cellular maturation for “delayed differentiation” genes. Genes driving this enrichment are provided in Supplemental
Table S4. (D) Enrichment analysis of late-stage recurrently dysregulated genes highlights relevant biological processes disrupted. (E) Expression of neuron
projection genes (Gene Ontology 0010975) in the late-stage samples predicts disrupted neurite extension for PTEN but an enhanced phenotype for ADNP,
CHD2, and ASH1L.
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neural progenitor cell proliferation. In contrast, we expected PTEN
repression to promote proliferation.

In late-stage cells, ADNP, CHD2, and ASH1L transcriptional
profiles clustered together, implying these genes continue to share
downstream molecular targets in maturing neurons. In contrast,
hierarchical clustering did not support a convergence of the genes
that accelerate differentiation, PTEN and CHD8, at either the early
or late stages. We found that the recurrently dysregulated genes
among late-stage samples were enriched for processes specific to
neuron maturation such as synapse organization, neuron projec-
tion, and regulation of axon diameter (Fig. 4D). The specificity of
these termshighlights the addedmolecular resolutionwe achieved
by accounting for differences in pseudotime in our analysis but
still indicates substantial heterogeneity in the progression of neu-
ronal differentiation even within late-stage samples.

Differential expression analysis allowed us to generate specif-
ic predictions regarding the effects of ASD-gene repression on neu-
ronal projections (axons and dendrites). We clustered samples by
the expression of the dysregulated neuron projection genes and
found that the clustering of ADNP, CHD2, and ASH1L was driven
by the decreased expression of neuron maturation markers such
asMAPT,NEFL, andMAP1Bwith concomitant up-regulation of an-
notated negative regulators of neuron projection and differentia-
tion (Fig. 4E). These genes were driven in the opposite direction
by PTEN. From these results, we predicted that knockdown of
ADNP, CHD2, and ASH1Lwould decrease the outgrowth of neuro-
nal projections, whereas knockdown of PTEN would enhance this
process.

Live-cell imaging reveals abnormalities in proliferation and

neurite extension and confirms transcriptome-based predictions

To test our transcriptome-based predictions, we implemented live-
cell imaging to measure cellular proliferation and neurite exten-
sion after individual knockdown of ASD genes (Fig. 5A). We pro-
duced lentivirus expressing gRNAs that target candidate ASD
genes and used them to infect dCas9-KRAB neuronal progenitor
cells in an arrayed format.We imaged cells under both proliferative
and differentiative conditions every 4 h for 3 or 5 d, respectively,
using the IncuCyte live-cell imaging system. Representative imag-
es for proliferation and neurite extension are shown (Fig. 5B,C;
Supplemental Fig. S7A,B). In these live-cell imaging experiments,
we observed decreased proliferation after repression of each of
the five proposed “delayed differentiation” genes (Fig. 5D). In con-
trast, PTEN repression caused a major increase in proliferation,
consistent with our prediction and with its known function as
an inhibitor of neural stem cell proliferation (Groszer et al.
2006). For the neurite extension assay, most of our predictions
were also confirmed (Fig. 5E), as repression of four of the five
“delayed differentiation” genes—ASH1L, ADNP, ARID1B, and
DYRK1A—caused modest to severe reductions in neurite out-
growth. In agreement with our transcriptome-based prediction,
PTEN repression increased neurite extension in this assay, a result
consistent with an earlier observation that PTEN enhances the
length of regenerating axons in vivo (Park et al. 2008). Together,
proliferation and neurite extension assays confirmed the conse-
quences of ASD-gene repression predicted by scRNA-seq analyses,
showing the utility of our approach for high-throughput function-
al elucidation of neurodevelopmental disease–associated genes.
Live-cell imaging further supports the functional convergence of
some ASD genes acting at an early stage to delay neuron differen-
tiation and decrease proliferation.

