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Dosage compensation balances gene expression levels between the sex chromosomes and autosomes and sex-chromosome-linked
gene expression levels between the sexes. Different dosage compensation strategies evolved in different lineages, but all involve
changes in chromatin. This paper discusses our current understanding of how modifications of the histone H4 tail, particularly
changes in levels of H4 lysine 16 acetylation and H4 lysine 20 methylation, can be used in different contexts to either modulate
gene expression levels twofold or to completely inhibit transcription.

1. Need for Dosage Compensation

Proper chromosome dosage is essential for the viability and
fitness of an organism [1]. Most variations in chromosome
quantity (aneuploidies) are inviable [1]. Some aneuploidies
are tolerated, but result in severe developmental pheno-
types, including Down syndrome, trisomy 21 [1]. However,
a difference in sex chromosome copy number must be
accommodated across many species. Sex can be determined
by sex chromosomes, where one sex is homogametic for
the sex chromosome, while the other is heterogametic.
In the XY sex chromosome system, females have two X
chromosomes, and males are XY or XO. In the ZW system,
males are ZZ, and females are ZW. As a consequence of these
differences, the heterogametic sex is functionally monosomic
for the sex chromosome. The X and Z chromosomes
encode genes involved in many processes required for life,
not just sex-specific processes. To cope with this disparity,
dosage compensation balances the expression of the sex
chromosomes to the diploid autosomes and equalizes sex
chromosome expression between males and females.

Dosage compensation has been studied in mammals,
worms, flies, and birds. These organisms all cope with sex
chromosome imbalance between males and females; how-
ever the mechanisms and machineries that they use differ

widely (Figure 1). In the fly Drosophila melanogaster, XY
males upregulate their single X chromosome twofold [2].
This process accomplishes both goals: it balances expression
of the single X with autosomes and also equalizes X-linked
gene dosage in the sexes. Although less well understood
mechanistically, X chromosome upregulation is thought
to occur in both sexes in mammals [3, 4]. While this
balances the genome in XY males, it causes overexpression
of the X chromosomes in XX females. A second (and better
understood) mechanism then inactivates one of the two X
chromosomes in females, thereby equalizing X expression
[5]. In the nematode C. elegans, the X chromosomes
are thought to be upregulated in both XO males and
XX hermaphrodites [3] then downregulated two-fold in
hermaphrodites only [6]. In birds, dosage compensation
occurs regionally on the Z chromosome. This partial dosage
compensation increases expression of required genes in ZW
females [7].

The dosage compensation strategies outlined above
include two-fold upregulation, two-fold downregulation,
and complete transcriptional silencing. Interestingly, one
feature of chromatin appears to be involved in all of
these mechanisms: a difference in the level of histone H4
lysine 16 acetylation (H4K16ac) on the dosage compensated
sex chromosome(s). In this paper, we will describe our
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Figure 1: X chromosome dosage compensation. Dosage compen-
sation balances expression of the X chromosomes between males
and females and equalizes expression between the X and autosomes.
In male flies, the single X chromosome is upregulated. C. elegans
upregulates the X chromosomes in hermaphrodites and males, and
the dosage compensation complex functions in hermaphrodites
to downregulate transcription two-fold. The X chromosomes are
upregulated in female and male mammals, but one X chromosome
is inactivated in females. Green text indicates upregulation, and red
text indicates downregulation. Yellow boxes depict chromosomes
that are targeted by specific dosage compensation mechanisms.

current knowledge of H4K16ac and its role in modu-
lating the structure of chromatin and regulating tran-
scription. We will then describe how changes in levels
of this modification correlate with transcriptional regu-
lation in a diverse array of dosage compensation strate-
gies.

2. Nucleosome Structure and
Histone Modifications

Chromatin is a dynamic and flexible structure that not only
serves to package DNA into higher-order structures, but
also regulates access to the DNA. In the nucleosome, 147-
bp of DNA wraps around an octamer of histone proteins,
composed of two each of histones H2A, H2B, H3, and H4
[8]. Histones H2A and H3 may be replaced by a histone vari-
ant protein [9]. The N-terminal tails of the histones extend
from the nucleosome core and can be posttranslationally
modified by phosphorylation, methylation, ubiquitination,
and acetylation [10, 11]. Modification of the histone tails
influences the interactions of neighboring nucleosomes and
access of regulatory proteins.

