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Abstract: Triple-negative breast cancer (TNBC) patients exhibiting pathological complete response
(pCR) have better clinical outcomes compared to those with residual disease (RD). Therefore, robust
biomarkers that can predict pCR may help with triage and resource prioritization in patients with
TNBC. Herein, we identified a gene panel predictive of RD and pCR in TNBC from the discovery
(n = 90) treatment-naive tumor transcriptomic data. Eight RD-derived genes were identified as TNBC-
essential genes, which were highly predicative of overall survival (OS) and relapse-free survival
(RFS) in an additional cohort of basal breast cancer (n = 442). Mechanistically, targeted depletion
of the eight genes reduced the proliferation potential of TNBC cell models, while most remarkable
effects were for combined SLC39A7, TIMM13, BANF1, and MVD knockdown in conjunction with
doxorubicin. Orthogonal partial least squares-discriminant analysis (OPLS-DA) and receiver operat-
ing characteristic curve (ROC) analyses revealed significant predictive power for the identified gene
panels with an area under the curve (AUC) of 0.75 for the validation cohort (n = 50) to discriminate
RD from pCR. Protein–Protein Interaction (PPI) network analysis of the pCR-derived gene signature
identified an 87-immune gene signature highly predictive of pCR, which correlated with better OS,
RFS, and distant-metastasis-free survival (DMFS) in an independent cohort of basal and, to a lesser
extent, HER2+ breast cancer. Our data have identified gene signatures predicative of RD and pCR in
TNBC with potential clinical implications.

Keywords: TNBC; neoadjuvant chemotherapy; predictive biomarkers; pathological complete response;
residual disease

1. Introduction

Triple-negative breast cancer (TNBC) represents 15–20% of all breast cancers, which is
characterized by the lack of hormone receptors (HR), including estrogen receptor (ER) and
progesterone receptor (PR) expression, in addition to the lack of epidermal growth factor
receptor-2 (HER-2) amplification [1]. Despite the lower incidence of TNBC compared to
other molecular subtypes, TNBC is oftentimes presented with an advanced tumor stage
and those patients have worse overall survival (OS) [2]. Neoadjuvant chemotherapy
(NAC) followed by surgery is the standard-of-care clinical practice for TNBC with larger
tumors [3]. Longitudinal patterns of TNBC response to NAC are oftentimes used to
assess treatment response and likelihood for OS. Pathological complete response (pCR)
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is associated with better prognosis, while residual disease (RD) predicts worse clinical
outcome [4]. Therefore, the timely identification of patients who will not benefit from NAC
is critical to avoid exposure of this patient group to toxic drugs and unnecessary delays in
surgical intervention.

While tumor heterogeneity and clonal evolution have been linked to variable responses
to NAC in TNBC employing single-cell analysis [5,6], currently there are no predictive
signatures for RD and pCR in the context of NAC in clinical practice. We previously
reported the presence of immune gene expression as the hallmark of pCR in TNBC em-
ploying single-cell analysis [7]. In the current study, we utilized publicly available datasets
and characterized the transcriptome from a discovery cohort (n = 90) transcriptomic data
and subsequently constructed an orthogonal partial least squares-discriminant analysis
(OPLS-DA) and validated it on a second cohort (n = 50) of TNBC and identified the gene
signatures predicative of RD and pCR. Interestingly, we observed genes associated with
pCR to have better prediction (higher AUC) compared to genes associated with RD, which
implied inherent heterogeneity in the genes driving RD, while the genes predictive of pCR
were mostly indicative of immune infiltration. Employing CRISPR-Cas9 in vitro screen
data, we identified eight RD-derived genes essential for TNBC, which upon targeted de-
pletion reduced TNBC colony formation and enhanced their sensitivity to doxorubicin
and paclitaxel.