CRISPR repression in iPSC neural progenitor cells confirms

functional gene modules and transcriptional convergence

at cell-cycle dysregulation

To validate the early transcriptional convergence and effects on
cellular proliferation of the ASD gene modules in an orthogonal
cellular model system, we performed CRISPR repression of indi-
vidual genes in human iPSC-derived neural progenitor cells.
First, we confirmed that dCas9-KRAB repression was efficient in
these cells for a subset of genes using qPCR (Fig. 6A). Next, we
performed RNA-seq after knockdown of seven individual ASD
genes and a nontargeting control. RNA-seq confirmed efficient
knockdown for 5/7 target genes (Supplemental Fig. S8A).
Clustering transcriptomes using principal component analysis
(PCA) closely reproduced the gene modules discovered in
LUHMES, namely, the clustering of four members of the “delayed
differentiation” gene set (ADNP, ARID1B, ASH1L, and DYRK1A)
and the clustering of “accelerated differentiation” genes CHD8
and PTEN (Fig. 6B). The same clusters were also observed by un-
supervised hierarchical clustering of transcriptomes using highly
variable genes (Supplemental Fig. S8B). As in LUHMES, the “de-
layed differentiation” genes strongly converged at the level of
transcriptional regulation (Fig. 6C), affecting genes enriched for
roles in chromatin remodeling, Wnt signaling, and cell-cycle
regulation (Fig. 6D). In these cells, the two “accelerated differen-
tiation” genes had strongly overlapping transcriptional conse-
quences on both down- and up-regulated genes (Supplemental
Fig. S8C), leading to misregulation of cell-cycle genes and in-
creased cell division pathways (Supplemental Fig. S8D). This tran-
scriptional convergence could be explained by the observation
that CHD8 repression also decreased the expression of PTEN
(Fig. 6A), implying that these genes are in the same pathway.
A proliferation assay in these cells after individual gene repres-
sion functionally confirmed that ASH1L and CHD2 decreased
proliferation and CHD8 repression enhanced it (Fig. 6E). These
results broadly confirm both the membership and functional
interpretation of ASD-gene modules in a second human neural
progenitor system, further validating the LUHMES as a relevant
model for first-pass high-throughput functional genomics
screening.

Functionally convergent ASD gene modules predict shared

clinical phenotypes

Linking genotype to phenotype is the ultimate goal of functional
genomics. To this end, we sought to determine if the functional
convergence of ASD genes observed in our cellular model could
predict a convergence of clinical phenotypes for these genes. To
do so, we first integrated the results of our pseudotime analysis,
transcriptional clustering, and functional profiling by hierarchical
clustering (Fig. 6F). As expected, this integrated model clearly sep-
arated the “delayed differentiation” module genes from those in
the “accelerated differentiation”module. Next, we performedhier-
archical clustering on the prevalence of clinical phenotypes from
one study on individuals with dominant loss-of-function muta-
tions in these genes (Stessman et al. 2017). Clustering by clinical
phenotypes fully recapitulated our proposed convergent modules
and supports mechanistic links of convergent pathways to shared
clinical outcomes (Fig. 6G). For example, individuals with muta-
tions in the “delayed differentiation” module genes were highly
likely to have intellectual disability, consistent with increased
severity owing to early neurodevelopmental dysregulation.
Comparing across the two clusters, these individuals have a higher
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incidence of microcephaly that is mechanistically consistent with
the neural progenitor cell proliferation defects we observed.
Likewise, individuals with PTEN andCHD8mutations have a com-
paratively reduced prevalence of intellectual disability but a high
prevalence of macrocephaly, consistent with the observed func-
tional convergence of these genes on promoting neuronal differ-