Nucleosome structure affects higher-order folding of
the chromatin fiber. High-resolution structure analysis of
the nucleosome has provided insights into the interactions
between neighboring nucleosomes. Histone H4 tails are
highly basic and are thought to bind to an acidic patch in
the H2A-H2B dimer in the neighboring nucleosome [12].
Binding across nucleosomes suggests that the histone H4
tail is more important for interactions between nucleosomes
than for interactions with other histones within the same
nucleosome. Computational modeling has demonstrated
that the histone tail forms an α-helix centered around lysine
16 [13]. In its unmodified form, the histone tail α-helix aligns
basic charges in one direction, which allows a perfect fit and
strong interaction with the acidic patch in the neighboring
nucleosome [13].

3. H4K16 Acetylation

Histone H4 can be acetylated on lysines 5, 8, 12, and 16.
Studies using site-specific antibodies have indicated that
H4K16ac is usually present in the monoacetylated form of
the H4 tail [14–16]. The order of acetylation of the other
lysines in preexisting H4 tails proceeds in the N-terminal
direction, such that K12 is acetylated second, then K8, and
finally K5 [17]. In newly synthesized histone tails, K5 and
K12 are acetylated first [18]. The pattern of acetylation
of the H4 tail is the same in human, mouse, yeast, and
Tetrahymena, demonstrating the universality of the H4
acetylation mechanism [19].

Regulation of K16 acetylation is unique from the other
lysines of histone H4 [20], highlighting the importance
of this particular modification. Regulation of H4K16ac is
achieved by the balance between MYST domain histone
acetyltransferase (HAT) and class III histone deacetylase
(HDAc) (Sir2 family) activities [21]. However, recent evi-
dence suggests that this balance is quite complex. Lu
and others have shown in HeLa cells that SIRT1 (a Sir2
homolog) activity is needed to limit hMOF (MYST HAT)
autoacetylation to allow hMOF to bind DNA [22]. Further,
this work suggested that direct regulation of MYST HAT
activity is conserved across many species, including addi-
tional mammalian systems, C. elegans, and D. melanogaster
[22]. This mechanism suggests that both direct and indirect
means are used by the deacetylase SIRT1 to regulate histone
acetylation.

H4K16ac is thought to play a central and unique
role in modulating chromatin structure (Figure 2(a)). It is
unique among posttranslational histone modifications in
that it directly affects the structure of the chromatin fiber.
Acetylation of K16 decreases the positive charge of the
histone tail, destabilizes the α-helical conformation of the
tail, and disrupts the interaction of the tail with the acidic
patch on the H2A/H2B dimer surface [12, 13]. Therefore,
K16 acetylation triggers the unfolding of chromatin by dis-
rupting the interactions between neighboring nucleosomes.
Sedimentation assays that evaluate the degree of nucleosome
array folding or intraassociation, which mimics formation of
the 30-nm fiber, have demonstrated that H4K16ac inhibits
nucleosome array folding [23, 24]. Tetra-acetylated H4
dramatically inhibits intraarray folding, more than H4K16ac
alone, suggesting that additional acetylation of the H4 tail
beyond H4K16 creates an environment even more disruptive
to nucleosome folding [23, 24]. Acetylation of K16 also
perturbs the divalent cation-induced self-aggregation of
nucleosome arrays, thought to mimic higher order folding,
or inter-array interactions [23, 24]. Mutation of K16 to
a glutamine mimics acetylated lysine but does not cause
decompaction of a nucleosome array, indicating that K16 is
critical for decompaction [25]. Higher acetylated forms of
the H4 tail further prevent self-aggregation of arrays [23].

H4K16ac not only affects nucleosome interactions, but
also affects interactions of the nucleosome with chromatin-
associated proteins. ISWI is a member of the family of
chromatin remodeling ATPases that promotes regularity of
nucleosomes and chromatin folding. ISWI binds to amino
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Figure 2: A model illustrating the antagonistic effects of H4K16ac and H4K20me1 on chromatin packaging. (a) Chromatin acetylated at
H4K16 is loosely packed, due partially to charge neutralization, and partially to effects on interactions with chromatin modifying proteins,
such as inhibition of chromatin remodeling by ISWI. (b) Chromatin methylated at H4K20 is tightly packed. In some systems, H4K20me1
and H4K16ac antagonize each other (see text). H4K20me1 also binds to MBT domain containing proteins, which may facilitate chromatin
compaction.

acids 17–19 within the H4 tail, and this binding stimulates
ISWI activity [26–28]. Acetylation of the nearby lysines 12
and 16 impairs the ability of ISWI to recognize its target
binding site to compact chromatin and to slide nucleosomes
along DNA [24, 27, 28].