2. Results
2.1. Differential Expression Analysis of RD Compared to pCR TNBC Tumors

To identify putative markers predictive of RD and pCR in the context of NAC therapy
for TNBC, we retrieved RNA-Seq data from 90 TNBC patients who exhibited variable
responses to NAC (pCR; n = 38 and RD; n = 52). The data were mapped to the gencode re-
lease v33 followed by comparative analysis, which revealed several differentially expressed
genes, with most of the genes exhibiting downregulated expression in RD compared to pCR
(1.5 FC, p < 0.05, Figure 1a and Table S1). Differentially expressed genes in RD and pCR are
illustrated as a volcano plot (Figure 1b), with upregulated genes in RD are shown in red and
downregulated genes in blue. To gain deeper insight into functional categories associated
with RD vs. pCR TNBC, the list of differentially expressed genes were subjected to inge-
nuity pathway analysis (IPA). Canonical pathway analysis on the differentially expressed
genes revealed predominant under representation of categories associated with immune
response (Figure 1c). Figure 1d provides a high-level tree map of altered downstream
functional categories utilizing the list of differentially expressed genes in RD vs. pCR. The
major-colored rectangles indicate a group of associated biological functions or diseases,
where blue indicate decreasing and orange indicates increasing, and the dimension of the
rectangles indicates where associated functions are predicted to be up or down, while the
color intensity corresponds to the absolute Z-scores. Using this analysis, IPA revealed
suppression of various immune functions as the hallmark associated with RD, implying
activation of immune functions as the most significant surrogate marker to pCR in TNBC
in the context of NAC response (Figure 1d and Table S2).
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Figure 1. Comparative analysis of mRNA expression in TNBC patients as a function of patholog-
ical complete response (pCR). TNBC patients were grouped according to pCR (n = 38) and residual 
disease (RD, n = 62) and were subjected to differential analysis (1.5 FC, p< 0.05). (a) Hierarchical 
clustering of TNBC as a function of pCR (n = 38) or RD (n = 62) based on differentially expressed 
mRNA genes. Each column represents one patient sample, and each row represents an mRNA. The 
expression level of each gene (log2) in a single sample is shown according to the color scale. (b) 
Volcano plot illustrating the upregulated (red) or downregulated (blue) genes in RD vs. pCR TNBC. 
The most differentially expressed mRNAs are indicated on the plot. (c) IPA canonical pathway anal-
ysis on the differentially expressed genes in RD vs. pCR. (d) IPA disease and function analysis of 
differentially expressed genes in RD vs. pCR. Orange color indicate activation while blue color in-
dicates suppression. 

2.2. Identification of mRNA Transcripts Predicative of RD and pCR  
Given the limited number of differentially expressed genes using differential analy-

sis, we subsequently performed receiver operating characteristic (ROC) analysis to iden-
tify the set of genes which can predict the response of TNBC patients to NAC (RD vs. 
pCR). ROC analysis identified 140 genes predictive of RD and 1490 genes predictive of 
pCR (asymptotic p-value < 0.05) as illustrated in the volcano plot (Figure 2a and Table S3). 
C1orf116, CHST1, TP53INP2, RHOB, SLC9A3R2, EHF, BAD, FAM89B, PEBP1, and RHOC 
were the top 10 genes predictive of the RD phenotype. PPI network analysis of genes pre-
dictive of RD revealed a weak association (Figure S1). Therefore, we employed an alter-
native strategy to identify potential essential genes for the RD phenotype by crossing the 
enriched genes in the RD from ROC analysis with the CRISPR-Cas9 pooled library func-
tional screen data from the Achilles project in TNBC [8]. Data presented in Figure 2b 
shows the overlap between the enriched genes in RD and genes with significant effects on 

Figure 1. Comparative analysis of mRNA expression in TNBC patients as a function of patholog-
ical complete response (pCR). TNBC patients were grouped according to pCR (n = 38) and residual
disease (RD, n = 62) and were subjected to differential analysis (1.5 FC, p< 0.05). (a) Hierarchical
clustering of TNBC as a function of pCR (n = 38) or RD (n = 62) based on differentially expressed
mRNA genes. Each column represents one patient sample, and each row represents an mRNA.
The expression level of each gene (log2) in a single sample is shown according to the color scale.
(b) Volcano plot illustrating the upregulated (red) or downregulated (blue) genes in RD vs. pCR
TNBC. The most differentially expressed mRNAs are indicated on the plot. (c) IPA canonical pathway
analysis on the differentially expressed genes in RD vs. pCR. (d) IPA disease and function analysis
of differentially expressed genes in RD vs. pCR. Orange color indicate activation while blue color
indicates suppression.