entiation, proliferation, and neurite outgrowth. Recent studies
have confirmed that disruptive mutations in ADNP, ARID1B,
CHD2, and DYRK1A are associated with a higher prevalence of
severe neurodevelopmental delay. Conversely, CHD8 and PTEN
mutations are associated with ASD without neurodevelopmental
delay (Satterstrom et al. 2020).
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Figure 5. Live-cell imaging after repression of individual ASD genes confirms defects in cellular proliferation and neurite extension. (A) Schematic over-
view of arrayed gRNA screening. Cells infected with a single gRNA are assayed by time course imaging for confluence and neurite extension.
(B) Representative images of neural progenitor cell proliferation assay at the start- and end-points (day 0 and day 3). Neural progenitor cell proliferation
is measured by creating a cell mask (orange) and computing the area of confluence at each time point. (C) Representative image of neurite extension assay
at 5 d postdifferentiation. Neurite extension is measured with the NeuroTrack assay in the IncuCyte software. Neurite masks are shown (purple). Neurite
extension lengths are normalized by cell cluster area to account for any differences in cell number. Scale bars, 200 µm. (D) Time-lapse imaging of cellular
proliferation (left), assessed by the percentage of confluence, reveals significant decreases or increases (right). (∗) P<0.01, t-test, dotted horizontal line in-
dicates average in control cells. (E) Time-lapse imaging of neurite extension (left) and quantification (right). (∗) P<0.01, t-test, dotted horizontal line indi-
cates average in control cells). All values in D and E represent mean ± SEM. Cells with each individual gRNA were plated in duplicate or triplicate wells for
each experiment. Images were captured from nine fields per well at each time point. Experiments were repeated two to three times for all gRNAs.
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Discussion

The genetic and phenotypic heterogeneity of neurodevelopmen-
tal disorders challenge the understanding and treatment of these
conditions. Over 1100 genes have been discovered to cause neuro-
developmental disorders when mutated, and this number will
continue to increase. As a result, it is imperative to develop better
methods to cost-effectively unravel the functional contributions
of these genes to both normal development and disease.

Furthermore, the identification of convergent pathogenic mecha-
nisms across diverse causative genes would facilitate the develop-
ment of therapeutic interventions, but this requires a rapid,
scalable, and disease-relevant model system in which tens to hun-
dreds of genes can be modulated in parallel and their effects mea-
sured in a robust manner. Here, we have taken an important step
toward establishing such a systemby coupling pooled dCas9-based
transcriptional repression to single-cell RNA-seq in a simple and
highly tractable humanmodel of neuron differentiation. By using
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Figure 6. CRISPR repression in iPSC neural progenitor cells confirms modules of ASD genes and transcriptional convergence at cell-cycle dysregulation.
Experimental clustering of functional ASD genemodules matches clustering by clinical phenotypes. (A) Efficient dCas9-KRAB repression of individual target
genes using the designated gRNAs in iPSC-NPCs. n=3 biological replicates for all qPCR experiments. Values, mean ± SEM. (B) Clustering of RNA-seq profiles
by principal component analysis reveals clustering of “delayed differentiation” and “accelerated differentiation” module ASD genes. (C ) “Delayed differ-
entiation”module gene repression elicits strongly overlapping transcriptional consequences. (D) Gene Ontology analysis of down-regulated genes shows
enrichment for chromatin remodeling and cell-cycle genes. (E) Cellular proliferation measured by cell number after individual gene repression reveals sig-
nificant decreases or increases. (∗) P<0.01, n=4). (F) Integrating transcriptional and functional assays reveals and refines two functionally convergentmod-
ules of ASD genes. (G) Clinical phenotype data reveal the same two modules of ASD genes. (%) Prevalence of phenotype (percentage) in individuals from
Stessman et al. (2017).
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this approach, we perturbed the expression of 13 diverse autism-
associated genes and uncovered unique and overlapping conse-
quences on transcriptional networks and pathways. This led to
specific predictions about functional roles of these genes in growth
and neurite extension, which we then validated through imaging.
In addition to showing the utility of a high-throughput functional
genomics approach to dissect gene function, our results suggest
that many ASD genes might act on common pathways, namely,
by modifying neural progenitor cell proliferation and cell-cycle.

