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Abstract: Active influenza A virus (IAV) surveillance in wild waterfowl in the United States has
revolved around convenience-based sampling methods, resulting in gaps in surveillance during
the spring season. We conducted active IAV surveillance in mallards continuously from July 2017
to July 2019 in the coastal marshes of Lake Erie near Port Clinton, Ohio. We aimed to understand
ecological and evolutionary dynamics of IAV across multiple seasons, including the under-sampled
spring season. We collected 2096 cloacal swabs and estimated a 6.1% (95% confidence interval (CI):
0.050–0.071) prevalence during the study period. Prevalence was lowest during spring (1.0%, 95% CI:
0.004–0.015). Time-stamped phylogenetic analyses revealed local persistence of genetic lineages of
multiple gene segments. The PA segment consists of a lineage detected in multiple seasons with a time
to most recent common ancestor of 2.48 years (95% highest posterior density: 2.16–2.74). Analysis of
the H3 and H6 segments showed close relation between IAVs detected in spring and the following
autumn migration. Though the mechanisms behind viral persistence in a single location are not well
understood, we provide evidence that viruses can persist across several seasons. Current surveillance
methods should be evaluated to ensure they are capturing the breadth of genetic diversity of IAV in
waterfowl and prepare for IAV outbreaks in both animals and humans.

Keywords: Anas platyrhynchos; influenza A virus; mallards; surveillance; spring migration;
phylogenetics

1. Introduction

Wild waterfowl, particularly of the orders Anseriformes (ducks, geese, swans) and Charadriiformes
(shorebirds, gulls, terns), are considered the primary reservoir of influenza A virus (IAV) [1].
These orders host the largest amount of genetic variation of IAV, including 16 of the 18 known
hemagglutinin and nine of the 11 known neuraminidase subtypes [1,2]. Wild waterfowl are generally
host to low pathogenic IAVs and show little to no clinical signs of the disease. However, IAVs
originating from waterfowl have been involved in devastating highly pathogenic avian influenza
outbreaks in commercial poultry and all of the past documented IAV human pandemics [3–5]. As birds
with long-distance annual migrations, wild waterfowl are implicated in the transmission and spread
of IAVs over expansive geographic regions [6,7]. Annual waterfowl migrations play an integral role
in the spread of IAVs that may be progenitors of IAVs that infect other species [8]. To understand
the threat of IAVs to animal and human health, it is imperative to understand the natural history of
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IAVs infecting waterfowl populations. Continued active IAV surveillance in wild waterfowl is essential
to improve our knowledge and understanding of the epidemiology and ecology of the virus in its
primary reservoir.

Active IAV surveillance in wild waterfowl has occurred since their establishment as viable hosts
for the virus [9]. The majority of surveillance in North America has been conducted during summer
pre-migration and autumn migration, when birds are readily available for sample collection [2,10].
Live trapping for annual banding programs routinely occurs in the summer (July–August) during
which waterfowl are trapped and fitted with leg bands inscribed with identifying numbers for various
research and monitoring purposes [11]. The trapping methods used for annual banding programs allow
for concurrent sample collection beneficial for IAV surveillance. Additionally, annual hunting season
occurs during autumn migration and early winter (September–December), providing hunter-harvested
birds for convenient sample collection [12]. However, this convenience-based sampling method has led
to large gaps in IAV surveillance in wild waterfowl, particularly during spring migration (March–June),
when access to birds is limited [10]. Nevertheless, it should be noted that IAV surveillance has
occurred in wild waterfowl during the spring, but on a significantly smaller scale and mostly in
shorebirds [13–16]. Consequently, active surveillance, though extensive, has not shown how IAV
circulates through wild bird populations on a continuous timeline [17]. It is unclear how IAV persists in
waterfowl populations, where it is persisting, or when and how various strains are circulating through
the population. Current surveillance methods must be evaluated and adjusted to properly fill gaps in
surveillance and better understand how the virus persists and circulates through the population.

