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Abstract
Background: The heterogeneity of white matter damage and symptoms in concussion has been 
identified as a major obstacle to therapeutic innovation. In contrast, most diffusion MRI (dMRI) 
studies on concussion have traditionally relied on group- comparison approaches that average out 
heterogeneity. To leverage, rather than average out, concussion heterogeneity, we combined dMRI 
and multivariate statistics to characterize multi- tract multi- symptom relationships.
Methods: Using cross- sectional data from 306 previously concussed children aged 9–10 from the 
Adolescent Brain Cognitive Development Study, we built connectomes weighted by classical and 
emerging diffusion measures. These measures were combined into two informative indices, the 
first representing microstructural complexity, the second representing axonal density. We deployed 
pattern- learning algorithms to jointly decompose these connectivity features and 19 symptom 
measures.
Results: Early multi- tract multi- symptom pairs explained the most covariance and represented broad 
symptom categories, such as a general problems pair, or a pair representing all cognitive symptoms, 
and implicated more distributed networks of white matter tracts. Further pairs represented more 
specific symptom combinations, such as a pair representing attention problems exclusively, and were 
associated with more localized white matter abnormalities. Symptom representation was not system-
atically related to tract representation across pairs. Sleep problems were implicated across most 
pairs, but were related to different connections across these pairs. Expression of multi- tract features 
was not driven by sociodemographic and injury- related variables, as well as by clinical subgroups 
defined by the presence of ADHD. Analyses performed on a replication dataset showed consistent 
results.
Conclusions: Using a double- multivariate approach, we identified clinically- informative, cross- 
demographic multi- tract multi- symptom relationships. These results suggest that rather than clear 
one- to- one symptom- connectivity disturbances, concussions may be characterized by subtypes of 
symptom/connectivity relationships. The symptom/connectivity relationships identified in multi- tract 
multi- symptom pairs were not apparent in single- tract/single- symptom analyses. Future studies 
aiming to better understand connectivity/symptom relationships should take into account multi- tract 
multi- symptom heterogeneity.
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Editor's evaluation
This manuscript aims to address an important issue in the study of concussion: both the brain 
damage caused by concussion, as well as the behavioral symptoms that result vary widely across 
individuals. The study uses novel and interesting methods to relate multi- variate diffusion MRI 
data with multi- variate symptom- related data. The methods of analysis are sophisticated and well- 
executed and the results are quite interesting. The methods developed here could have a broad 
impact in their application to the many other neurological diseases that have heterogeneous 
outcomes.

Introduction
Concussion afflicts approximately 600 per 100,000 individuals every year (Cassidy et al., 2004). It is 
associated with several psychiatric conditions, such as post- traumatic stress disorder and attention- 
deficit/hyperactivity disorder (ADHD) (Orlovska et al., 2014). Its incidence rate is rising in children 
and adolescents (Zhang et al., 2016), and compared to adult populations, the impact of concussions 
on pediatric brains is understudied (Mayer et al., 2018). Despite considerable funding devoted to 
clinical and basic research, no major advances in therapeutics have been achieved to date (Kenzie 
et al., 2017). A root cause of this stagnation appears to be a contradiction: while all concussions are 
treated equally in clinical trials and research studies, they are characterized by extensive heteroge-
neity in their pathophysiology, clinical presentation, symptom severity and duration (Kenzie et al., 
2017; Hawryluk and Bullock, 2016). Concussion heterogeneity across patients has been identified 
as a major hurdle in advancing concussion care (Kenzie et al., 2017; Hawryluk and Bullock, 2016).

Due to shearing forces transmitted during injury, the brain’s white matter is especially vulnerable to 
concussion (Armstrong et al., 2016; Bigler and Maxwell, 2012). Decades of research have studied 
white matter structure in individuals who sustain concussions. However, most studies continue to 
assume consistent, one- to- one structure/symptom relationships and employ traditional group compar-
isons (Dodd et al., 2014; Hulkower et al., 2013), averaging out the diffuse and likely more idiosyn-
cratic patterns of brain structure abnormalities in favor of shared ones. Hence, the extant literature 
suggests that a large proportion of the clinical and research studies have not adequately accounted 
for clinical and neuropathological concussion heterogeneity.