2.2. Identification of mRNA Transcripts Predicative of RD and pCR

Given the limited number of differentially expressed genes using differential analysis,
we subsequently performed receiver operating characteristic (ROC) analysis to identify
the set of genes which can predict the response of TNBC patients to NAC (RD vs. pCR).
ROC analysis identified 140 genes predictive of RD and 1490 genes predictive of pCR
(asymptotic p-value < 0.05) as illustrated in the volcano plot (Figure 2a and Table S3).
C1orf116, CHST1, TP53INP2, RHOB, SLC9A3R2, EHF, BAD, FAM89B, PEBP1, and RHOC
were the top 10 genes predictive of the RD phenotype. PPI network analysis of genes
predictive of RD revealed a weak association (Figure S1). Therefore, we employed an
alternative strategy to identify potential essential genes for the RD phenotype by crossing
the enriched genes in the RD from ROC analysis with the CRISPR-Cas9 pooled library
functional screen data from the Achilles project in TNBC [8]. Data presented in Figure 2b
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shows the overlap between the enriched genes in RD and genes with significant effects on
TNBC survival (effect < −0.5), revealing eight common genes (ELOB, SLC39A7, TIMM13,
BANF1, NDUFS1, NDUFB7, TRAPPC5, and MVD). The gene effect of the eight RD gene
signature on various TNBC cell models based on the CRISPR-Cas9 screen is illustrated in
Figure 2c as a violin plot, where a lower score indicates that the TNBC cell line is highly
dependent on the corresponding gene for survival. The eight-gene RD signature was
subsequently subjected to survival analysis using mean expression for the eight genes
in each subject, which revealed significant predictive power for this signature on RFS
(Figure 2d) and OS (Figure 2e) for basal and HER2+ breast cancer, but not for those with
Luminal A and Luminal B tumors.
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2.3. Targeted Depletion of RD-Essential Genes Inhibited TNBC Colony Forming Unit (CFU) 
Potential and Enhanced Sensitivity to NAC 

To validate the potential role of the identified eight genes in mediating RD to NAC, 
we used siRNA to suppress the expression of ELOB, SLC39A7, TIMM13, BANF1, 
NDUFS1, NDUFB7, TRAPPC5, and MVD in MDA-MB-231 cells and assessed their effects 
on CFU as single agent or in combination with doxorubicin and paclitaxel. Data presented 

Figure 2. Identification of predictive mRNA panels to discriminate RD from pCR TNBC.
(a) mRNA transcriptome data were subjected to ROC analysis. Data are presented as a volcano plot
where the x-axis represent the AUC and the y-axis represent the −log10 p-value. mRNAs with signifi-
cant (p < 0.05) prediction power of RD are labeled in blue, while those predictive of pCR are colored
red. (b) Venn diagram representing the common genes between mRNAs predictive of RD from the
discovery cohort and the gene effects (<−0.5) from a CRISPR-Cas9 screen on TNBC cell models from
the Achille project. (c) Violin plot illustrating the gene effects of the eight identified mRNAs in a panel
of TNBC cell models (BT549, MDA-MB-157, HCC70, MDA-MB-231, MDA-MB-468, MDA-MB-453)
based on data from the Achille project. RFS (d) and OS (e) analysis of the eight gene signature in an
independent cohort of Basal, HER2+, Luminal B, and Luminal A breast cancer patients.