Evidence suggests that, while IAVs are dispersed over a short period of time throughout migratory
flyways, certain IAVs are maintained regionally, reappearing in the same locations each autumn
migration, though the mechanisms behind this maintenance are not well understood [18]. Some
studies have found that IAVs may survive in the environment, which can contribute to persistence
within the waterfowl population. For example, laboratory studies have demonstrated the tenacity
of IAVs and their ability to survive in water under optimal conditions [19–21]. Field-based studies
have successfully isolated IAV from surface waters of waterfowl habitat and subsequently infected
ducks, suggesting the potential for transmission and spread of IAV through water [22]. Understanding
the circulation of IAVs in waterfowl year-round can aid in identifying mechanisms of viral persistence
in both the waterfowl population and in their environment.

The objective of this study was to fill the gap in IAV surveillance during spring migration to
understand ecological and evolutionary dynamics of the virus in waterfowl during a historically
under-sampled time of year. We can better understand persistence of IAV on a continuous timeline
and provide insight into the mechanisms driving persistence by conducting year-round surveillance
in one species of waterfowl at one location. We chose an important migratory stopover site for
waterfowl with a rich history of IAV surveillance as the sampling location. We chose wild mallards,
Anas platyrhynchos, as the study species as they are known to be readily infected by a genetically diverse
range of IAVs, allowing them to represent IAVs circulating in the overall waterfowl population [2].
Here, we describe prevalence trends and provide phylogenetic analyses of IAVs from wild mallards in
one location over two years to improve understanding of persistence of IAVs on a continuous timeline.

2. Materials and Methods

2.1. Sample Collection

Active IAV surveillance was conducted in wild mallards July 2017–July 2019 at an impounded
coastal wetland complex located in the south–west Lake Erie basin near Port Clinton, Ohio, USA
(41◦ 27’ 39.6” N, 82◦ 59’ 49.2” W). Cloacal swabs were collected under the Ohio Department of
Natural Resources Scientific Collection Permits 19-120 and 20-281, US Fish and Wildlife Services
Permit MB66162B-1, and The Ohio State University Institutional Animal Care and Use Committee
protocol number 2007A0148 as previously described [17]. We collected waterfowl for swabbing via
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active trapping using swim-in and decoy traps (January–August) or via hunter-harvest during annual
duck hunting season (September–December). Active-trapping was attempted during late winter
(January–February) and spring migration (March–June), which is an IAV sample-collection method
that has only minimally been utilized during this time of year previously. Trapping occurred nearly
daily (weather dependent) Monday through Friday. The number of birds in the traps varied greatly
each day throughout the study, ranging from zero birds to >40 birds. All individual mallards captured
each day were swabbed. Swabbing of the same individuals on multiple days was possible. Sample
collection during hunting season relied heavily on the number of hunters and their harvest each day,
Sunday–Saturday. The number of samples varied greatly each day, ranging from zero birds to 50 birds,
with Saturdays being the most productive. All individual mallards harvested by hunters each day
were swabbed. Waterfowl population counts were visually estimated by wildlife biologists during
2018 and 2019 to assess the success of sample collection methods relative to population size.

