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Abstract

SSPs have been identified.

Background: Small secreted proteins (SSPs) are employed by plant pathogenic fungi as essential strategic tools for
their successful colonization. SSPs are often species-specific and so far only a few widely phylogenetically distributed

Results: A novel fungal SSP family consisting of 107 members was identified in the poplar tree fungal pathogen
Marssonina brunnea, which accounts for over 17% of its secretome. We named these proteins IGY proteins (IGYPs)
based on the conserved three amino acids at the N-terminus. In spite of overall low sequence similarity among
IGYPs; they showed conserved N- and C-terminal motifs and a unified gene structure. By RT-PCR-seq, we analyzed
the IGYP gene models and validated their expressions as active genes during infection. IGYP homologues were also
found in 25 other Dikarya fungal species, all of which shared conserved motifs and the same gene structure.
Furthermore, 18 IGYPs from 11 fungi also shared similar genomic contexts. Real-time RT-PCR showed that 8 MbIGYPs
were highly expressed in the biotrophic stage. Interestingly, transient assay of 12 MbIGYPs showed that the
MbIGYP13 protein induced cell death in resistant poplar clones.

Conclusions: In total, 154 IGYPs in 26 fungi of the Dikarya subkingdom were discovered. Gene structure and genomic
context analyses indicated that /GYPs originated from a common ancestor. In M. brunnea, the expansion of highly
divergent MbIGYPs possibly is associated with plant-pathogen arms race.

Background

Fungi are osmotrophic microorganisms, which utilize
various secreted proteins to obtain nutrients and adapt
to ecological niches [1,2]. Plant pathogenic fungi secrete
diverse groups of small proteins, which have been impli-
cated in the establishment of parasitic relationships. For
example, clusters of small secreted protein (SSP) genes in
Ustilago maydis have been shown to be essential for viru-
lence [3], and comparative genomic analysis of eighteen
Dothideomycetes fungi revealed that pathogenic fungi
usually have more predicted SSPs compared with their
saprotrophic counterparts [4]. Moreover, most character-
ized fungal effectors are small secreted proteins, which
can manipulate the cellular processes of hosts to facilitate
infection [5,6]. Therefore, the identification and analysis of
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SSPs has been highlighted in genomic studies assessing
many plant pathogenic and symbiotic fungi [7-9]. How-
ever, as a rule, SSPs are always highly species-specific and
lack similarity to known proteins. For example, in the ge-
nomes of the rust fungi Melampsora larici-populina and
Puccinia graminis f. sp. tritici, 74% and 84% of predicted
SSPs are lineage-specific [7]. Therefore, it remains as a
challenge to predict the functions of SSPs and discover
new effector candidates in non-model fungi.

To date, only very few widely distributed SSPs have
been described, despite the continually increasing genome/
transcriptome data available for fungi. Examples of widely
distributed fungal SSPs include necrosis- and ethylene-
inducing-like proteins (NLPs), which can trigger cell death
in a wide range of dicotyledonous hosts by inducing
plasma membrane leakage [10]. Moreover, NLP homo-
logues are also found in many pathogenic bacteria and
oomycetes, with a dramatic expansion of NLPs in oomy-
cetes observed [11]. Other representatives are fungal LysM

© 2014 Cheng et al, licensee BioMed Central. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain

Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article,

unless otherwise stated.


mailto:chengqiang@njfu.edu.cn
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/publicdomain/zero/1.0/

Cheng et al. BMC Genomics 2014, 15:1151
http://www.biomedcentral.com/1471-2164/15/1151

effectors, which enhance pathogen virulence by suppress-
ing the chitin-triggered immunity of host cells. LysM effec-
tors also occur in nonpathogenic fungi; indeed, a LysM
effector of the plant-beneficial fungus Trichoderma atrovir-
idewas shown to inhibit spore germination of Trichoderma
spp., implying that LysM effectors have potentially different
roles [12,13]. Cerato-platanins (CPs) are a group of
conserved small secreted cysteine-rich proteins found
in both Ascomycete and Basidiomycete fungi [14]. CPs
are abundant in many fungal secretomes and poten-
tially have different functions [15]. The Ecp2 effector
was originally discovered in the apoplast of Cladosporium
Sfulvum infected tomato leaves and shown to be indispens-
able for C. fulvum virulence [16]. A recent in silico study
showed that Ecp2 homologues with conserved Ecp2-
domains constitute a superfamily and are widely distrib-
uted in the subkingdom Dikarya [17]. Some powdery mil-
dew and rust fungi have effector candidates with a
conserved Y/F/WxC motif at the N-terminus of mature
proteins [18]. However, Y/F/WxC motifs are not restricted
to the N-terminal regions and occur at high frequency in
non-secreted proteins of other fungi [7,19].