2.3. Targeted Depletion of RD-Essential Genes Inhibited TNBC Colony Forming Unit (CFU)
Potential and Enhanced Sensitivity to NAC

To validate the potential role of the identified eight genes in mediating RD to NAC,
we used siRNA to suppress the expression of ELOB, SLC39A7, TIMM13, BANF1, NDUFS1,
NDUFB7, TRAPPC5, and MVD in MDA-MB-231 cells and assessed their effects on CFU
as single agent or in combination with doxorubicin and paclitaxel. Data presented in
Figure 3a illustrated significant inhibition of CFU following gene knockdown, which was
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most remarkable in BANF1, TIMM13, SLC39A7, MVD, NDUFB1, ECO13, TRAPPC5, and
NDUFS1, respectively. Interestingly, the effects were further enhanced when BANF1,
MVD, TIMM13, SLC39A7, and ECO13 were combined with doxorubicin. Similarly, the
effects were most remarkable when BANF1, SLC39A7, TIMM13, and MVD were combined
with paclitaxel. Similar results were also obtained when using the BT-549 TNBC models
(Figure S2).
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Figure 3. Effects of RD-genes knockdown on MDA-MB-231 CFU and viability. (a) Representative
image showing CFU potential of MDA-MB-231 cells on day 7 post transfection with siRNA targeting
ELOB, SLC39A7, TIMM13, BANF1, NDUFS1, NDUFB7, TRAPPC5, and MVD as a single treatment
modality or in combination with doxorubicin (10 nM) or paclitaxel (10 nM). (b) Quantification of
CFU from two independent experiments. Data are presented as the mean ± S.E., n = 6. * p < 0.05,
** p < 0.005, *** p < 0.0005, n.s.: not significant. Each treatment was compared to the corresponding
control condition.
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The results were further confirmed using acridine orange and ethidium bromide
viability staining in the MDA-MB-231 which revealed induction of cell death in siRNA
knockdown cells and was further enhanced when combined with doxorubicin (Figure 4),
therefore corroborating a role for these genes in TNBC survival and sensitive to doxorubicin.
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Figure 4. Viability fluorescent microscopy of MDA-MB-231 cells in response to siRNA-mediated
gene silencing. MDA-MB-231 cells were transfected with the indicated siRNAs as single agent or
in combination with doxorubicin (7.5 nM) and were visualized under fluorescent microscope for
AO/EtBr staining on day 7. Representative images are shown.

2.4. Discriminant Analysis

To determine the potential predictive value of the identified genes, we performed
Orthogonal Projections to Latent Structures Discriminant Analysis (OPLS-DA) on the
discovery cohort. Data from the OPLS-DA model is presented as score plots to visualize the
differences between RD and pCR (Figure 5a). The loading plot in Figure 5b indicates the
variables that express the observed difference between RD and pCR, where each variable
is colored according to density score. The score contribution of each variable is shown in
Figure 5c. The variable influence on projection (VIP) predicted score for each variable is
listed in Table S4. The model was tested on the same discovery cohort which revealed an
AUC = 0.93 to discriminate RD from pCR (Figure S3) and was subsequently validated on a
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second cohort of TNBC (n = 50) revealing an AUC = 0.75 to discriminate RD from pCR in
this independent validation cohort (Figure 5d).
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activation of various immune processes such as innate immunity, inflammatory response, 
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Figure 5. Validation of a gene signature predictive of RD and pCR in TNBC. (a) OPLS-DA score
plot of a RD and pCR gene signature based on ROC analysis. (b) Loading plot based on SIMCA
OPLS-DA analysis. Variables are colored according to their density score. (c) Score contribution plot
illustrating the contribution of each variable in the model. (d) ROC analysis of the identified gene
signature predictive of RD and pCR in an independent validation cohort consisting of 29 RD and
21 pCR. The y-axis represents FPR while the x-axis represents TPR.