To remedy this shortcoming, a growing number of studies aim to parse the clinical heterogeneity 
in concussions by algorithmically partitioning patients into discrete subgroups based on symptoms 
(Langdon et al., 2020; Si et al., 2018; Yeates et al., 2019). Other studies aim instead to account 
for heterogeneity in white matter structure alterations (Stojanovski et  al., 2019b; Taylor et  al., 
2020; Ware et al., 2017). Ware et al., 2017 built individualized maps of white matter abnormali-
ties which revealed substantial inter- subject variability in traumatic axonal injury and minimal consis-
tency of subject- level effects. Taylor et al., 2020 computed a multivariate summary measure of white 
matter structure across 22 major white matter bundles which achieved better classification accuracy 
of concussed patients from healthy controls compared to single tract measures. Hence, studies have 
attempted to address heterogeneity in symptoms and in white matter structure across concussed 
patients.

However, white matter alterations due to concussion are diffuse and can elicit several symptoms 
that may interact with each other in complex and variable ways (Kenzie et al., 2017; Hawryluk and 
Bullock, 2016; Iverson, 2019). For instance, two individuals may suffer a concussion and develop 
sleep problems. The first may have damaged white matter tracts related to sleep/wakefulness control, 
whereas the second may have damaged tracts related to mood, causing depression- like symptoms, 
which include sleep problems. These two individuals will thus display a common symptom but will have 
overall different symptom profiles and different white matter damage profiles. This example illustrates 

https://doi.org/10.7554/eLife.70450
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an additional, hitherto ignored source of heterogeneity, whereby a variety of white matter structure 
alterations (‘multi- tract’) may be related to a variety of symptoms (‘multi- symptoms’) in different ways. 
This disease- specific type of heterogeneity will henceforth be referred to as multi- tract multi- symptom 
heterogeneity for brevity. Parsing concussion heterogeneity requires accounting for these dynamic, 
multi- tract multi- symptom relationships.

The objective of the present study was to leverage advanced diffusion MRI (dMRI) methods as well 
as a double- multivariate approach to parse multi- tract multi- symptom heterogeneity in a large sample 
of previously concussed children. Multi- tract multi- symptom relationships captured more information 
than traditional univariate approaches. Expression of multi- tract connectivity features was not driven 
by sociodemographic strata, injury characteristics, or clinical subgroups. Analyses comparing clinical 
subgroups defined by the presence of attention- deficit/hyperactivity disorder showed that multi- tract 
multi- symptom analyses identified disease- specific connectivity patterns that were missed by single- 
tract single- symptom approaches.

Materials and methods
Participants
Data in this study were obtained from the world’s largest child development study of its kind – the 
ongoing longitudinal Adolescent Brain Cognitive Development Study (ABCD Study; https://abcd-
study.org/), data release 2.0 (https://data-archive.nimh.nih.gov/abcd). The ABCD Study acquired 
data from 11,874 children aged 9–10 years (mean age = 9.49 years) from across the United States 
(48% girls; 57% Caucasian, 15% African American, 20% Hispanic, 8% other) (Volkow et al., 2018). 

eLife digest Concussions can damage networks of connections in the brain. Scientists have spent 
decades and millions of dollars studying concussions and potential treatments. Yet, no new treat-
ments are available or in the pipeline. A major reason for this stagnation is that no two concussions 
are exactly alike. People affected by concussions may have different genetic or socioeconomic back-
grounds. The nature of the injury or how its effects change over time may also vary among people 
with concussions.