2.2. Influenza A Virus Testing

RNA extraction was performed on all samples on the MagMAX Express 96 Magnetic Particle
Processor (Applied Biosystems, Foster City, CA, USA; AM1836_DW_100_V2 program) using
the Mag-Bind Viral DNA/RNA 96 Kit (Omega Bio-tek, Inc., Norcross, GA, USA) following a modified
protocol. The modified protocol used 240 µL of TNA lysis buffer, 24 µL 17% sodium sulfite, 280 µL 100%
isopropanol, 1.44 µL 50 mg/mL bovine serum albumin, 4 µL carrier RNA, 2 µL Xeno internal positive
control template (VetMAX Xeno Internal Positive Control RNA, Life Technologies, Austinm, TX, USA),
10 µL proteinase K, and 10 µL magnetic beads per reaction. Extraction included two washes with 400 µL
VHB buffer and two washes with 500 µL SPR buffer. RNA was eluted into 50 µL nuclease-free water.
Real-time reverse transcription polymerase chain reaction (rRT-PCR) targeting a segment of the IAV
matrix gene was performed on all extracted RNA using SuperScript III One-Step RT-PCR System with
Platinum Taq DNA Polymerase (ThermoFisher Scientific, Waltham, MA, USA) following an optimized
protocol. The reaction mixture contained 15 µL 2× reaction buffer, 1 µL reverse transcriptase, 0.1 µL
ROX reference dye (Life Technologies, Austin, TX, USA), 2.7 µL nuclease-free water, 0.5 µL of 6 µM
M+64 probe [22], 0.5 µL of 20 µM M+25 forward primer [23], 0.5 µL of 20 µM M-124 reverse primer [23],
0.5 µL of 20 µM modified M-124 reverse primer [24], 1.2 µL of the Xeno internal positive control
primer and probe mix (VetMAX Xeno Internal Positive Control–VIC Assay, Life Technologies, Austin,
TX, USA), and 8 µL extracted RNA. Cycling conditions included 48 ◦C for 10 min, 95 ◦C for 10 min,
and 40 cycles of 95 ◦C for 15 s and 60 ◦C for 45 s. Cycle threshold (Ct) values were calculated for each
sample by setting the threshold at 5% of the positive control at cycle 40. Samples with a Ct <40 were
considered positive. Viral isolation was attempted on all rRT-PCR positive samples and samples for
which the internal positive control failed via inoculation into specific pathogen free embryonating
chicken eggs using previously described methods [18]. All IAV isolates were submitted for whole
genome sequencing at National Veterinary Services Laboratory (Ames, IA, USA). Additionally, RNA
from rRT-PCR positive original samples with a Ct value <30 that were not successfully isolated
were submitted for whole genome sequencing as part of the National Institutes of Health National
Institute of Allergy and Infectious Disease (NIH-NIAID) Center of Excellence for Influenza Research
and Surveillance Distributed Genomic Sequencing Cores program at University of Georgia (Athens,
GA, USA) and Mount Sinai Medical School (New York, NY, USA) to add to the genomic data. Sequences
were submitted to the NIH-NIAID Center of Excellence for Influenza Research and Surveillance Data
Processing and Coordinating Center and subsequently submitted to GenBank (Table S1).

2.3. Phylogenetic Analysis

Phylogenetic analyses on nucleotide sequences were used to assess potential persistence
and evolution of genetic lineages within a single location annually, with specific emphasis throughout
spring migration. We constructed large-scale approximate maximum likelihood phylogenetic analyses
on all eight gene segments with FastTree 2.1 using a general time reversible (GTR) substitution
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model [25] to identify monophyletic clades of interest that included viruses during spring migration.
Maximum likelihood phylogenetic analyses were conducted on all nucleotide sequences of all six
internal gene segments and the six HA and four NA gene segments obtained from samples collected
during spring migration. We downloaded and included in the analyses additional IAV nucleotide
sequences from avian host species in North America and Eurasia from the NIH-NIAID Influenza
Research Database [26]. Sequences were aligned using MAFFT v7.308 [27] and were manually examined
and trimmed to coding regions using MEGA-X v.10.1.7 [28]. We constructed time-scaled phylogenies
for clades of interest with down-sampling. We evaluated time-stamped sequences using the Bayesian
Markov chain Monte Carlo method with a GTR+Γ substitution model and lognormal relaxed clock
executed in BEAST v1.10.4 [29]. Chains ran for at least 50 million generations and outputs were
visualized in Tracer v1.7.1 to ensure effective sample size values >200. We completed and combined
two independent runs were after removing a burn-in of 10% using LogCombiner v1.10.4 and were
summarized into maximum clade credibility trees using Tree Annotator v1.10.4. All trees were
visualized and edited in FigTree v1.4.4 and Adobe Illustrator (Adobe Inc., San Jose, CA, USA).

2.4. Statistical Analysis

95% confidence intervals were calculated for the proportion of positive birds using the standard
error of the proportion in each season throughout the study period Logistic regressions were performed
to determine association of age and sex with IAV infection. Odds ratios were generated between
the predictors, age and sex, and the outcome, IAV. Significance was set to p < 0.05 (Stata special 87
edition 14.2, College Station, TX, USA).