4. H4K20 Methylation Antagonizes
H4K16 Acetylation

The fifth lysine residue on the H4 tail, K20, can be mono-,
di- or trimethylated. Histone H4 lysine 20 monomethylation
(H4K20me1) is established by the histone methyltransferase
PR-Set7/Set-8 [29, 30], and Ash1 also monomethylates
H4K20 in Drosophila [31]. Di- and trimethylation of H4K20
(H4K20me2/3) is accomplished by SUV4-20 [32, 33]. H4K20
methylation antagonizes H4K16ac and is therefore impor-
tant for controlling gene expression [30, 34, 35]. In in vitro

assays, H4K20 monomethylation antagonizes acetylation
of H4K16 and vice versa [30], and levels of these two
marks inversely correlate during cell cycle progression in
human cells [35]. However, other studies showed substantial
overlap between H4K20me1 and H4K16ac at the β-globin
locus, indicating that these marks are compatible in some
circumstances [36]. The action of H4K20me1 on chromatin
is also context dependent. H4K20me1 correlates with active
transcription in some contexts [37–40], while in others it is
associated with repressed genes [41–44]. For the purposes of
this paper, we will focus on H4K20me1’s repressive action
because of its role in antagonizing H4K16ac.

H4K20me1 can induce chromatin compaction
(Figure 2(b)). The mark is found in the same compartment
as other repressive marks in many systems and is proposed
to regulate the packaging of chromatin into facultative
heterochromatin and serve as an intermediary toward
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H4K20me3 enrichment in constitutive heterochromatin
[11, 32, 43–48]. Consistent with a role in chromatin
compaction, depletion of PR-Set7 results in decondensed
chromosomes [49]. Binding of MBT (malignant brain
tumor) domain-containing proteins to the H4K20me1
mark contributes to chromatin compaction [50, 51]. The
mechanism of chromatin compaction by MBT domain-
containing proteins is not completely understood, but it may
involve binding to multiple nucleosomes and DNA bending
or bridging of neighboring nucleosomes by dimerization of
the MBT domain [51–53].

5. The Effect of H4K16ac/H4K20me1 on the
RNA Polymerase II Transcription Machinery

In addition to affecting chromatin structure, H4K16ac and
H4K20me also regulate the RNA Polymerase II machinery
directly. Transcription initiation is a highly regulated process
[54]. After initiation of transcription, RNA Polymerase II
stalls just downstream of the transcription start site in many
highly regulated genes [55]. Stalled polymerase remains
at this site until elongation factors, such as P-TEFb, are
recruited to facilitate transition to productive elongation
[55–57]. P-TEFb recruitment to active loci is an intricate
process, involving release of P-TEFb from a sequestration
complex by activators including BRD proteins, which are
recruited to RNA Pol II and chromatin by H4K16ac [58,
59]. Recruitment of BRD4/P-TEFb to the chromatin occurs
by recognizing the combination of H4K16ac and H3S10
phosphorylation, which provide a binding platform for the
complex, at least at the FOSL1 gene (this model is shown on
Figure 3) [60].

The role of H4K16ac in gene expression has been
studied extensively in budding yeast [61, 62]. While H4K16ac
is present throughout most of the genome, H4K16 is
hypoacetylated at silenced loci, including the mating type
loci and telomeric regions [63]. The Sir2, 3, and 4 proteins
form a complex essential for transcriptional repression at
silenced regions [64]. The Sir complex mediates deacety-
lation of H4K16 in neighboring nucleosomes through Sir2
action [65, 66]. Deacetylation of H4K16 by Sir2 represses
transcription by reducing RNA Pol II promoter occupancy
[67] or blocking access of capping enzymes and elongation
factors to RNA Pol II, reducing transcriptional elongation
[68, 69].