By integrating pseudotime analysis, transcriptional cluster-
ing, and the cellular phenotyping of individual neurodevelop-
mental genes, we uncovered two consistent modules of genes
with opposing functionality in altering the course of neuron dif-
ferentiation. We identified a “delayed differentiation” module
composed of five ASD genes and predicted that the knockdown
of these genes would decrease neural progenitor cell proliferation.
We further predicted, for a subset of this “delayed differentiation”
module, that individual gene knockdown would decrease neuron
projection. Finally, we also predicted that PTEN repression would
increase both proliferation and neuron projection. Neural progen-
itor cell proliferation, the decision to exit the cell-cycle, and neu-
ron differentiation are complex and interrelated processes
(Hardwick and Philpott 2014). Disruptions to the progression of
neuronal differentiationmay also disrupt cell-cycle and vice versa.
Wehave shown that repression ofmany of the ASD genes dysregu-
lates the cell-cycle, which likely contributes to the altered progres-
sion of neuronal differentiation. However, we have not ruled out
additional mechanisms by which these genes may alter differenti-
ation. Increased proliferation could either drive an expansion of a
progenitor pool or increase neurogenic cell divisions, leading to
precocious differentiation. A parsimonious explanation of our
data in LUHMES is that the progression of neuron differentiation
is preceded by a few requisite rounds of neurogenic cell division.
Delaying these divisions by disrupting cell cycle, or enhancing
them by increasing proliferation rate, will consequently delay or
accelerate neuronal differentiation progression, respectively. We
confirmed these predictions by performing live-cell imaging of
cell proliferation and neurite extension after gene knockdown,
providing experimental functional validation for these ASD genes.
Convergence of ASD genes at the regulation of cell-cycle genes was
supported in an orthogonal model using human iPSC-derived
NPCs. Heterochronicity of neurodevelopmental gene expression
networks and consequent dysregulation of neuron differentiation
is a plausible mechanism underlying ASD pathology and has been
observed in other cellular models of ASD (Marchetto et al. 2017;
Schafer et al. 2019).

We have shown that LUHMES cells enable the rapid and ro-
bust generation of postmitotic humanneuronswith transcription-
al profiles that correspond closely to early human cortical
development, a critical period of neurodevelopment that has
been implicated in the etiology of ASD and other neurodevelop-
mental disorders. Confirmation of our results in human iPSC-de-
rived NPCs further validates the utility of LUHMES for
discovering potential mechanisms of a subset of neurodevelop-
mental disease-associated genes. Because transcriptional regula-
tors are particularly enriched for high early-fetal expression
(Satterstrom et al. 2020), LUHMES may be especially suited to
studying this class of genes. However, for some other classes of
neurodevelopmental genes, LUHMES cells may not be the most
well-suited model system. For example, synaptic genes are more
postnatally expressed across a broad range of neuronal types.
iPSC-derived induced excitatory and inhibitory neurons, cocul-

tures of these cells, or 3D organoids are likely to be more suitable
than LUHMES for studying these genes and their roles in establish-
ing synaptic phenotypes. These alternative human neurodevelop-
mentalmodelsmay also be complementary for investigating genes
and pathways involved in cell-fate specification, neuronal migra-
tion, and neuronal activity. However, the experimental complexi-
ty and heterogeneity of thesemodels comparedwith the rapid and
reproducible differentiation of LUHMESmake them less suited for
high-throughput analyses of sets of genes that are likely to be in-
volved in neuronal differentiation or maturation. Overexpression
of neurogenic transcription factors in iPSCs can reduce heteroge-
neity in differentiation to enable single-cell CRISPR screens in
this model (Tian et al. 2019). Such models may bypass the neural
progenitor cell stage, precluding the investigationof certainneuro-
developmental pathways (Schafer et al. 2019).