The ascomycete Marssonina brunnea, which belongs
to the order of Helotiales, is a widespread agent of black
spot disease of poplar. M. brunnea causes defoliation
and thus growth reduction of susceptible poplar clones,
making it a major constraint on poplar plantation. Unlike
other phytopathogens in Helotiales, such as Sclerotinia
sclerotiorum and Botrytis cinerea, which are exemplary
necrotrophs with a very wide range of hosts, M. brunnea
has a hemibiotrophic lifestyle and displays a high degree
of host specialization within the Populus genus. The avail-
ability of genome sequence of a specific form, M. brunnea
f. sp. multigermtubi, provides the opportunity to screen its
virulence genes involved in the pathogenesis [20-24].

In a previous study, we identified the “species-specific”
SSP MbEcpl0 in the secretome of M. brunnea [23].
With the rapid advances in fungal genome sequencing,
we reassessed MbEcp10 and found a gene family encod-
ing MbEcp10-like proteins in the genomes of M. brun-
nea and other Dikarya fungi. This family is likely to have
a common origin and significantly represented in M.
brunnea. RT-PCR-seq, real-time RT-PCR and transient
assay were performed for M. brumnea MbEcpl0-like
gene analysis. Our findings imply that expansion and di-
vergence of M. brunnea MbEcp10-like proteins are likely
associated with plant-pathogen arms race.

Results and discussion

A small secreted protein family in M. brunnea

The MbEcpl0 sequence was used to BLAST against a
local database of M. brunnea predicted proteins, which
was downloaded from GenBank [22]. The identity of 94
predicted proteins exceeded 30%, with the best hit
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reaching 44%. Despite the low overall similarity, all of
them were small proteins with obvious signal peptide se-
quences, and displayed highly similar N-terminal and C-
terminal regions (Figure la), suggesting the presence of a
protein family related to MbEcp10 in M. brunnea. Using
the recursive BLAST search, 107 MbEcp10-like proteins
were found, each with at least one significant BLAST hit
(identity >40%) to another MbEcp10-like molecule. The
relatedness of a protein family can be illustrated by the
pairwise similarity of the protein pairs [25]. As shown in
Figure 1b, 93.7% pairwise comparisons between any pair
of resultant proteins displayed >30% sequence identity
(red and blue regions); for any protein, at least 27 pairwise
comparisons with the other 106 proteins showed >30% se-
quence identity. This set of pairwise relationships defines
a fully connected network, indicating that the 107 proteins
comprise a single protein family. Meanwhile, extensive
sequence divergence among these related proteins was
observed that only 1.5% of pair sequences with identities
exceeding 50% in pairwise comparison (Figure 1b and
Additional file 1).

Beside sequence similarity, these proteins also displayed
three obvious common features, indicating that they have
a common ancestry:

Firstly, most of them were small, secreted proteins, with
105 members consisting of 187-268 aa; only two members
had no signal peptide sequence. Secondly, these proteins
had conserved motifs and cysteines in the same position.
Next to the signal peptide at the N-terminus, they con-
tained a 14—amino acid motif with a 3—amino acid core
consisting of two hydrophobic amino acids and one small
molecular amino acid in between. This motif was found in
106 members (in 86 members, the core was IGY, for
Isoleucine, Glycine, and Tyrosine). Therefore, we named
this motif IGY and the MbEcp10-like proteins were called
IGYPs (IGY proteins). At the C-terminus, a conserved 5
amino acid motif was found: QMxIP (for Glutamine,
Methionine, any hydrophobic amino acid, Isoleucine, and
Proline). The two-amino acids IP were the most
conserved and the motif was named IP. There was a less
conserved motif upstream of the IP motif with the LRFS
(for Leucine, Arginine, Phenylalanine, and Serine) se-
quence, which we named the RF motif. In addition, in the
middle and at the C-terminus of most IGYPs (106 IGYPs),
there were two conserved cysteine residues (Figure 1a).

Thirdly, the /GYP genes shared a similar structure: the
open reading frame (ORF) regions of most predicted
IGYPs (100 IGYPs) consisted of three exons. The sizes of
the three exons were conserved across the 100 IGYP
genes. The 5'-terminus of the second exon always
encoded the C-terminus of the IGY motif, and had the
most conserved size (Figure 1c,d and Additional file 1).

In the genome of M. brunnea, 559 genes were predicted
as secreted proteins-encoding genes [22], indicating that
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Figure 1 Characterization of the M. brunnea IGYP family. (a) Amino acid alignment of five members showing conserved motifs at N- and
C-termini. Conserved motifs were overlined. (b) Pairwise identity of 107 members of the M. brunnea IGYP superfamily. (c) Exon size distribution of
100 M. brunnea IGYPs. (d) Consensus sequence pattern of the IGY motifs (14 amino acids) calculated with WeblLogo based on an alignment of
the 107 M. brunnea IGYPs. 11 amino acids in N-terminus are encoded by the first exon. 3 amino acids in C-terminus are encoded by the

second exon.