Acetylation of H4K16 is important for transcriptional
activation, while H4K20 methylation is suggested to have
direct repressive effects on transcription in certain contexts.
Trimethylation of H4K20 has been proposed to limit RNA
Pol II transcription by blocking H4K16ac and P-TEFb
recruitment [70]. PR-SET7 and L3MBTL1 interact directly
to repress transcription of a reporter gene, suggesting that
H4K20 monomethylation is directly required for transcrip-
tion repression [71]. Loss of H4K20 monomethylation in
multiple studies has indicated the role of this mark in
silencing. Deletion of PR-Set7, the H4K20me1 HMT, in
flies causes reactivation of genes located in heterochromatin
and which would normally be silenced [42]. Furthermore,
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Figure 3: A model of transcriptional regulation by H4K16ac.
H4K16ac recruits the transcription elongation factor P-TEFb
through the transcriptional coactivator BRD4. P-TEFb phosphory-
lates RNA Pol II, signaling the transition to productive elongation.

knockdown of PR-Set7 results in decreased H4K20me1
and an approximately two-fold increase in expression
of H4K20me1-associated genes in mammalian cells [41].
H4K20 methylation and H4K16ac have opposing effects on
regulation of transcription and transcription machinery, as
expected given their mutual antagonism.

6. Involvement of H4K16 Acetylation in Dosage
Compensation Mechanisms

6.1. Upregulation of Gene Expression: Flies and Birds. Fly
dosage compensation is accomplished by two-fold upreg-
ulation of the single male X chromosome by the male-
specific lethal (MSL) complex, composed of the proteins
MSL1, MSL2, MSL3, MLE, and MOF, and two noncoding
RNAs, roX1 and roX2 [2, 72]. The MSL complex specifically
binds the X chromosome. The current model of MSL
binding to the male X chromosome includes a two-stage
process: first, MSL-1 and -2 bind and load at ∼150 high
affinity (chromatin entry) sites; then, the other proteins
localize and facilitate spreading of the complex to many
more sites of action across the single male X chromosome
[73, 74]. MSL complex loading involves a DNA sequence
motif, GAGAGAGA [73]. Models for the spreading of the
MSL complex include recognition of cotranscriptionally
deposited H3K36 methylation [75, 76], MOF-dependent
acetylation/deacetylation cycles tuning MSL-3 activity [77],
and binding of specific chromatin features by the MRG
domain of MSL-3 [78–80]. The histone acetyltransferase
subunit of the MSL complex, MOF, acetylates histone H4K16
leading to an enrichment of this mark on the X [81–84]. By
contrast, levels of H4K20me1 are low on the male X [30],
although some level of H4K20me1 appears to be necessary
for spreading of the MSL complex [79, 80]. JIL-1 kinase,
which phosphorylates H3S10 and synergizes with H4K16ac
action, also contributes to fly dosage compensation [85–87].
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There is also evidence that ISWI, whose binding to
chromatin is blocked by H4K16ac, may play a role in
fly dosage compensation. X chromosome bloating, which
indicates severe decondensation, was seen upon perturbation
of the ISWI-containing NURF complex [88, 89]. Block-
ing H4K16ac in males suppresses X chromosome defects
seen in ISWI mutant male flies [28]. Conversely, aberrant
overacetylation of H4K16 in ISWI mutant females caused
chromosome decompaction defects identical to those seen in
ISWI mutant males, especially on the X chromosomes, and
broad-reaching gene misexpression [28, 90]. Increased MOF
expression also strongly enhances the ISWI loss phenotypes
[28].

How does the MSL complex enhance transcriptional
output? MSL localization and MOF-dependent H4K16ac are
biased toward the 3′ end of gene bodies, which suggests
that fly dosage compensation might regulate transcription
elongation [75, 91]. Recent work utilizing global run-
on sequencing analysis has yielded compelling evidence
that dosage compensation in flies is achieved by increased
transcription elongation of male X chromosome genes [91].
Other studies have provided further hints that males dosage
compensate by increasing transcriptional elongation. The
viability of males was greatly affected by knockdown of
the elongation factor dELL in flies [92]. The MSL complex
chromatin entry site binding motif is a GA-rich sequence
[72, 73]. GAGA factor binds to a GAGA motif and helps to
release paused polymerase at many genes [93]. Mutations
in the GAGA factor gene disrupt dosage compensation in
Drosophila [94]. JIL-1, the kinase known to play a role in
fly dosage compensation, is also involved in transcriptional
pause release [60]. The conclusion that fly dosage compensa-
tion acts at the level of transcription elongation is consistent
with the role of H4K16ac in facilitating release of paused
polymerase in Drosophila and the other systems described
previously.