3. Results

3.1. Sample Collection

Active trapping during the winter and spring months required extensive labor and effort and was
most successful during times of high population size (Figure 1). Winter weather, particularly frozen
marshes, reduced the success of active trapping due to low population size and the inability to set traps.
Therefore, no samples were collected in January and February in either of the two years. Additionally,
we hypothesize that low population size reduced the success of active trapping during the summers of
2018 and 2019, when active trapping has historically been fruitful (Figure 1). A total of 1178 samples
were collected in spring months (March–June); 297 in summer months (June–August); 462 samples in
autumn months (September–November); and 148 in winter months (December–February) over the two
years. Though sample collection was limited at certain times due to weather and low population
size, implementing active trapping during the spring yielded high sample numbers and provided
prevalence estimates with high precision.

3.2. Prevelance

Of the 2096 samples, 267 (12.7%) tested positive for IAV by rRT-PCR while 130 had an internal
positive control failure. Due to the high number of rRT-PCR internal control failures for samples
during the study period and lack of historical rRT-PCR data, we estimated prevalence by virus
isolation. The total estimated prevalence during the study period was 6.1% (95% confidence interval
(CI): 0.050–0.071). Within a given year, estimated prevalence peaked in late summer and early
autumn and decreased throughout the winter and spring months. Estimated prevalence was highest
in summer months (31.3%, 95% CI: 0.260–0.366) and lowest during spring months (1.0%, 95% CI:
0.004–0.015; Figure 2). IAV subtypes varied throughout the study period; both pure and mixed
subtypes were isolated (Table 1). Juvenile birds had 1.75 times the odds (p = 0.008) of having active IAV
infection as compared to mature birds and high numbers of immune-naive juvenile birds at the end
of breeding season. Additionally, females had 2.43 times the odds of having active IAV infection
as compared to males (p < 0.0005). Historical data from active IAV surveillance in wild mallards
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at this location were compared to the current study period. Seasonal prevalence trends during
the study period were comparable to past surveillance data, except for the summers of 2018 and 2019
when the estimated prevalence appeared lower than what has historically been observed (Figure 3).
Additionally, the current study period estimated IAV prevalence during spring for which little data
have been collected during past surveillance at the study location (Figure 3).Viruses 2020, 12, x FOR PEER REVIEW 5 of 16 
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Figure 1. Number of samples collected for influenza A virus (IAV) surveillance in mallards and estimated
population size of all waterfowl species near Port Clinton, Ohio, USA by month. Year-round IAV surveillance
was conducted in wild mallards (Anas platyrhynchos) in one location for two years (July 20217–July 2019) to
better capture the under-sampled spring migration. Samples for IAV surveillance collected from mallards
by active trapping (January–August) and hunter harvest (September–December) are shown by blue bars.
Estimated population size of waterfowl at the study location is shown by the red line. Data is shown as starting
January 2018 as estimated population size was not available before that time.
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Figure 2. Estimated influenza A virus (IAV) prevalence in migratory mallards near Port Clinton,
Ohio, USA by season. Year-round, active IAV surveillance in mallards (Anas platyrhynchos) was
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conducted for two years (July 2017–July 2019) in one location to fill a gap during spring migration
and resulted in 2096 cloacal swabs. Viral isolation was attempted on all real-time reverse transcription
polymerase chain reaction positive and undetermined samples. Prevalence was estimated by
the proportion of viral isolates and the number of cloacal swabs collected during each season expressed
as a percentage. Estimated IAV prevalence of mallards at the study location for each season of the study
period is shown by blue bars with 95% confidence intervals shown by red error bars. Summer:
June–August; autumn: September–November; winter: December–February; spring: March–May.

Table 1. Influenza A virus (IAV) subtypes recovered from wild mallards near Port Clinton, Ohio, USA
by season. Active IAV surveillance in wild mallards (Anas platyrhynchos) was conducted year-round
July 2017–July 2019 in an attempt to fill a gap in surveillance during the spring season. IAV subtypes
isolated from mallards are shown by season. Both pure and mixed subtypes were isolated throughout
the study period.