IGYPs account for about 17% (105/599) of the M. brunnea
secretome and suggesting that the IGYP family could be
pivotal for successful adaption to the ecological niche.
RxLR-dEER double-motifs are the host targeting signals
for pathogenic Oomycete RxLR effectors, which are found
at the N-terminus of mature proteins [26]. Interestingly,
the IGY and RxLR-dEER motifs showed similar features
(Figure 1a, d). The N-termini of IGY motifs in 47 Mbl-
GYPs (M. brunnea 1GYPs) were consistent with the ex-
tended RxLR-like motif definition of [REKH]X[LMAEY W]
X [27]. In addition, a total of 79 IGY motifs showed alka-
line N-terminus followed by hydrophobic sequence as
found in the RxLR-like motif. Moreover, 53 of the 79 IGY
motifs had acidic C-terminal, with 2-3 continuous Es

(Glutamic acid residues) followed by A (Alanine), similar
to the dEER motif that neighbors the RxLR motif. The
IGY motifs were also located at the N-termini of mature
proteins with 0-17 amino acids from the signal peptides.
These similarities between the IGY and RxLR-dEER motifs
suggest IGY to be a potential host targeting signal.

MbIGYP gene models were validated by RT-PCR-seq

RT-PCR-seq is an extremely sensitive method for validat-
ing gene models of low-expressed transcripts [28]. The
predicted gene structures strongly indicate that MbIGYPs
originated from the same ancestral gene. However, the use
of regular RT-PCR to confirm these structures with myce-
lia growing in synthetic liquid medium was inefficient
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(data not shown). Therefore, we tentatively applied the
RT-PCR-seq method to test MbIGYPs gene models with
mix samples (i.e. inoculated poplar leaves with M. brun-
nea spores). Samples at 0, 1 and 4 dpi (days after inocula-
tion) were collected and analyzed separately (Additional
file 2: Figure S1). The RT-PCR primers were placed in the
first and third exons, respectively, and forward primers
were closely adjacent to the first exon-exon junction (see
Materials and Methods) (Figure 2). With respect to seven
MDbIGYPs, of which the predicted gene models were not
composed of three exons, the primer pairs were chosen at
approximate regions by alignments with homologous
genes.

RT-PCR-seq yielded 3348762, 4694790 and 6187204 se-
quencing reads from 0, 1 and 4 dpi samples, respectively.
A total of 91 MbIGYPs had more than 6 sequencing reads
spanning the exon-exon junctions. Given the high sensi-
tivity of the RT-PCR-seq method, 14 MbIGYPs without
reads spanning the exon-exon junctions and 2 MbIGYPs
with only one read spanning these junctions (Additional
file 3) were likely to be inactive pseudogenes. Based on se-
quencing results, we corrected the splicing sites in 13
wrongly annotated MbIGYP gene models, including seven
genes previously predicted with inconsistent gene struc-
tures, and found that all tested MbIGYPs had two introns
in sequencing reads for covering regions (Additional files
1 and 3).

The RT-PCR-seq results validated that most MbIGYPs
(91) were active during the infection process, further
confirming that the MbIGYP genes share a consistent
gene structure.

Because RT-PCR-seq provided deep sequencing at
exon-exon junctions, this targeted approach also allowed
us to analyze alternative splicing (AS) of MbIGYP genes.

10-40 nt

Primer design

250-350 nt

Mapping

Reads spanned exon-exon junctions

are counted

Figure 2 Principle of primer design and bioinformatics
workflow. Position of primers (black arrow) designed for validating
gene models of MbIGYPs and sequencing reads (red lines) mapped
on targeted exons (light blue rectangles).

Counting
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In the 181 exon-exon junctions covered by sequencing
reads, 10 alternative splicing sites for 9 MbIGYP genes
were found, with each site supported by >10 sequencing
reads, which accounted for 5.5% exon-exon junctions of
MDbIGYPs, a slightly lower rate than the average (6.0%)
obtained for Ascomycota [29]. However, considering the
highly sensitive method used for testing MbIGYPs AS,
these rates could be far below average. From all AS events,
we only found one exon skipping (SE) event in MbI-
GYP29. The other alternative splicing types were either
alternative 5" splice site (A5'SS) or alternative 3" splice
site (A3" SS) (Table 1).

In addition, non-canonical splicing sites, including CT-
AC, GT-AT and GC-AC, were also found in 1 and 4 dpi
samples but not in 0 dpi samples, even though these spli-
cing sites were also covered by comparable sequencing
reads in pre-infection samples. This result suggested that
non-canonical splicing might be related to the fungal in-
fection process (Additional file 2: Figure S2 and Table 1).

IGYP homologues are patchily distributed in the
subkingdom Dikarya

In order to identify IGYP homologues in other species,
we searched the public database using the deduced M.
brunnea IGYP protein sequences. A total of 47 homolo-
gous proteins were found from 25 fully sequenced fungal
species or isolates. Interestingly, IGYP homologues were
not confined to a limited phylogenetic fungal branch, but
patchily distributed in 4 classes of the subkingdom Dikarya,
including Sordariomycetes (Ascomycota), Eurotiomycetes
(Ascomycota), Leotiomycetes (Ascomycota), and Agarico-
mycetes (Basidiomycota). Unlike M. brunnea, these fungi
only had 1-5 IGYP homologous genes without apparent
gene expansion (Figure 3 and Additional file 4).