Compared with traditional single-gene disease modeling ex-
periments in mice or human cells (e.g., Cotney et al. 2015;
Durak et al. 2016; Katayama et al. 2016; Bellmaine et al. 2017;
Jung et al. 2017), our approach increases the number of genes
that can be assayed in parallel while also overcoming many of
the primary sources of variation in suchmodels. Critically, this en-
ables direct comparison of results across genes to discover conver-
gent mechanisms. Current single-cell technology enables
pathway-level inferences of transcriptional dysregulation and pri-
oritization of candidate genes for further functional validation in a
rapid and cost-effective manner for tens of disease-implicated
genes. However, noise and sparsity in single-cell RNA-seq data lim-
it its power to detect differentially expressed genes. Quantitative
measurements of knockdown efficiency of individual gRNAswith-
in single cells are difficult, and individually validating gRNAs is in-
compatiblewith the goal of high-throughput screening. Our qPCR
measurements of gRNA efficiencies showed a range of 40%–90%
knockdown for all tested target genes, which may better represent
haploinsufficiency than a total knockout approach. Exquisite dos-
age sensitivity of certain genes raises the possibility of variable cel-
lular phenotypes depending on the degree of knockdown.
Including more gRNAs per gene, and enough cells to analyze ef-
fects on a per-gRNA instead of per-gene basis, would resolve these
potential confounds. Improvements in the sensitivity and
throughput of scRNA-seq, as well as declining costs, will enhance
the utility of our approach in future experiments.

A major strength of our approach is its extensibility to differ-
ent model systems for the rapid functional profiling of diverse
gene sets, allowing for prioritization of candidate genes for low-
throughput cellular phenotyping by imaging. Although we
only measured proliferation and neurite extension with live-cell
imaging, the integration of these data with pooled transcrip-
tomes revealed consistent gene modules that were also conver-
gent at the level of clinical phenotypes in individuals with
mutations in these genes (Stessman et al. 2017), illustrating the
potential of this approach for linking molecular pathways to clin-
ical phenotypes. Furthermore, although not implemented in this
study, this approach is amenable to screening of chemical librar-
ies to discover effective pharmaceutical interventions for any ob-
served defects and to determine whether convergent genetic
modules will respond to common treatments. Pooled, rather
than arrayed, optical phenotyping approaches would further ac-
celerate these efforts (Feldman et al. 2019). Such high-content
imaging and screening in future experiments will enable detailed
characterization of perturbation-induced neuronal phenotypes
and the discovery of convergent molecular endophenotypes of
disease pathogenesis.
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Methods

Cell culture

HEK293T cells were maintained in Dulbecco’s Modified Eagle
Media (DMEM) supplemented with 10% fetal bovine serum and
1% penicillin-streptomycin, and passaged every 3–4 d after enzy-
matic dissociation using trypsin. LUHMES cells (ATCC CRL-
2927) were cultured according to established protocols withminor
modifications as described in the Supplemental Methods (Scholz
et al. 2011). Polyclonal dCas9-KRAB-blast expressing LUHMES
were generated by infecting cells with lentivirus and selecting us-
ing blasticidin (10 µg/mL). Lenti-dCas9-KRAB-blast was a gift
from Gary Hon (Addgene 89567) (Xie et al. 2017). Human iPSC-
derived neural progenitor cells (XCL4) were acquired from
STEMCELL Technologies (catalog number 70902) and grown in
neural progenitor medium 2. Although now discontinued by
STEMCELL Technologies, these reagents are available from XCell
Science. Tetracycline-inducible dCas9-KRAB NPCs were generated
after neomycin selection (200 µg/mL). pHAGE TRE dCas9-KRAB
was a gift from Rene Maehr and Scot Wolfe (Addgene 50917)
(Kearns et al. 2014). For proliferation assays, TRE dCas9-KRAB
XCL4 cells were infected in quadruplicate with individual gRNAs
targeting seven ASD genes and one nontargeting gRNA. After pu-
romycin selection and doxycycline induction, cells were plated
at equal cell numbers and grown for 8 d, and total cells were count-
ed using a hemocytometer. Cell counts were compared with cells
infected with a nontargeting gRNA.