Like flies, birds regulate expression from the sex chro-
mosome by upregulation. In birds, males (ZZ) are the
homogametic sex, and females (ZW) are the heterogametic
sex. However, despite the Z chromosomal imbalance between
avian males and females, there is no evidence that birds have
a chromosome-wide dosage compensation mechanism [95–
97]. Rather, it appears that birds use region- or gene-specific
methods to balance Z gene expression.

When comparing the expression ratio of genes along
the Z chromosome between ZZ male and ZW female
chickens, one area displays clear female bias [98]. This
region is the MHM (male hypermethylated) locus and is
enriched in compensated genes. A non-coding MHM RNA
is expressed specifically in females [99]. Because the region
is hypermethylated in males, it is not transcribed. H4K16ac
is strikingly enriched in one area of the nucleus in a female-
specific manner [100]. Increased acetylation of H4 at K5, K8,
and K12 was also noted in females, although to a lesser extent
than acetylation of H4K16. Further analyses demonstrated
that the area of increased H4K16ac corresponds to the MHM
locus [100]. The enrichment of H4K16ac at the dosage-
compensated region in ZW female chickens resembles the
enrichment of H4K16ac on the X chromosome in XY male

flies, although only at one locus and not chromosome-wide.
However, the mechanism of partial dosage compensation
may be similar to chromosome-wide compensation, and
regional acetylation of H4K16 may allow for increased
expression of Z genes sex specifically.

6.2. Transcriptional Downregulation: Worms. Dosage com-
pensation in the worm uses a mechanism different from
flies and birds. Upregulation of the X is thought to be
non-sex-specific, creating a need to dampen X-linked gene
expression in the hermaphrodite. This is achieved by twofold
downregulation of each hermaphrodite X chromosome,
equalizing expression with that of the single male X [6,
101–107]. This is achieved by the dosage compensation
complex (DCC), which is composed of two parts. The first
part is condensin IDC, which shares four of five subunits
with the canonical condensin, regulator of chromosome
structure during mitosis and meiosis [107]. Condensin
IDC is composed of MIX-1, DPY-27 (DCC-specific), DPY-
26, DPY-28, and CAPG-1 [6, 102, 103, 105–107]. The
second part is a recruitment complex, composed of SDC-
1, SDC-2, SDC-3, as well as two associated proteins DPY-
21 and DPY-30 [6, 101, 104, 106, 108]. The high degree of
similarity to condensin has led to the hypothesis that dosage
compensation in the worm is achieved by a change in X
chromosome structure.

Recent work has identified several connections between
chromatin modifications and the DCC. The histone H2A
variant, HTZ-1 (H2A.Z), plays a role in DCC localization.
Loss of htz-1 did not alter expression of DCC components,
but instead led to spreading of the DCC to autosomes
[109]. A survey of histone modifications using ChIP-chip
analysis by the modENCODE project found an enrichment
of H4K20me1 on the X chromosomes [110, 111]. Using
immunofluorescence microscopy, we also observed enrich-
ment of this mark on the X chromosomes in hermaphrodite
somatic cells. Furthermore, we see a depletion of the mark
antagonized by H4K20me1, H4K16ac. The hermaphrodite X
chromosomes show sex- and DCC-dependent enrichment of
H4K20me1 and underrepresentation of H4K16ac (Figure 4)
(MW and GC, unpublished). Interestingly, worms seem to
lack traditional K20 marks of constitutive heterochromatin,
H4K20me2 and me3, but retain widespread H4K20me1
[112]. H4K20me2/3 are present in other major eukaryotes,
including mammals and Drosophila [113]. Therefore, worm
dosage compensation uses the same chromatin marks as the
ones used in flies, but in opposite ways. In flies, upregulation
of the X chromosome involves an enrichment of H4K16ac
and may involve a depletion of H4K20me1. By contrast, in
worms, downregulation of the X chromosomes may involve
depletion of H4K16ac and enrichment of H4K20me1. It
will be interesting to investigate in the future how these
chromatin marks affect the transcription machinery in
worms.