2.5. PPI Network Analysis for Genes Predictive of pCR

In order to gain more insight in to the functional and network enrichment in pCR, the
list of common genes predicative of pCR from the discovery and validation cohorts using
univariate analysis were imported into the STRING database and were subjected to network
analysis. Data presented in Figure 6a illustrates a dense network with multiple interactions.
Interestingly, the highest network enrichment score was for functional categories related
to immune and cell cycle regulation (Figure 6b and Table S5). Given the apparent role of
immune signatures in predicting pCR, we identified an 87-immune signature base on GO
analysis, which was subjected to separate STRING analysis revealing activation of various
immune processes such as innate immunity, inflammatory response, myeloid leukocyte
activation, adaptive immune response, activation of neutrophils and natural killer cells as
the most affected functional categories (Figure 7 and Table S6).
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Figure 6. PPI network analysis of mRNAs predictive of pCR. (a) The 500 common mRNAs identi-
fied through ROC analysis predicative of pCR in the discovery and validation cohorts were subjected
to PPI network analysis using the STRING database. Network statistics: number of nodes: 500; num-
ber of edges: 3256; average node degree: 13; avg. local clustering coefficient: 0.402; expected number
of edges: 1631; PPI enrichment p-value: <1.0 × 10−16. (b) Bar graph illustrating the top 15 enriched
gene ontology (GO) categories (y-axis) with network strength score presented on the x-axis.
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Figure 7. PPI network analysis of an 87-immune-gene signature predictive of pCR. Eighty-seven
immune gene signature predictive of pCR were subjected to PPI network analysis using the STRING
database. Network statistics: number of nodes: 87; number of edges: 403; average node degree:
9.26; avg. local clustering coefficient: 0.591; expected number of edges: 76; PPI enrichment p-value:
<1.0 × 10−16.

2.6. Survival Analysis of 87-Immune-Gene Signature in an Independent Breast Cancer Cohorts

The identified 87-immune-gene signature was assessed for association with OS, RFS,
and DMFS in additional cohorts from the KMplotter database, a commonly used database
for cancer survival analysis. Interestingly, the 87-immune-gene signature was highly
predictive for better clinical outcome for OS (HR = 0.27 (0.15–0.46), logrank P = 3.1 × 10−7);
RFS (HR = 0.39 (0.28–0.54), logrank P = 4.4 × 10−9); and DMFS (HR = 0.38 (0.23–0.62),
logrank P = 7.9 × 10−5) in basal breast cancer (Figure 8, first panel). To a lesser extent, the
signature also predicted better clinical outcomes for OS (HR = 0.49 (0.28–0.86), logrank
P = 0.01), RFS (HR = 0.57 (0.41–0.8), logrank P = 0.0009), and DMFS (HR = 0.63 (0.39–1.02),
logrank P = 0.06) in HER2+ breast cancer patients (Figure 8, second panel). The signature
also predicted better RFS (HR = 0.69 (0.48–0.98), logrank P = 0.037) for Luminal A, but not
for Luminal B as well as neither predicted OS nor DMFS for Luminal A nor Luminal B
breast cancer patients, suggesting its selectivity in predicting Basal, and to a lesser extent,
HER2+ breast cancer patient outcomes (Figure 8, third and fourth panels).
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The identified 87-immune-gene signature predictive of pCR was subjected to RFS, OS, and DMFS
in a cohort of basal (RFS: n = 442, OS: n = 296, DMFS: n = 283), HER2+ (RFS: n = 358, OS: n = 198,
DMFS: n = 218), Luminal B (RFS: n = 566, OS: n = 200, DMFS: n = 183), and Luminal A (RFS: n = 631,
OS: n = 222, DMFS: n = 259).