gRNA cloning

For each target gene, we selected three gRNAs optimized for repres-
sion from the Dolcetto library (Sanson et al. 2018) and cloned
them into a CRISPR-repression optimized vector to enable pooled
lentiviral preparation without guide-barcode swapping (Supple-
mental Methods; Hill et al. 2018; Sanson et al. 2018; Xie et al.
2018). CROP-seq-opti was a gift from Jay Shendure (Addgene
106280) (Hill et al. 2018).

Lentivirus production of individual gRNAs and pooled gRNA

libraries

Lentivirus was produced according to established protocols. In
brief, HEK293T cells were seeded at a density of 1 million cells
per well of a six-well plate and transfected with 2 μg of DNA com-
prising 1 µg gRNA-transfer plasmid, 750 ng psPAX2, and 250 ng
pMD2.G. psPAX2 and pMD2.G were gifts from Didier Trono
(Addgene 12259 and 12260). Cells were transfected using the PEI
method (Polysciences).Mediawas changed 12 h after transfection,
and viral-containing supernatant was collected 24 and 48 h later.
Lentivirus was concentrated using Lenti-X reagent and resuspend-
ed in 50-µL aliquots from each milliliter of original supernatant
(20× concentration). Lentivirus was titrated on LUHMES cells by
infecting cells with serial dilutions of virus, followed by antibiotic
selection (puromycin for gRNAs, 1 µg/mL). For pooled gRNA li-
braries, equal amounts of DNA for each gRNA were mixed prior
to transfection.

Lentiviral transduction of gRNAs

For individual or pooled gRNAs, LUHMES cells were infected with
serial dilutions of virus. Virus-containing media were removed af-
ter 4–6 h of transduction. Antibiotic selection with puromycin (1
µg/mL) was applied 24 h after infection. Wells in which no more
than 25% of cells survived, corresponding to multiplicity of infec-
tion <0.3, were used for experiments. Cells were expanded for 4 d

before plating for differentiation. After replating, cells were differ-
entiated for 6–8 d in the presence of tetracycline to allow efficient
repression and differentiation. Puromycin and blasticidin were
maintained for the duration of all experiments to ensure gRNA
and dCas9-KRAB expression in all cells.

qRT-PCR

RNAwas purified from 6–8 d differentiated LUHMES using TRIzol.
One microgram of RNA was reverse-transcribed into cDNA using
qScript cDNA SuperMix (Quantabio). qRT-PCR was performed
on an ABI 7900HT using SYBR Green SuperMix (Quantabio).
Relative expression levels were determined using the comparative
threshold (ΔΔCT)method (Livak and Schmittgen 2001). Actin beta
(ACTB) mRNA levels were used as a normalization control. qPCR
primers sequences are provided in Supplemental Table S5.

Bulk RNA-seq

For time course differentiation analysis, two replicates of LUHMES
cells were differentiated for each time point, and total mRNA was
purified. RNAwas sent for sequencing at the Genome Technology
Access Center (GTAC) at the McDonnell Genome Institute
(GTAG@MGI) at the Washington University School of Medicine.
For dCas9-KRAB NPCs (XCL4), RNA-seq libraries were prepared af-
ter 8 d of repression by bulk RNA barcoding and sequencing
(Supplemental Methods; Alpern et al. 2019). Custom barcoded
oligo(dT) capture oligos are listed in Supplemental Table S6.