One central question facing scientists is whether there are multiple types of concussions. If so, 
what distinguishes them and what characteristics do they share. Some studies have looked at differ-
ences among subgroups of patients with concussions. But questions remain about whether – beyond 
differences between the patients – the brain injury itself differs and what impact that has on symptoms 
or patient trajectory.

To better characterize different types of concussion, Guberman et al. analyzed diffusion magnetic 
resonance imaging scans from 306 nine or ten- year- old children with a previous concussion. The 
children were participants in the Adolescent Brain Cognitive Development Study. Using specialized 
statistical techniques, the researchers outlined subgroups of concussions in terms of connections 
and symptoms and studied how many of these subgroups each patient had. Some types of injury 
were linked with a category of symptoms like cognitive, mood, or physical symptoms. Some types of 
damage were linked with specific symptoms. Guberman et al. also found that one symptom, sleep 
problems, was part of many different injury subtypes. Sleep problems may occur in different patients 
for different reasons. For example, one patient with sleep difficulties may have experienced damage 
in brain regions controlling sleep and wakefulness. Another person with sleep problems may have 
injured parts of the brain responsible for mood and may have depression, which causes excessive 
sleepiness and difficulties waking up.

Guberman et al. suggest a new way of thinking about concussions. If more studies confirm these 
concussion subgroups, scientists might use them to explore which types of therapies might be bene-
ficial for patients with specific subgroups. Developing subgroup- targeted treatments may help scien-
tists overcome the challenges of trying to develop therapies that work across a range of injuries. 
Similar disease subgrouping strategies may also help researchers study other brain diseases that may 
vary from patient to patient.

https://doi.org/10.7554/eLife.70450
https://abcdstudy.org/
https://abcdstudy.org/
https://data-archive.nimh.nih.gov/abcd
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Additional information about the ABCD Study can be found in Garavan et al., 2018. This dataset is 
administered by the National Institutes of Mental Health Data Archive and is freely available to all 
qualified researchers upon submission of an access request. All relevant instructions to obtain the data 
can be found in https://nda.nih.gov/abcd/request-access. The Institutional Review Board of the McGill 
University Faculty of Medicine and Health Sciences reviewed the application and confirmed that no 
further ethics approvals were required.

History of concussion
Parents completed a modified version of the Ohio State University TBI Identification Method (OSU- 
TBI- ID) (Corrigan and Bogner, 2007). We included participants who reported a head injury without 
loss of consciousness but with memory loss and/or a head injury with loss of consciousness for less 
than 30 min (n = 434). Due to missing or incomplete data, corrupted files, data conversion errors, and 
images rated by the ABCD Study team as being of poor quality, the final sample of participants with 
usable data was 345. After processing, images were visually inspected by two trained independent 
raters (G.I.G., S.S.). Images that were deemed of low quality after processing by both raters were 
removed (n = 39), leading to a final sample of 306 participants. We randomly divided the sample into 
a discovery dataset (70%, n = 214) and a replication dataset (30%, n = 92). Figure 1 summarizes the 
subject selection procedure.

Symptom-oriented measures
To probe various aspects of concussion symptomatology, we used items collected from assessments 
available in the ABCD dataset. These items, as well as the concussion symptom they are meant to 
probe are outlined in Table 1.

MRI acquisition
MRI scans were acquired across 21 sites, with data coming from 28 different scanners. Details about 
the acquisition protocols and image specifications are outlined in Casey et al., 2018. Multi- shell dMRI 
scans had 96 diffusion- weighted directions, with 6 directions of b = 500 s/mm2, 15 directions of b = 
1000 s/mm2, 15 directions of b = 2000 s/mm2, and 60 directions of b = 3000 s/mm2. The b = 2000 shell 
was excluded from the data processing. In addition, scans had 6 or 7 b = 0 s/mm2 images, depending 
on scanner type. Lastly, a reverse b0 image was included for each participant.