Season

Spring Summer Autumn Winter

Pure Subtypes

H1N1 3 5 1

H1N2 1 1

H1N8 12

H3N1 1

H3N2 10 1

H3N8 1 51 1

H4N5 1

H4N6 4

H5N2 2

H6N1 4

H6N8 1

H7N1 1

H8N4 1

H10N1 2

H10N4 1

H10N7 3 1 1

H10N8 2

H11N2 1

H11N3 2

H11N9 1

H12N5 1

Mixed Subtypes

H1N1,3 1

H1,3N2,8 1

H1,3N8 1

H3N1,8 2

H3,4N2,8 1

H3,4N3,6,8 1

H3,4N8 1

H3,5N2,8 1

H6,11N1,9 1

TOTAL 11 93 21 2
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Figure 3. Historical influenza A virus (IAV) surveillance near Port Clinton, Ohio, USA by year
and season. Year-round, Active IAV surveillance in wild mallards (Anas platyrhynchos) at one location
was conducted from July 2017–July 2019 to represent the under-sampled spring season. Historical
(autumn 2008–spring 2017) surveillance data for the study location is shown in order to demonstrate
the gap in spring surveillance prior to the current study. IAV prevalence for each year by season was
estimated by the proportion of IAV isolates and the number of cloacal swabs collected and is shown by
the blue bars. Red brackets indicate the current study period. Asterisks (*) represent years for which no
samples were collected during that season. Summer: June–August; autumn: September–November;
winter: December–February; spring: March–May.

3.3. Phylogenetic Analysis

Whole genomic sequences were obtained from 127 viral isolates and one original sample (sequenced
RNA from original sample swab) and were used for phylogenetic analysis. Analysis revealed instances of
local genetic lineages of several gene segments that persisted throughout the spring season. Clades that
included viruses detected in the spring and viruses detected in another season at the study location who
share an estimated time to most recent common ancestor (TMRCA) of <2.5 years and have a posterior
probability of >0.95 were considered to show genetic persistence and evolution throughout the study period.
All viruses (n = 11) recovered during the spring season uncovered evidence of genetic persistence across
multiple seasons in at least one gene segment. Analysis suggests local evolution of some highly genetically
conserved internal gene segments of IAV. A phylogeny of the PA segment shows a small monophyletic
clade that includes IAVs detected in mallards at the study location in summer of 2017, spring, summer,
and autumn of 2018, and spring of 2019. The estimated TMRCA of this clade was 2.48 years (95% highest
posterior density (HPD): 2.18–2.76; Figure 4). Additionally, the PA segment of a virus detected in spring of
2018 is sister taxa to the PA segment of a virus detected in autumn of 2018 with an estimated TMRCA
of 1.4 (95% HPD: 1.17–1.73; Figure 4). Analysis of the M segment reveals two clades with high support
that includes IAVs isolated during autumn migration and the proceeding spring migration (Figure 5).
The estimated TMRCA of those clades were both less than 1.5 years, representing close relation between
the viruses isolated during autumn and spring migration. Analysis of the antigenic gene segments also
indicates instances of close relation between viruses isolated during spring migration and viruses isolated
during the proceeding autumn migration. Both the H3 and H6 gene segments consist of clades with high
support that include IAVs from spring and the following autumn migration of 2018. The TMRCA of
those clades is 2.33 years (95% HPD: 1.76–3.02; Figure 6) and 1.79 years (95% HPD: 1.06–2.52; Figure 7),
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respectively. Analysis of the PB2, PB1, H10, NP, and NS gene segments also showed evidence of local
genetic persistence under the chosen parameters (Figures S1–S6).
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Figure 4. Maximum clade credibility tree of the PA gene segment. Active influenza A virus surveillance
was conducted year-round in wild mallards (Anas platyrhynchos) in one location over two years.
Time-stamped phylogenetic analysis with a general time reversible plus gamma substitution model
revealed genetic persistence across multiple seasons, including the historically under-sampled spring
season, in the relatively conserved PA gene segment. Highly supported clades (>0.95 posterior
probability) containing viruses detected in the spring (green) who share a common ancestor with
viruses detected in another season (red) throughout the study period with a time to most recent common
ancestor of <2.5 years are highlighted. Node ages are indicated. Scale bar represents time in years.
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model revealed genetic persistence across multiple seasons, including the historically under-sampled
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Time-stamped phylogenetic analysis with a general time reversible plus gamma substitution model
revealed genetic persistence across multiple seasons, including the historically under-sampled spring
season, in the HA gene segment. Highly supported clades (>0.95 posterior probability) containing
viruses detected in the spring (green) who share a common ancestor with viruses detected in another
season (red) throughout the study period with a time to most recent common ancestor of <2.5 years are
highlighted. Node ages are indicated. Scale bar represents time in years.
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Figure 7. Maximum clade credibility tree of the H6 gene segment. Year-round, active influenza
A virus surveillance was conducted in wild mallards (Anas platyrhynchos) in one location over two
years. Time-stamped phylogenetic analysis with a general time reversible plus gamma substitution
model revealed genetic persistence across multiple seasons, including the historically under-sampled
spring season, in the HA segment. Highly supported clades (>0.95 posterior probability) containing
viruses detected in the spring (green) who share a common ancestor with viruses detected in another
season (red) throughout the study period with a time to most recent common ancestor of <2.5 years are
highlighted. Node ages are indicated. Scale bar represents time in years.