3. Discussion

The quest to identify potential biomarkers predictive of TNBC response to NAC have
been a daunting task, that nevertheless remains important to pursue for patient triage
and resource prioritization. In the current study we took multiple approaches to define
gene signatures predicative of TNBC pCR and RD and the potential targeting of RD-
associated genes to enhance the efficacy of standard NAC. Our data identified 140 genes
to be predicative of RD, while the bulk of differentially expressed genes were found to be
associated with pCR. This finding implies that genes associated with RD are likely driven
by tumor cells, with each patient having their own oncogenic signatures. On the other hand,
the signature predictive of pCR was mostly driven by immune infiltrating cells; therefore, it
shows higher predicative power and was largely present across patients from the discovery
and validation cohorts. In our quest to identify potential RD-essential genes, we integrated
our computational and prediction data with CRISPR-Cas9 functional screen data from the
Achilles project, leading to the identification of eight essential genes for the RD phenotype.
The most catastrophic effects of gene knockdown were for BAF Nuclear Assembly Factor 1
(BANF1), Translocase of Inner Mitochondrial Membrane 13 (TIMM13), Solute Carrier
Family 39 Member 7 (SLC39A7), and Mevalonate Diphosphate Decarboxylase (MVD). A
recent report suggested a correlation between elevated expression of BANF1 and lymph
node metastasis status and TNM staging in TNBC [9]. In addition, BANF1 has been
shown to regulate PARP1-directed DNA damage response to oxidative stress [10]. Thus
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far, TIMM13 has not been linked to cancer, so our data suggest a plausible role for this
gene in TNBC response to NAC. Knockdown of SLC39A7 was show to inhibit cell growth
and induce apoptosis in colorectal cancer (CRC) [11]. Recent data suggested SLC39A7
to promote glioma cell malignancy through the TNF-α-mediated NF-κB pathways [12].
Elevated expression of SLC39A7 was also reported in tamoxifen-resistant breast cancer
cells [13]. However, our data are the first to implicate SLC39A7 in the response of TNBC to
NAC. Among the identified RD genes, MVD has not been linked to human cancers thus
far. Elongin B (ELOB) knockdown exhibited minimal effects on TNBC viability, which
was significantly enhanced when combined with doxorubicin and paclitaxel. ELOB is
one subunit of the transcription factor B complex. Although there is currently no report
connecting ELOB with human cancers, our data suggest its potential use to enhance TNBC
sensitivity to NAC.

Interestingly, we observed the presence of an immune gene signature as a common
feature in TNBC who responded to NAC in two independent cohorts. In particular, we
identified an 87 gene signature that predicted better OS, RFS, and DMFS in basal and HER2+
breast cancer. Our data are consistent with recently published reports [14,15] and with our
recently published work on single-cell analysis of TNBC in the context of TNBC response
to NAC [7]. This interesting observation raises a key question about whether TNBC
tumors with heavy immune infiltration represent different molecular subtype with different
sensitivity to NAC compared to tumors lacking immune infiltration, which warrants
further investigation. Alternatively, does the presence of immune infiltration enhance
NAC efficacy? The identified 87 immune-gene signature included LAG3, RELB, CCL2,
IFNG, MSH6, ZC3HAV1, CD68, ORM1, LYZ, USP14, SLA2, HERC5, LAMP3, NONO, BATF,
FCER1G, CCR5, REL, DTX3L, HMGB2, C2, CLEC4E, CLEC4D, CLEC7A, IL12A, CXCL10,
CXCL11, RASGRP1, HAVCR2, ICOS, ATRIP, TRIM25, RNF166, CCR8, CSF1, NFAM1,
TUBB4B, LYAR, CLEC12A, IL27, PIK3CG, XRCC6, PARP9, DNAJC5, MPEG1, TIFA, TLR1,
CD47, EXO1, NCF2, SLAMF7, CTSS, GBP5, GBP4, GBP1, CREG1, RNF19B, RC3H2, RAB14,
SYK, ACTR2, KCNAB2, OPTN, DDX58, IL2RA, JAK2, CLEC6A, LYST, CCL25, CCL8, HLA-
DRA, RAB27A, PTK2B, PDCD1LG2, IFI30, TLR6, DSN1, HLA-DOB, CXCR6, TNF, IL10,
SERPINA1, GSDMD, TRAF3, IL12RB1, CCL5, and LIG4. Several of those genes were also
identified in our previous single-cell analysis such as LYZ, CXCL10, CD47, SLAMF7, CTSS,
GBP1, and HLA-DRA. Of particular interest, SLAMF7 has recently been shown to program
T cells toward exhaustion phenotype via SLAMF7+ tumor-associated macrophages (TAMs)
in the tumor microenvironment of renal cell carcinoma [16]. A recent study suggested
expression of SLAMF7 to promote cytotoxicity of human NK cells [17]. IFNG was also
among the identified genes predicative of pCR. Concordantly, our recent single-cell analysis
also identified activation of the IFNG pathway in TNBC patients exhibiting pCR. Taken
together, our data have highlighted activation of immune cells as the hallmark associated
with pCR.