Although the 47 IGYP homologous proteins showed
low similarity (identity <50%) with any MbIGYPs, most of
them met the common criteria that define the IGYP fam-
ily of proteins in M. brunnea. First, 40 homologous pro-
teins were of small size (<300 aa), and 44 had signal
peptide sequences. Second, 45 of them displayed obvious
IGY motifs immediately adjacent to the signal peptides; 22
had conserved QMxIP motif in C-terminus, and 19 had
analogous QxxxP (x is any hydrophobic amino acid) mo-
tifs. RF motifs were not obvious, but in the middle of
IGYP homologues there was a conserved 5-amino acid
KxWxP motif (x is Alanine, Valine or Isoleucine), which
was less conserved in the 107 MbIGYPs. Mature IGYP
homologues had 2-4 cysteine residues, of which two cyste-
ines in the middle and at C-terminus were conserved
(Figure 4). Third, the 38 homologous genes consisted of
three exons, with the third significantly larger than the
first two. The IGY motifs of 44 members were encoded by
two exons, and their C-termini were commonly encoded
by the 5'-termini of the second exons (Additional file 4).



Table 1 Alternative splicing in MbIGYP genes

Gene ID AS type* AS position 0 dpi 1 dpi 4 dpi Mature protein size Splicing manner
Isoform1 reads/ Isoform1 reads/ Isoform1 reads/ Isoform1/Isoform2 Isoform1/Isoform2
Isoform2 reads Isoform2 reads Isoform2 reads
MbIGYP101 A3'SS First intron 4/1 1/3 1742/2730 37 Aa/198 Aa GT-AG/GT-AG
MbIGYP23 A3'SS First intron 20/10659 29497/79306 6932/24700 12 Aa/169 Aa GT-AG/GT-AG
MbIGYP29 AS5'SS and A3'SS First intron and second intron 0/36189 195/110363 83/46546 153 Aa/186 Aa CT-AC/GT-AG
and SE
MbIGYP39 AS5'SS and A3'SS First intron and second intron 0/142719 0/355 351/36850 136/141 9626/177704 54/764 20 Aa/190 Aa CT-AC/GT-AG
MbIGYP53 A3'SS First intron 01 0/7174 1279/6690 42 Aa/39 Aa GT-AT/GT-AG
MbIGYP62 A5'SS First intron 1/75 4/3 1972/4251 19 Aa/223 Aa GT-AG/GT-AG
MbIGYP32 AS5'SS and A3'SS Second intron 0/0 0/0 28/69 32 Aa/203 Aa GC-AC/GT-AG
MbIGYP36 A5'SS First intron 2/15 0/460 96/2183 37 Aa/198 Aa GT-AG/GT-AG
MbIGYP56 A3'SS Second intron 0/74 0/1079 31/726 57 Aa/195 Aa GT-AG/GT-AG

*A3'SS is alternative 3’ splice site; A5'SS is alternative 5’ splice site; SE is exon skipping.
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Figure 3 Phylogeny of IGYPs in Dikarya and genomic context of IGYPs. The left panel represents the phylogenic tree inferred by the
maximum likelihood method with the amino acid sequences of all 154 IGYP homologues in Dikarya (Ascomycota and Basidiomycota). The IGYP
homologues are shown with Gene ID, and species names were abbreviated as follows: Metarhizium acridum (MAC), Metarhizium anisopliae (MAA),
Aspergillus kawachi (AKAW), Colletotrichum higginsianum (CH063), Verticillium alfalfa (VDBG), Cordyceps militaris (CCM), Moniliophthora roreri (Moror),
Beauveria bassiana (BBA), Arthroderma otae (MCYG), Arthroderma otae (MGYG), Trichophyton equinum (TEQG), Trichophyton tonsurans (TESG),
Paracoccidioides brasiliensisPb03 (PABG), Paracoccidioides . 'lutzii' Pb01 (PAAG), Paracoccidioides brasiliensis Pb18 (PADG), Colletotrichum graminicola
(GLRG), Colletotrichum gloeosporioides Nara gc5 (CGGCS5), Colletotrichum gloeosporioides Cg-14 (CGLO), Coprinopsis cinerea (CC1G), Pseudogymnoascus
destructans (GMDG), Endocarpon pusillum (EPUS), Podospora anserine (PODANSQ), Glarea lozoyensis (GLAREA), Glarea lozoyensis (M71), and Colletotrichum
orbiculare (Cob). Species and accession numbers are given in Additional file 4. Numbers with yellow background represent major clades. Numbers
adjacent to nodes are bootstrap values. IGYP branches from 4 classes are arranged with different colors. The right panel depicts the genomic context
of IGYPs. Protein-coding genes adjacent IGYPs are shown as colored arrows, denoting transcriptional orientation. The IGYP genes are shown as red
arrows in the center. Green, blue, and black arrows are conserved cluster members, while grey arrows are non-homologous adjacent genes.