Single-cell transcriptome capture

Twelve thousand cells were loaded per lane of a 10x device using
10x V2 Single cell 3′ Solution reagents (10x Genomics). Two bio-
logical replicates of pooled single-cell experiments were performed
independently. Each replicate was loaded across one or two lanes
of a 10x Single Cell A Chip V2. Single-cell libraries were prepared
following the Single Cell 3′ Reagent Kits v2 User Guide (rev B).
Single-cell cDNA libraries were amplified for 12 initial cycles after
reverse transcription. A fraction of the prefragmented cDNA librar-
ies was reserved for gRNA-specific enrichment PCR.

gRNA-transcript enrichment PCR

Three gRNA-specific enrichment PCR replicates were performed
for each single-cell library. Each reaction used 1 µL of the single-
cell post-cDNA amplification product as a template to amplify cap-
tured gRNA sequences. A single-step PCR reaction was used to am-
plify gRNA from total captured cDNA libraries using custom
primers in a 25-µL reaction volume using KAPA HiFi HotStart
ReadyMix (2X, Roche) (Supplemental Table S7).

gRNA depletion analysis

Almost all of the gRNAs in our lentiviral pool (43/47)werewell rep-
resented in perturbed cells at similar frequencies, yet four gRNAs
(targeting ASH1L, POGZ gRNAs 1 and 2, and SETD5) were signifi-
cantly depleted (χ-squared test, P<0.01) (Supplemental Fig. S9A).
We hypothesized that their depletion was the result of fitness de-
fects caused by the repression of these genes (Shalem et al. 2014;
Wang et al. 2014). To test this, we infected neural progenitor cells
individually with three of the depleted gRNAs and monitored cell
proliferation using live imaging. Compared with a nontargeting
gRNA, all of the depleted gRNAs caused a significant reduction
in cellular proliferation, explaining why few cells with these
gRNAs were detected in our pooled experiment (Supplemental
Fig. S9B).
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Bioinformatic analyses

Sequencing data corresponding to single-cell transcriptomes were
processed using the 10xGenomics software package Cell Ranger (v
2.1.0).Most analyses were performed using the Seurat (v3.0) (Satija
et al. 2015; Stuart et al. 2019) andMonocle (v2.10.0) (Trapnell et al.
2014) packages in R (v3.5.1) (R Core Team 2018). Details of all
analyses are provided in the Supplemental Methods. Individual
cells were sequenced to an average depth of 50,208±7310mapped
reads per cell (2145±448 genes detected, 6625±1766 unique mo-
lecular identifiers [UMIs]). Differences in total UMIs, experimental
batch, and mitochondrial percentage were accounted for during
data normalization. Normalized filtered data were used for the re-
maining analyses. For each perturbation, we grouped all cells with
any of the three gRNAs targeting the same gene, as we have shown
that all three gRNAs typically have strong on-target activity
(Supplemental Fig. S2B,C).

Global clustering of single-cell transcriptomes

Dimensionality reduction was performed by running PCA and
clustering cells by the first six PCAs using UMAP (Becht et al.
2019). To assess global variation in transcriptional states, we visu-
alized all single-cell transcriptomes on the UMAP. This revealed
that >99% of all cells formed a single cluster of postmitotic neu-
rons as defined by the absence of proliferative marker expression
(Supplemental Fig S3A,B). This is consistent with our experimental
design capturing a single time point (day 7) in a rapid isogenic
model of neuronal differentiation. Within the major cluster, how-
ever, the expression ofmarkers of neuronal differentiation showed
variable patterns across the UMAP (Supplemental Fig S3C–E).
Moreover, the most variably expressed genes in single-cell tran-
scriptomes were enriched for functional roles in neurogenesis
and axon projection, suggesting heterogeneity of neuronal differ-
entiation at the single-cell level. We did not observe batch effects
on global clustering (Supplemental Fig. S3F).