4. Discussion

Understanding the ecology and epidemiology of IAV in wild waterfowl is pertinent for
the protection of animal and public health [1]. Active IAV surveillance in waterfowl is imperative to
this understanding. Extensive active surveillance in waterfowl has provided insight into prevalence
trends and transmission dynamics of IAV in this population. However, convenience-based sampling
approaches have led to gaps in the overall understanding of IAV in wild waterfowl [2,10]. In particular,
spring has remained an under-sampled season, particularly at the study location, when access to birds
is limited due to lack of sampling methods [17].

Though active trapping for surveillance is expensive and labor-intensive [30], we have shown that
this collection method can be used effectively during spring migration, a time when active trapping
has not traditionally been employed. However, success of trapping, measured by the number of
birds trapped, seems to be dependent on optimal conditions, including population size and weather
conditions, as trapping during the late winter months was unproductive. Successful trapping was
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associated with the birds’ annual cycle; it was most effective with the influx of birds during peak
spring migration and decreased in productiveness as breeding season began in early summer. Output
of trapping then increased as breeding season closed in late summer when females leave nests
and hatchlings enter the population. Though the number of birds captured may be dependent on
population size and it may only be productive at certain times of the year, implementation of active
trapping during times other than summer is a useful tool for active IAV surveillance in wild waterfowl.

Spring surveillance conducted during the study period has provided insight on prevalence trends
during times of year where historical data is limited. Historical surveillance found prevalence of
IAV in the wild waterfowl population in North America peaks as high at 60% during late summer
and early autumn as breeding season ends, and then falls to approximately 2% during south-bound
autumn migration [1,2,31]. In our study, there was some deviation from the expected dramatic peak
in prevalence during the summers of 2018 and 2019, which we hypothesize is due to lower than
normal sample numbers. Historically, active trapping has yielded >200 samples from mallards during
the summer season at the study location, with upwards of 20% IAV positive. During the summer of
2018, lower than usual population numbers at the study location are believed to have had an effect on
trapping success, leading to <70 samples, and viral recovery. Additionally, the study period ended in
the middle of July of summer 2019, which is earlier than the typical influx of juveniles, also reducing
sample numbers. Furthermore, limited surveillance has shown that IAV prevalence continues to
fall during north-bound spring migration, to as low as 0.25%, before rising again near the end of
breeding season [2]. Increased sampling throughout the study period, particularly during north-bound
migration, led us to estimate IAV prevalence in the waterfowl population to be slightly higher, around
1%, during this time. However, this could be specific to the study location, a popular stopover site
for many ducks, where large congregations of waterfowl create conditions conducive to viral spread
and may not be reflective of the overall waterfowl population. Additionally, use of viral isolation
for prevalence estimates may be biased by our choice of culture system and may be deflated when
compared to estimates by rRT-PCR [32]. Furthermore, without a banding/marking system, active
trapping may have led to the recapture/re-swabbing of some individuals. If individuals had active IAV
infection during multiple capture events, this may have skewed prevalence estimates. However, it is
important to note that IAV is present in the population during every season, even during north-bound
spring migration. Though cold temperatures and low population numbers made sampling difficult
in late winter months (January–February), this project provided an initial step towards improving
understanding of IAV persistence between autumn migration and the summer breeding season.