Figure 3 shows a phylogenetic tree constructed by the
maximum likelihood method. Most nodes had low boot-
strap support, which is partially due to limited phylogen-
etic information obtained from small and highly divergent
IGYPs. Phylogenetic information is usually limited in
small proteins and could be lost by saturated substitution
[30]. However, there were still several clades with high
bootstrap support, such as IGYPs from M. brunnea (Mbl-
GYPs), Coprinopsis cinerea (CC1G) and Paracoccidioides
spp. (PABG, PAAG and PADG), suggesting these proteins
diverged recently.

IGYPs have similar genomic contexts

Syntenic groups of homologous sequences can be used to
determine the orthology of compared sequences [31].
Thus, we analyzed the genomic contexts of IGYP genes by
BLAST search. We found that the immediately adjacent
locus of 18 IGYPs inl11 fungi encoded a homologous hypo-
thetical protein, which was named IGYAP1 (IGYP adjacent
protein 1) (Figure 3 and Additional file 4). The intervals

between the IGYP and IGYAPI genes ranged from 609 to
3340 bp. Using the BLASTp program to search the NCBI
public database, we found that 24 IGYAPI homologous
genes (E value < 0.1) and only 8 genes were not adjacent to
the IGYP loci. In another case, a chitinase C gene (ChiC)
and an unknown protein-encoding gene (named as
IGYAP?2) were found adjacent to three /GYP genes in three
fungus species (Endocarpon pusillum (EPUS), Podospora
anserine (PODANSg) and Colletotrichum gloeosporioides
(CGLO) (Figure 3 and Additional file 4). These results indi-
cate significant conservation of the genomic context in
some /GYP genes across different fungal species. This can
be considered as additional evidence supporting a common
lineage of some /GYPs.

Ascomycota and Basidiomycota diverged from one
another at least 400 million years ago (Mya) [32]. It is
therefore unexpected that small gene clusters, such as
IGYP and IGYAPI families exist in both Ascomycota and
Basidiomycota. This can be hardly explained by compli-
cated gene duplication and loss. Phylogenetic analysis of
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IGYPs revealed that one clade with high bootstrap value
(clade 5, 79% of bootstrap) was highly incongruent with
the known phylogenetic relationships of species (Figure 3).
In addition, independent analysis of IGYAP1 and ChiC
also revealed a similar incongruent phylogenetic relation-
ship between the adjacent neighbors of clade 5 IGYPs
(Additional file 2: Figure S3). Moreover, in clade 5, a
degraded transposase gene was found neighboring the
IGYP-IGYAPI clusters of Beauveria bassiana and Pseudo-
gymnoascus destructans as well as the IGYP-ChiC-IGYAP2
clusters of P. anserine and E. pusillum (Figure 3). These
results suggest that horizontal gene transfer could be more
parsimonious, and constitute the probable explanation for
the presence of some IGYPs along with its neighbors in
phylogenetically-distant fungal species.

The IGYP genes of M. brunnea are highly expressed in the
biotrophic stage

M. brunnea is a hemibiotrophic fungal pathogen. Upon
inoculation of the susceptible poplar clone 1-214, no visible
symptoms are observed at 0-4 dpi. At 5 dpi, small chlorotic
spots can be found on leaf surfaces. At 6 dpi, black spots
appear on some chlorotic spots. At 7 dpi, the chlorotic and
black spots join into small pieces (Figure 5a).

In order to analyze the gene expression patterns of Mbl-
GYPs during infection, eight active MbIGYP genes were
selected for real-time RT-PCR experiments. Cytotoxic
NLP expressions are usually associated with the transition
from biotrophic to necrotrophic phase in phytopathogens
[33-35]. We chose two M. brunnea NLP homologous
genes (MbNPP1 and MbNPP2), which are homologous to
BcNepl and BcNep?2 of Botrytis cinerea [36], as controls
in real-time RT-PCR experiments.

As shown in Figure 5b, seven of the eight MbIGYP
genes had a uniform expression pattern. From 0 to 2 dpi,
MDbIGYPI11, 13, 16, 20, 39, 73, and 76 maintained low
expression levels without significant induction. At 3 dpi,
these seven genes were induced and their expression
peaked at 4 dpi, then dramatically declined at 5 dpi. In
contrast to the other MbIGYP genes, MbIGYP64 was in-
duced in the early days after infection, and its expression
peaked at 4 dpi. A dramatic decrease of MbIGYP64
expression was also seen at 5 dpi.

On the other hand, two NLP homologous genes showed
different expression patterns. Both MbNPPI and MbNPP2
were induced at 3 dpi and their expression levels contin-
ued to increase at 4 dpi. At 5 dpi, their expression levels
peaked, and dramatically declined at 6 dpi (Figure 5b).

Because the first visible disease symptoms emerging and
MbNPP1/2 expression peaks coincided time wise (5 dpi),
M. brunnea might switch from biotrophic to necrotrophic
growth at the fifth day after inoculation. Thus, all tested
MDbIGYP genes achieving their highest expression levels at
4 dpi with a stark decline afterwards suggest that the MbI-
GYP family genes are specifically induced and expressed
in the biotrophic stage.