Processing
We used Tractoflow (Theaud et al., 2020) to process dMRI and T1- weighted scans. Tractoflow is a 
novel diffusion MRI processing pipeline, incorporating state- of- the- art functions from FSL, Dipy, and 
MRtrix into NextFlow. The processing steps are summarized in Theaud et al., 2020. Important devia-
tions from the default parameters utilized by Tractoflow are as follows: 1. We used gray- white matter 
interface seeding, as this method accounts for the length bias introduced by white- matter seeding; 
(Girard et al., 2014) 2. We used 24 seeds- per- voxel with the objective of obtaining approximately 
2 million streamlines across the entire brain. We used the b = 0, 500, and 1000 shells to perform tensor 
fitting, and the b = 0 and 3000 shells to perform Constrained Spherical Deconvolution (CSD) (Desco-
teaux et al., 2009; Tournier et al., 2007). We obtained group- average fiber- response functions from 
voxels with high ( > 0.70) fractional anisotropy (FA). Lastly, we created tractograms using a probabi-
listic particle- filtering tractography algorithm (Girard et al., 2014).

Connectivity matrices
The post- processing workflow is illustrated in Figure 2. To construct connectivity matrices, we used 
Freesurfer on McGill’s CBrain platform (Sherif et al., 2014) to fit the Desikan- Killiani Tourvile (DKT) 
(Klein and Tourville, 2012) and aseg atlases onto the processed T1- images that had been transformed 
to DWI space during processing (Figure 2A). We applied these parcellations and extracted diffusion 
measures using connectoflow (version 1.0.0) (https://github.com/scilus/connectoflow; Rheault and 
Houde, 2021). This novel pipeline uses scilpy (version 1.0.0) scripts (https://github.com/scilus/scilpy; 
Sherbrooke Connectivity Imaging Lab, 2022) (wrappers of Dipy) implemented in Nextflow to split 
parcellations into individual labels, apply them to tractograms to create individual bundles, and then 
extract diffusion measures across them. To implement connectoflow, we first removed redundant 

https://doi.org/10.7554/eLife.70450
https://nda.nih.gov/abcd/request-access
https://github.com/scilus/connectoflow
https://github.com/scilus/scilpy
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Figure 1. Flowchart describing the participant selection procedure.

https://doi.org/10.7554/eLife.70450
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and irrelevant labels from the fitted atlas (a list of retained labels is supplied in Supplementary file 
1), yielding a final atlas with 76 labels. We then thresholded matrices such that a connection was 
only retained if it was found to be successfully reconstructed (defined as the presence of at least one 
streamline) across 90% of participants (Guberman et al., 2020a). We then performed a procedure to 
minimize the impact of spurious streamlines on our results (see “Accounting for spurious streamlines” 
paragraph below). We then randomly divided the sample into a discovery dataset (70%, n = 214) and 
a replication dataset (30%, n = 92). Every step hereafter was performed separately for each dataset. 
On each dataset, we weighted thresholded connectomes by FA, mean, radial, and axial diffusivities 
(MD, RD, AD respectively), apparent fiber density along fixels (AFDf), and number of fiber orientations 
(NuFO) (Figure 2B). The first four measures are derived from the tensor model, whereas the latter 
two are based on fiber orientation distribution functions (fODFs) obtained from CSD (Raffelt et al., 
2012; Dell’Acqua et al., 2013). Simulation studies have shown that AFD is more specifically related to 
axonal density, and by computing it along ‘fixels’ (fiber elements), axonal density specific to particular 
fiber populations can be studied independently of crossing fibers (Raffelt et al., 2012).

Additional data transformations
We imputed missing connectivity (prior to the PCA), symptom, and nuisance data (sex, pubertal stage, 
handedness, scanner) by randomly selecting non- missing data from other participants in the same 
dataset. We reverse- coded cognitive scores, such that increasing scores in all symptom data reflected 
more problems. From connectivity and symptom data, we regressed out the following nuisance vari-
ables: sex, pubertal stage, scanner (only for connectivity data), and handedness. An illustration of the 
impact of regressing out scanner from connectivity data can be found in Appendix 1—figure 1.