One limitation of the current study is the relatively small sample size of the validation
cohort. Nonetheless, only expression data were available from the validation cohort.
Interestingly and despite the differences in bioinformatics tools and reference genome
used for the discovery and validation cohorts, the gene signature showed reasonable
performance in the validation cohort (AUC = 0.75). However, those findings remain to be
validated in additional cohorts and in TNBC patients receiving other NAC regimens.

Our results identified gene panels predictive of RD and pCR in TNBC, where the
strongest prediction was for pCR. Eight genes were identified as TNBC-essential genes,
which were highly predicative of OS and RFS, and were essential for TNBC proliferation.
Interestingly, pCR-associated genes were enriched for immune cell functions and were
predictive for better OS, RFS, and DMFS in basal and to a lesser extent in HER2+ breast
cancer patients. Our findings have potential clinical implications in patient stratification
and tailored therapy.
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4. Materials and Methods
4.1. Study Cohorts

RNA-Seq data were retrieved from the PRJNA688066 [14] (discovery) and GSE192341 [15]
(validation cohort): Clinical characteristics for patients from both cohorts are shown in
Table 1.

Table 1. Characteristic features of study population in the discovery and validation cohorts.

Molecular Subtype Discovery Validation

TNBC 90 (100%) 50 (100%)

Gender
Female 90 (100%) 50 (100%)

Age (Median) 23–74 (53) 26–73 (44) *

Stage
NA 2 (2.2%) 9 (18.0%)
I 12 (13.3%) 4 (8.0%)
II 54 (60%) 29 (58.0%)
III 22 (24.5%) 8 (16.0%)

NAC
Taxane-based chemotherapy 90 (100%) 50 (100%) **

Response to NAC
RD 38 (42.2%) 29 (58.0%)
pCR 52 (57.8%) 21 (52.0%)

NAC: neoadjuvant chemotherapy; RD: residual disease; pCR: pathological complete response. * Age information
for 9 patients not available. ** Type of chemotherapy not indicated.

4.2. Data Retrieval and Bioinformatics

The Kallisto index was generated by creating a de Bruijn graph using the reference
transcriptome GENCODE release (V33) and a k-mer length of 31. FASTQ files from the
PRJNA688066 dataset were mapped and aligned to the generated GENCODE release (V33)
index using Kallisto v0.46 as described before [18,19]. Expression values (TPM) were
subjected to differential, principal component, and clustering analysis in AltAnalyze as
described before [20,21]. Expression data from the validation cohort was retrieved from the
gene omnibus (GEO) dataset GSE192341.

4.3. Statistical Analysis

ROC analysis was employed to identify gene sets predictive of RD and pCR using
SPSS version 26. The volcano plot was generated in GraphPad prism (v9.0) by plotting the
AUC on the y-axis and −log10 p-value on the x-axis. Other plots were also generated in
GraphPad prism v9.0.

4.4. Ingenuity Pathway Analysis

Differentially expressed genes in RD vs. pCR were imported into the IPA software
(Ingenuity Systems; www.ingenuity.com/ accessed on 4 August 2022).) and were used
for functional annotations and network analysis using canonical, upstream regulator, and
downstream effector analyses The p-value is the negative log of P and represents the
possibility that focus genes in the network being found together by chance [7,22].

4.5. Discriminant Analyses

To determine the ability of predicted variables (genes identified from the ROC analysis)
to discriminate between RD and pCR, discriminant analyses were performed using an
OPLS-DA classifier using Soft Independent Modelling by Class Analogy (SIMCA) software
(version 16; Umetrics, Sweden) on the discovery dataset (n = 90). The model was then
tested on the validation dataset (n = 50) and the performance was assessed by generating

www.ingenuity.com/
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ROC curve and determining the AUC value. The sensitivity and specificity constants of the
test were determined based on similar classification scores by OPLS-DA.