A M. brunnea IGYP protein induces cell death in resistant
poplar clones

The M. brunnea-resistant hybrid poplar clone NL895 is
a progeny of P. deltoides 1-69 and P. euramericana 1-45,
which are resistant and susceptible clones, respectively
[37]. Therefore, the poplar clone NL895 was selected for
transient assays of MbIGYPs. As a first step, five different
Agrobacterium  strains (AGL1, LBA4404, LBA1100,
GV3101 and EHAI105) were transformed with the
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These experiments were repeated three times with similar results.
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Figure 5 Expression patterns of MbIGYPs during infection of susceptible poplar clone. (a) Disease symptom development after inoculation
of M. brunnea at 4, 5, 6 and 7 dpi. (b) MbIGYP gene expression patterns analyzed by real-time RT-PCR. For MbIGYP11, 13, 16, 20, 39, 64, 73, 76,
MbNPPT and MbNPP2, expression levels were calculated relatively to 0 dpi samples. Because of low expression levels of MbIGYP73, 76 and MbNPP2
at 0-2 dpi, their relative expression levels were calculated based on 3 dpi samples. Bars indicate average expression + SD of three technical replicates.

pCambial305.1 vector carrying a B-glucuronidase (GUS,
uidA) gene with an artificial intron. Then, the transformed
Agrobacterium strains were infiltrated into the tissue cul-
tured plantlets of NL895 by the Agrobacterium-mediated
vacuum infiltration method [38]. The results of histo-
chemical GUS assays showed that the Agrobacterium
strain AGL1 produced significantly more intense GUS
staining compared with other Agrobacterium strains
(Figure 6a).

Since the majority of known fungal and Oomycete ef-
fector proteins either function directly in the apoplast or
translocate into plant cells using pathogen-independent
mechanisms, we started with expressing MbIGYPs with
signal peptides. The 12 MbIGYP cDNAs encoding mature
proteins (MbIGYPs-Asp) were fused in-frame to a Arabi-
dopsis PR1 signal peptide coding sequence (PR1sp) by
overlapping PCR; such PCR products were cloned into
the Gateway-compatible vector PH35GY (containing C-
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Figure 6 Transient expression assays by Agrobacterium-mediated
vacuum infiltration. (a) Staining for GUS activities in leaves of NL895
infiltrated with five Agrobacterium stains carrying pCambia1305.1. (b)
Expression of 12 MbIGYPs in NL895 leaves was detected by Western
blot using an anti-GFP antibody. From left to right: protein ladder,
MbIGYP59, MbIGYP6, MbIGYP13, MbIGYP50, MbIGYP52, MbIGYP10,
MbIGYP43, MbIGYP33, MbIGYP71, MbIGYP79, MbIGYP87 and MbIGYP94.
(c) Cell death symptoms on the resistant poplar clone NL895 at 5 dai
with AGL1 harboring MbIGYP13. (d) NL895 leaves infiltrated with AGL1
containing the empty vector at 5 dai (negative control). (e) Necrosis
phenotype of non-host P. tomentosa leaves at 5 dai after infiltration with
AGL1 carrying MbIGYP13. (f) P. tomentosa leaves infiltrated with AGL1
containing the empty vector for 5 days (negative control). Photographs
(c)-(f) show 5-6 leaves collected from a single seedling. Experiments
were repeated twice with similar results.
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terminal YFP) to generate expression constructs driven by
the CaMV 35S promoter (PH35GY-35S-PR1sp-MbIGYDPs-
Asp-YFP). The resultant binary vectors were transformed
into Agrobacterium stain AGL1. Subsequently, the trans-
formed Agrobacterium strains were infiltrated into the tis-
sue cultured plantlets of NL895. Exogenous MbIGYP
expression at 4 days after infiltration (dai) were confirmed
by Western blotting using anti-GFP antibody and the de-
tected molecular weights (about 45-48 kDa) were close to
the predicted values (46-51 kDa) for YFP-fusion proteins
(Figure 6b). The results of transient assays showed that
MbIGYP13 induced cell death which appeared as discrete
tissue desiccation on NL895 leaves at 5 dai (Figure 6¢). In
contrast, other MbIGYPs (not shown) and the negative
control (Agrobacterium stain carrying empty vector)
failed to induce any visible lesions on NL895 leaves
(Figure 6d). P. tomentosa, a non-host of M. brunnea,
showed higher expression efficiency than the hybrid
poplar NL895 (Additional file 2: Figure S4). Transiently
expressing PR1sp-MbIGYP13-Asp-YFP induced necrosis
and crinkling of P. tomentosa leaves at 5 dai (Figure 6e).
In contrast, no necrotic responses were observed upon
agro-infiltration of any other MbIGYPs (not shown) and
the negative control (Figure 6f). Collectively, these data
showed that among the 12 tested MbIGYPs, only MbI-
GYP13 induced cell death in poplar, and the cell death
response to MbIGYP13 is likely conserved among several
resistant Populus species.

Conclusions

In this study, we identified a novel protein family named
IGYP in the subkingdom Dikarya based on five criteria:
(1) similarity of amino acid sequences, (2) small size pro-
teins with signal peptides, (3) conserved N-terminal and
C-terminal motifs, (4) conserved gene structure, and (5)
similar genomic context. In total 154 proteins were iden-
tified as IGYPs supported by at least three criteria above
mentioned. These IGYPs are scattered across 4 classes of
Ascomycota and Basidiomycota, but may have a single
origin.