Pseudotime analysis

We projected cells in pseudotime in Monocle by ordering cells by
highly variable genes. Dimensionality reduction was performed
using the “DDRTree” method. Trajectories based on different
sets of highly variable genes were qualitatively similar, showing
a single trajectory with only minor branching. The pseudotime
trajectory is composed of individual line segments called pseudo-
time “states.” To ensure high correlation between pseudotime
and neuron differentiation status, we computed the state-specific
genes in the bulk RNA-seq data set for each day of differentiation
and used these genes for pseudotime ordering. We then trans-
ferred pseudotime state labels into Seurat to discover marker
genes for each pseudotime state. Transferring pseudotime labels
onto the UMAP plot showed distinct banding patterns represent-
ing subtle transcriptional state differences within the main clus-
ter (Supplemental Fig. S10A,B). Reclustering cells in the earliest
and latest pseudotime states revealed two completely distinct
cell states expressing either differentiation (NEUROD1) or matura-
tion (STMN2) markers (Supplemental Fig. S10C–E; Dennis et al.
2019; Polioudakis et al. 2019). This confirms that pseudotime is
more sensitive to detect biologically relevant transcriptional pat-
terns than UMAP clustering in our data set. We tested for altered
pseudotime state membership proportions for each gRNA using
χ-squared tests, computed the distribution of pseudotime state
scores for each gRNA, and compared their averages using t-tests
(Supplemental Methods).

Transition mapping of LUHMES differentiation

Transition mapping allows the comparison of in vitro neuron dif-
ferentiation to in vivo development by computing the overlap of
differentially expressed genes at selected time points across data
sets (Stein et al. 2014). We compared the in vitro LUHMES differ-
entiation time points day 0 to day 8 to transcriptional changes
across brain regions and developmental time points in the
BrainSpan Atlas of the Developing Human Brain. LUHMES differ-
entiation had the strongest overlap with transcriptional changes
occurring in the cortex of postconception week-8 to week-10 em-
bryos and week-10 to week-13 embryos.

Differential gene expression analysis

Differential gene expression testing was performed using the
FindMarkerGenes function in Seurat using the Wilcoxon rank
sum test and a relaxed log2 fold-change threshold of 0.1 to increase
the number of differentially expressed genes. This cutoff was cali-
brated against a gold-standard data set comparing single-cell and
bulk RNA-seq data to identify differentially expressed genes
(Avey et al. 2018). To find marker genes of pseudotime state clus-
ters, only positive markers were returned.

Pseudotime statewas binarizedwith states 1–3 labeled as “ear-
ly” and states 4–6 as “late.”Wenext created another label combin-
ing the targeted gene with binary pseudotime state (e.g.,
CHD8_early). Averaged transcriptional profiles were recomputed
for each group based on these new labels, and differentially ex-
pressed genes were also recalculated. PCA and hierarchical cluster-
ing were performed on these samples. As expected, unsupervised
clustering of the stratified profiles by PCA perfectly discriminated
between “early” and “late” samples (Supplemental Fig. S6D). This
analysis showed that the first principal component corresponds to
pseudotime status and explains almost 20%of the total variance in
the data set. Gene Ontology and pathway enrichment analyses
were performed using WebGestalt (Wang et al. 2017).

Live-cell imaging

Cells were imaged using an IncuCyte S3 live imaging system (Essen
BioScience) For each experiment, dCas9-KRAB LUHMES were in-
fected in duplicate or triplicate with individual gRNAs and were
plated in duplicate or triplicate in wells of a 24-well plate in either
self-renewing or differentiation conditions. Nine fields per well
were imaged every 4 h for either 3 or 5 d for proliferation or differ-
entiation, respectively. These experiments were repeated two or
three times for each individual gRNA. Images were analyzed using
the IncuCyte Software. Specifically, we performed the proliferation
analysis and NeuroTrack neurite tracing analyses with default pa-
rameters. Cell bodies and neurites were detected from phase con-
trast images. Representative images are shown in Supplemental
Figure S7.

Data access

All raw andprocessed sequencing data generated in this study have
been submitted to the NCBI Gene Expression Omnibus (GEO;
https://www.ncbi.nlm.nih.gov/geo/) under accession number
GSE142078. All in-house code/scripts used to perform the analyses
are available as Supplemental Code.
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