4.6. Protein–Protein Interaction (PPI)

PPI network analysis was conducted using the STRING database as described be-
fore [23]. The 500 identified common genes or the 87-immune-gene signatures predictive of
pCR were subjected to PPI in the STRING database v 11.5 (https://string-db.org/ accessed
on 4 August 2022) as described before [24,25].

4.7. CRISPR-Cas9 Screen Data Retrieval

Genome-wide CRISPR-Cas9 screen data were retrieved from the Achilles project and
gene effect score of ≤−0.5 for TNBC cell lines were included in the analysis [8].

4.8. Gene Silencing Using SiRNA

The scrambled siRNA control and ON-TARGETplus SMARTpool siRNA targeting
human ELOB, SLC39A7, TIMM13, BANF1, NDUFS1, NDUFB7, TRAPPC5, and MVD were
obtained from Dharmacon (Lafayette, CO, USA). Transfection was carried out using a re-
verse transfection strategy as previously described [19]. Briefly, siRNA was diluted in 50 µL
of Opti-MEM (GIBCO, Carlsbad, CA, USA), and 1 µL of Lipofectamine 2000 (Invitrogen)
was diluted in 50 µL of OPTI-MEM. The diluted siRNA (at a final concentration of 30 nM)
and Lipofectamine 2000 were mixed together and allowed to form complexes at room
temperature for 20 min. For transfection, twenty microliters of transfection mixture were
first placed in individual wells of the tissue culture plate, and then 10,000 of MDA-MB-231
or BT-549 TNBC cells in 60 µL transfection medium (complete DMEM without Pen-Strep)
were added to each well. The transfection cocktail was then replaced with complete DMEM
one day later.

4.9. Colony Forming Unity (CFU) Assay and Chemotherapy Sensitivity of TNBC Models

Transfected cells were cultured for 48 h and were then exposed to paclitaxel (10 nM).
Three days later, cells were fixed for 5 min using 4% PFA and then were washed twice
using PBS followed by staining with crystal violet (0.1% in 10% EtOH) at room temperature
for 10 min. The images were then captured and compared to experiment controls. The
plates were then allowed to air dry, followed by CFU quantification of dissolved crystal
violet in 5% SDS. Absorbance was measured at 590 nm. The experiments were repeated at
least twice, and data were presented as the mean ± SD from four replicas.

4.10. Detection of Cell Death Using Fluorescence Microscopy

AO/EtBr fluorescence microscopy was used to assess apoptotic cells in TNBC cells
after gene knockdown as single treatment or in combination with paclitaxel in TNBC
cells, as we previously described [26]. Briefly, TNBC cells were transfected in a 24-well
flat-bottom tissue culture plate. Forty eight hours later, media was changed and paclitaxel
was added at a final concentration of 7.5 nM. Two days later, TNBC cells were washed
twice using PBS and were subsequently stained with dual fluorescent staining solution
(100 µg/mL AO and 100 µg/mL EtBr) for 2 min. AO and EtBr were purchased from
Sigma (Sigma Aldrich, St. Louis, MO, USA);Stained ells were then visualized under
inverted microscope (Olympus IX73 fluorescence microscope, Olympus, Tokyo, Japan). AO
staining was used to visualize the number of cells that had undergone apoptosis, while
EtBr-positive cells indicated necrotic cells or late apoptotic cell, with the later also showing
condensed chromatin.

4.11. Survival Analysis

Gene signatures predictive of RD or pCR were subjected to Kaplan–Meier survival
analysis (mean expression) using the KMplotter database (https://kmplot.com/ accessed
on 4 August 2022) in breast cancer disease cohorts of basal (RFS: n = 442, OS: n = 296,

https://string-db.org/
https://kmplot.com/
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DMFS: n = 283), HER2+ (RFS: n = 358, OS: n = 198, DMFS: n = 218), Luminal B (RFS: n = 566,
OS: n = 200, DMFS: n = 183), and Luminal A (RFS: n = 631, OS: n = 222, DMFS: n = 259) as
described before [27].

5. Conclusions

Our data have identified gene signatures predicative of RD and pCR in TNBC with
potential clinical implications.
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