In M. brunnea, 107 genes were identified as /GYPs. In
contrast, only 1-5 copies of /GYP homologues can be ob-
served in other 25 fungi. This suggests a large lineage-
specific expansion of IGYP genes in M. brunnea. In
addition, phylogenetic analysis of IGYPs showed that all
MDIGYP sequences except for MbIGYP100 cluster to-
gether, formed a species-specific clade in the tree. This
large lineage-specific expansion of MbIGYP genes is likely
the result of recent evolution in M. brunnea. Because
hemibiotrophic plant pathogens exhibit characteristics of
biotrophs in the early stages of infection, avoiding recogni-
tion by the plant immune system is essential for early se-
creted proteins. We speculate that induction of cell death
in resistant poplar by a biotrophic stage specific MbIGYP
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could be a failure case of escaping host surveillance; the
expansion of these highly divergent MbIGYPs is possibly
associated with plant-pathogen arms race.

Methods

Search for IGYP homologues and motif finding

The MbEcpl0 protein sequence (ADB23426) was
searched against the M. brunnea predicted proteins local
database using BLASTp. Based on the IGY motif next to
the N-terminus and the IP motif in the C-terminus, hom-
ologous proteins were picked out manually and removed
from the database. Then this set of homologous proteins
was also searched against the database using BLASTp
until no more proteins with IGY motif could be found.
IGYP homologous proteins in other fungi were searched
against the GenBank nr database using BLASTp with the
M. brunnea 1GYP protein sequences. Presence of N-
terminal IGY motif was set as screening criterion.

Homologous proteins of IGYAP1 were obtained by
BLASTp search against the GenBank nr database with the
protein sequences of Cordyceps militaris and Coprinopsis
cinerea IGYAP1 (XP_006674752 and XP_001829814,
respectively). The cutoff was E value < 0.1. Homologous
proteins of ChiC were obtained by BLASTp search with
the Colletotrichum gloeosporioides Cg-14 ChiC protein se-
quence (EQB44099). Top30 hits were selected for further
phylogenetic construct. Homologous proteins of IGYAP2
were obtained by BLASTp search with the Colletotrichum
gloeosporioides Cg-14 IGYAP2 protein sequence (EQB44100).
The cutoff was E value < 1e-10.

The predications of the signal peptides and cleavage sites
were performed using SignalP4.1 Server [39]. The multi-
alignments and pairwise comparisons were performed
using Bioedit (v7.2.5) and ClustalW2 server (http://
www.ebi.ac.uk/Tools/msa/clustalw2/). Sequence logos
in Figures 1 and 4 were produced by WebLogo [40].

Phylogenetic analysis

The phylogenetic trees of IGYPs, IGYAP1, ChiC and
IGYAP2 were constructed with the maximum likelihood
method using MEGA 6.0 [41]. The WAG + gamma
model was selected, and gaps were partially deleted
(30%). The inferred phylogenies were tested by 100 boot-
strap replicates.

Plant material and pathogen infection
The branches of Populus euramericana cv. 1-214 were
cut out in winter and grown in pots at 22°C with a 12-
hour photoperiod. The cuttings took root and produced
20-50 leaves after 12 weeks. Leaves were cut off and
placed into culture dishes of sterilized 1% water agar
with abaxial surface up.

Conidia of M. brunnea f.sp. multigermtubi were cul-
tured in PDA medium for ten days. The conidia were
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suspended again in deionized water, adjusted to 10 000
spores/mL and sprayed to the up-side of leaves. Treated
leaves were harvested at 0, land 4 days post-
inoculation (dpi), frozen quickly using liquid nitrogen,
and stored at -70°C for RNA isolation.

RT-PCR-seq

Briefly, the IGYP genes were amplified using traditional
RT-PCR, and then the PCR products were analyzed by
high-throughput sequencing.

Primer design

The primers were designed based on the predicted IGYP
genes. All the primers were 20 bp in length. The forward
primers were located in the first exons, and the 3’-termin-
uses were 10-20 bp from the splicing sites. The reverse
primers were located in the third exons. The location of
the reverse primers was adjusted to make the lengths of
RT-PCR products 250-350 bp. Because the PCR products
span two introns, most of the products’ lengths would ex-
ceed 400 bp if using the genomic DNA as template (Fig-
ure 2 and Additional file 5).

RT-PCR-seq

Total RNA was extracted using the RNAprep pure Plant
Kit (Tiangen) with on-column DNasel digestion from
samples of 0, 1, 4 dpi. Reverse transcription was con-
ducted with equal amount of total RNA (5 pg) using the
SuperScript® III First-Strand Synthesis System (Invitro-
gen), and the resulting ¢cDNA was diluted 1:3 with
nuclease-free water.