6.3. Transcriptional Silencing: Mammals. Unlike flies and
worms, which achieve dosage compensation by modulating
transcription of the X chromosome(s) by an average of
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Figure 4: H4K16ac is reduced, and H4K20me1 is enriched, on the X chromosomes in WT hermaphrodite C. elegans. Shown are
representative immunofluorescence projection images. (a) H4K16ac (green) is markedly reduced on the WT hermaphrodite X chromosomes
(red, marked with anti-SDC-3 (DCC) antibodies). (b) H4K20me1 (green) is prominently enriched on the WT hermaphrodite X
chromosomes (red, marked by anti-CAPG-1 (DCC) antibodies). DNA (DAPI) is shown in blue. Scale bars are 5 microns in length.

Table 1: Summary of H4K16ac and H4K20me1 modifications on the dosage compensated X chromosomes.

Levels of histone modification on the dosage compensated X chromosome(s)

H4K16ac References H4K20me1 References

Drosophila Enriched on male X [81–84] Low levels on male X [30]

C. elegans Depleted from hermaphrodite Xs
Figure 4; MW, GC
(unpublished)

Enriched on hermaphrodite Xs
Figure 4; MW, GC
(unpublished); [110, 111]

Therian
mammals

Decreased on the inactive X [34, 114–117] Enriched on the inactive X [34]

two-fold, the mammalian solution to dosage compensation
is to silence one X chromosome in females. Many different
chromatin marks play a role in X-chromosome inactivation
(see below) [118]. X-chromosome inactivation occurs in
therian mammals, which includes marsupials and placental
mammals, but excludes monotremes. Female monotremes,
or egg-laying mammals such as platypus, have stochas-
tic inhibition of genes on the X [119] and no histone
H4 modification differences between males and females
or X chromosomes and autosomes [114]. Like chickens,
monotremes may alter chromatin regionally, rather than
chromosome-wide, to achieve gene-specific dosage compen-
sation. Placental mammal and marsupial females have one
pair of X chromosomes, and the male has an XY pair. In both
placental mammals and marsupials, one X chromosome in
the females is inactivated, resulting in both the female and
male having one active X chromosome.

X chromosome inactivation in marsupials is imprinted,
and the paternal X is always the inactive X. The short arm
(Xp) of the X chromosome is gene poor and heterochro-
matic. The long arm (Xq) is gene rich and is the dosage
compensated part of the X chromosome [120]. The active

X maintains high levels of H4 acetylation on the long arm,
similar to the single male X, while the heterochromatic short
arm has low levels of acetylation [115, 121]. Another study
examined specific acetylation of H4K8 or H4K16 and dis-
covered reduced acetylation of both chromatin marks on one
female X chromosome in the majority of metaphases [114].
Other activating chromatin marks (H2AK5ac, H3K4me2,
H3K9ac, and H4K8ac) are also reduced on the inactive X
in marsupial females [114, 115, 122]. Therefore, in female
marsupials, the inactive X chromosome is globally depleted
of activating chromatin marks, and this depletion correlates
with RNA Polymerase II exclusion from the X chromosome
territory [122].

Unlike marsupials, female placental mammals randomly
inactivate one X chromosome around the blastocyst stage
of development. Aside from the choice of chromosome to
inactivate (imprinted versus random), the overall mecha-
nism of X-inactivation may seem similar between marsupials
and placental mammals. However, there are some important
differences. In placental mammals, a non-coding RNA Xist
coats the inactive X chromosome and recruits chromatin
modifying complexes that establish epigenetic marks. The
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Xist gene is present in all placental mammals analyzed, but
is absent in marsupials, suggesting that chromosome-wide
inactivation evolved first in a common ancestor, and Xist
RNA, and the chromatin modifications it recruits added an
extra layer of transcriptional repression [122–125].