Differences in IAV infection rates among ages and sexes of waterfowl have often been detected
during routine IAV surveillance. During our study period, juvenile ducks had increased odds of
having active IAV infection compared to mature ducks. This is consistent with what has been described
previously, where increased rates of IAV infection in juvenile wild waterfowl are believed to be due to
a lack of protective immunity gained through prior exposures [33–35]. Additionally, we found female
mallards to have increased odds of active IAV infection compared to male ducks. Though results of
studies assessing differences in active IAV infection is sexes are variable, our results are consistent
with previous research in mallards which found higher IAV prevalence in females [32]. However,
considering the lack of consistent findings comparing IAV infection between sexes in waterfowl, it is
unclear what would cause increased infection in female and more research is warranted.

Although use of active trapping for sample collection during spring migration required extensive
effort and was most productive during peak migration, the 11 IAVs isolated during this time provide
important genetic information about the virus during a previously under-sampled time. Phylogenetic
analyses revealed genetic lineages of IAVs at the sample location that persist over time that include
all 11 viruses recovered during spring. Previous surveillance has shown persistence of genetically
similar IAVs at several migratory stopover sites throughout the Mississippi Flyway during each
autumn migration [18]. Additionally, it has been suggested that viruses from autumn migration may
seed the prevalence peak in summer [36]. Analysis of the viruses isolated from mallards throughout
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the study period revealed IAVs recovered during spring migration were closely related to IAVs isolated
during preceding and/or proceeding autumn migration and summer seasons. Interestingly, no IAV
subtype was isolated in all four seasons; a large range of subtypes, both pure and mixed, were
isolated throughout the study period. However, this is not surprising due to IAV’s antigenic properties
and the ability of the virus to reassort. Nonetheless, phylogenetic analysis revealed genetic persistence
in both the antigenic and internal gene segments. Though isolation of genetically similar viruses from
migratory mallards in successive seasons does not solve the issue of viral persistence and whether that
persistence occurs within the waterfowl population or with the added interaction of the environment,
it does suggest that IAVs can persist and evolve within a single location over successive seasons,
throughout the annual cycle of waterfowl. Many factors, such as water, sediment, and other organisms,
have been hypothesized to play a role in maintenance of IAV in the environment and therefore the wild
bird population during the overwintering and spring period [21,37–40]. However, these mechanisms
are mostly investigated as in vitro studies performed in the laboratory or are experimental in nature
with limited field-based evidence. The evidence of genetic lineages of IAVs at one migratory stopover
site provided by this study suggests the possibility that IAVs may be able to persist in waterfowl alone
and without the involvement of environmental factors or other organisms.

Continued active IAV surveillance and research in waterfowl is essential for the protection of
animal and public health. It is imperative to wholly understand IAV in its natural reservoir in order
to make science-based decisions and recommendations that reduce the risk to animals and humans.
However, the consistent isolation of highly genetically similar IAVs over time at one location has
implications for future IAV surveillance in waterfowl. Cross-sectional studies make up a large
proportion of IAV surveillance methods in wild birds, where samples are collected at the same location
at the same time year after year [41–43]. If the goal of IAV surveillance is to capture the genetic diversity
in order to increase outbreak and pandemic preparedness [44], conducting surveillance in the same
location year after year will result in IAVs that are highly similar and, as a consequence, will provide
limited knowledge of the genetic diversity of IAV in the entire wild waterfowl population. Therefore,
it is imperative that future IAV surveillance conducted in wild waterfowl take this into account. It is
essential that future surveillance methods be conducted in a way that aims to answer specific questions.
Using methodology informed by hypothesis driven questions will allow scientists to provide the most
valuable data and ultimately help reduce the risk of IAV to animal and public health.
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Figure S1: Maximum clade credibility trees of the PB2 gene segment, Figure S2: Maximum clade credibility trees of
the PB1 gene segment, Figure S3: Maximum clade credibility trees of the H10 gene segment, Figure S4: Maximum
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Figure S6: Maximum clade credibility trees of the N8 gene segment, Table S1: GenBank accession numbers of viral
isolates recovered from mallards during the study period.
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