Each PCR reaction used 3 pL ¢cDNA. The PCR amplifi-
cation was conducted using the Hot Start TagDNA poly-
merase (Takara) in 50 pL volume. The following cycling
condition was used: 95°C for 10 min and 38 cycles at 95°C
for 15 s, 56°C for 30s and 72°C for 1 min. PCR products
of IGYP genes in different infection time points were
pooled separately, and 1 mL of pooling PCR products
were gel-purified to remove >400-bp products and primer
dimers and eluted by 200 pL ddH,O.

The purified samples were used to build libraries using
a TruSeq DNA sample prep kit (Illumina). The TruSeq
libraries were sequenced using Illumina HiSeq2000 with
100-bp paired-end reads. Each library produced more
than 2 Gb raw data. Low-quality bases (£Q20), adaptors
and short reads (£50 bp) were removed. The sequences
were aligned using TopHat2 software against the gDNA
reference sequences of IGYPs [42].

Analyzing gene model

The alignment results were viewed and analyzed with Tab-
let program [43]. The criterion for gene model validation
was at least 5 reads spanning the exon-exon junctions.
The criterion for alternative splicing was more than 10
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reads to support the existence of the alternative exon-
exon junction, and pair-sequences of these reads were also
aligned to the same reference to avoid the influence of
heteroduplex.

Real-time RT-PCR

The inoculation conditions were identical with those for
RT-PCR-seq. Treated leaves were sampled at 0, 1, 2, 3, 4,
5, 6, 7 and 8 days. Disease symptoms were observed daily
using a stereo microscope (Leica MZ950). RNA extraction
and reverse transcription methods were the same as RT-
PCR-seq. Specific primers of 24-bp length were designed
based on the predicted gene sequence (Additional file 5).
Elongation factor 1-a was chosen as an internal control
gene [23]. Relative expressions were calculated by method.
0 dpi sample expression levels were set to 1 and all subse-
quent sample expression levels were compared with the 0
dpi samples.

PCR reactions were carried out in a 20-puL reaction sys-
tem using the FastStart Universal SYBR Green master mix
(Roche). Real-time RT-PCR was performed on an Applied
Biosystems 7500 Real-time PCR System (Applied Biosys-
tems). The following cycling conditions were used: 50°C
for 2 min, 95°C for 10 min, and 40 cycles at 95°C for 15 s
and 60°C for 1 min. These experiments were repeated
three times with independent inoculation samples.

Transient assay
The DNA sequence of Arabidopsis PR1 (AT2G14610) sig-
nal peptide was seamlessly fused in front of cDNA of the
IGYP maturation protein (MbIGYP59, MbIGYP6, MbI-
GYP13, MbIGYP50, MbIGYP52, MbIGYP10, MbIGYP43,
MbIGYP33, MbIGYP71, MbIGYP79, MbIGYP87 and MbI-
GYP94) by overlapping PCR, and then the PCR products
were transferred into the binary vector PH35GY [44] using
Gateway system (Life Technologies). All of the plant expres-
sion vectors were transformed into agrobacterium AGLI1.
The transient expression experiments of P. deltoids
NL895 and P. tomentosa were based on the Hybrid Aspen
method [38] and modified slightly. In brief, the cuttings
grew in MS medium for 4-6 weeks, then the cuttings, in-
cluding root, were dipped in agrobacterium suspension li-
quid (Agrobacteria OD =1.0, Acetosyringone 200 pM,
silwet L-77 0.015%, and sucrose 2% in 0.5 MS), and infil-
trated in continuous vacuum for 3 min (500 mmHg vac-
uum), then dried with filter paper and planted in MS
medium with 50 pg/mL Cefotaxime. For Western blot ana-
lyses, total proteins (50 pg) were separated on 12% SDS-
PAGE and subsequently transferred electrophoretically
Hybond ECL membranes (Amersham). Membranes were
incubated with a rabbit polyclonal anti-GFP antibody
(Genscript) followed by an incubation with goat anti rabbit
IgG conjugated with alkaline phosphatase. Immunoblot
was visualized by use of BCIP/NBT substrate solution.
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Availability of supporting data

RT-PCR-seq data from this study have been submitted
to GenBank under accession numberSRR1283188,
SRR1283189 and SRR1283190.

Additional files

N

Additional file 1: Summary of all MbIGYPs. The table includes protein
IDs, accession numbers of GenBank, conserved motifs, exon sizes and
coverage of exon-exon junctions by RT-PCR-seq.

Additional file 2: Figures that provide support information for the
main text. Figure S1. Schematic workflow of the RT-PCR-seq experiment.
Figure S2. Alternative splicing discovered by aligning sequence reads with
reference gDNA. The 10 panels show views with Tablet graphical viewer.
Figure S3. Phylogenies of IGYPs, IGYAP1, ChiC and IGYAP2. Figure S4.
Transient expression of 3-glucuronidase (GUS) gene in P. deltoides NL895
and P. tomentosa.

Additional file 3: Statistical data of MbIGYPs RT-PCR-seq results.

Additional file 4: IGYP, IGYAP1, ChiC and IGYAP2 homologues in
Dikarya.

Additional file 5: Primers for RT-PCR-seq and real-time RT-PCR.
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