The mammalian inactive X chromosome is marked by an
array of chromatin modifications. Similar to the marsupial
inactive X, the inactive X in placental mammals is generally
depleted of activating chromatin marks. Histone H4 lysines
5, 8, 12, and 16 are hypoacetylated on the inactive X
chromosome [116]. At the gene level, acetylation of specific
H4 lysine residues can be detected at the promoters of X-
linked genes on the active X chromosome; however there
is little to no lysine acetylation of H4 at these genes on
the inactive X chromosome [117]. The inactive X is also
depleted of acetylation of H3 and H2A [126, 127] and H3
lysine 4 methylation [128]. Unlike the marsupial inactive,
the inactive X in placental mammals is also character-
ized by an Xist RNA-dependent accumulation of repres-
sive marks characteristic of facultative heterochromatin.
H3K27me3 and the Polycomb complex member Ezh2 are
also enriched on, and recruited to chromosomes expressing
Xist [34, 129, 130]. Other repressive modifications, including
monoubiquitination of H2AK119 and dimethylation of H3
lysine 9, also accumulate on the inactive X [131–134].
In a transgenic context, Xist RNA expression also triggers
an increase in H4K20me1, independent of silencing, and
therefore H4K20me1is proposed to be an early mark of X
chromosome inactivation [34]. An increase in H4K20me1
was accompanied by a decrease in H4K16ac, consistent with
an antagonistic relationship between these two marks [34].
However, a functional role for H4K20me1 or Pr-Set7 in
X chromosome inactivation has not been demonstrated.
These (or some of these) chromatin changes are thought
to contribute to the formation of a repressive nuclear
compartment devoid of RNA Polymerase II [135]. Therefore,
the depletion of the H4K16ac and other activating chromatin
marks in marsupials, as well as the depletion of these
marks in combination with the accumulation of repressive
marks (including H4K20me1) in placental mammals, leads
to transcriptional silencing, an outcome very different from
a two-fold modulation of transcriptional activity in flies and
worms.

7. Summary and Conclusions

Different mechanisms of dosage compensation have evolved
to equilibrate expression of the X chromosomes between
females and males and between the X and autosomes.
The methods of dosage compensation that are most well
understood include two-fold transcriptional upregulation
in male flies, two-fold transcriptional downregulation in
hermaphrodite worms, and transcriptional silencing in most
mammals.

The H4K16ac chromatin mark is either enriched or
depleted on the dosage compensated X chromosomes in
all three systems (Table 1). Where upregulation is required
(in flies), H4K16ac is increased, which is proposed to
contribute to chromosome decompaction, preventing chro-

matin remodeling by ISWI and allowing access of factors
for productive elongation. A two-fold downregulation (in
worms) may require the opposite: H4K16ac is reduced
on the downregulated X chromosomes. Learning from the
fly model, one may predict an increased role for ISWI
in chromatin remodeling into a more repressive state and
subsequently inhibited transcriptional elongation. Mammals
sculpt the chromatin of the inactive X more drastically
by creating more stable facultative chromatin that lacks
activating marks, such as H4K16ac, and is enriched for
repressive marks, such as H4K20me1. While the H4K16ac
and H4K20me1 modifications are shared by all three
mechanisms, mammals achieve more stable silencing when
these marks are used in combination with other histone
modifications.

How did these diverse dosage compensation mecha-
nisms, with such different transcriptional outputs, evolve?
Perhaps the reason for the difference is due to separate
evolution of the dosage compensation machineries. The fly
dosage compensation machinery coopted a conserved his-
tone acetyltransferase complex [136]. In this organism, H4
acetylation of the X balances X-linked transcription between
the sexes. Worms make use of a condensin-like complex
for their dosage compensation machinery, suggesting that
dosage compensation may involve partial condensation of
the X chromosome [105, 107]. Consistent with this idea,
reduced H4K16ac contributes to chromatin compaction
and results in decreased transcription (as discussed above).
Mammals use depletion of H4K16ac in combination with
depletion of other activating chromatin marks to achieve
transcriptional silencing. In addition, placental mammals
acquired the Xist long non-coding RNA. Non-coding RNAs
have an established role in transcriptional silencing in
many processes, including imprinting and X inactivation
[137]. Xist RNA then serves to recruit chromatin-modifying
activities, leading to the accumulation of repressive chro-
matin marks. Therefore, the same modification, H4K16ac,
depending on the chromatin context, leads to vastly different
transcriptional outputs.
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