Table 1. Table outlining all behavioral measures used in analyses, along with the corresponding symptom they reflect.

Questionnaire - Description Symptom Measured Respondent

CBCL – Headaches Headaches Parent

CBCL – Nausea, feels sick Nausea Parent

CBCL – Vomiting, throwing up Vomiting Parent

CBCL – Feels dizzy or lightheaded Dizziness Parent

CBCL – Overtired without good reason Fatigue Parent

SDS – The child experiences daytime sleepiness Drowsiness Parent

SDS – The child has difficulty getting to sleep at night Trouble falling asleep Parent

CBCL – Sleep more than most kids during day and/or night Sleep more than usual Parent

CBCL – Sleeps less than most kids Sleep less than usual Parent

CBCL – Depression (DSM) T score Sadness Parent

CBCL – Anxiety Disorder (DSM) T score Nervousness Parent

CBCL – Attention Problems T score Difficulty concentrating Parent

CBCL Aggression T score Irritability Child

NIH Toolbox Picture Sequence Memory Test – Fully- Corrected T- score Sequence Memory (difficulty remembering) Child

NIH Toolbox List Sorting Working Memory Test – Fully- Corrected T- score Working memory (difficulty remembering) Child

RAVLT Short Delay Trial VI – Total Correct Short recall (difficulty remembering) Child

RAVLT Long Delay Trial VII – Total Correct Long recall (difficulty remembering) Child

NIH Toolbox Dimensional Change Card Sort Test – Fully- Corrected T- score Executive function (feeling “foggy”) Child

NIH Toolbox Pattern Comparison Processing Speed Test – Fully- Corrected T- score Processing speed (feeling “slow”) Child

CBCL: Child Behavior Checklist. SDS: Sleep Disturbance Scale. NIH: National Institutes of Health. DSM: Diagnostics and Statistics Manual. RAVLT: Ray 
Auditory Verbal Learning Test.

https://doi.org/10.7554/eLife.70450
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Figure 2. Illustration of the study’s post- processing pipeline. (A). We applied the DKT parcellation onto each 
tractogram, thus building a binary connectivity matrix that displayed for all 306 subjects in the full dataset (rows), 
whether (black) or not (white) a streamline existed between each pair of labels (columns). (B). We thresholded 
connectomes using the full dataset, only keeping connections that existed across 90% of participants (a threshold 

Figure 2 continued on next page

https://doi.org/10.7554/eLife.70450
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Accounting for spurious streamlines
Most tractography techniques, including the one presently used, depend on propagating the local 
diffusion model across voxels. This approach has inherent limitations in voxels where the local model 
lacks the information necessary to inform on the appropriate path for streamline propagation, leading 
inevitably to the creation of spurious streamlines (Maier- Hein et al., 2017; Girard et al., 2020). To 
minimize the impact of spurious connections on our results, we implemented an approach called 
Convex optimization modeling for microstructure informed tractography (COMMIT) (Daducci et al., 
2015). This technique assigns weights to streamlines based on how they explain the diffusion signal. 
After running COMMIT, we identified streamlines with weights of 0, which signified that these stream-
lines were not necessary to explain the dMRI signal because they were spurious or redundant. When 
all the streamlines of a connection had a weight of 0, the entire connection was considered spurious. 
We identified non- spurious connections and only kept those that were found to be non- spurious 
across 90% of participants in the full dataset.

Principal components analysis
Although individual diffusion measures are related to different aspects of neuropathology, together 
they provide more information than when considered separately (Guberman et al., 2020a). A recent 
framework based on principal component analysis (PCA) has been proposed to combine diffusion 
measures into biologically interpretable indices of white matter structure (Chamberland et al., 2019). 
We therefore performed PCA on the concatenated set of standardized measures across subjects in 
the discovery set and connections that passed COMMIT filtering, generating connectivity matrices 
weighted by principal component (PC) scores (Figure 2C).

Pattern-learning pipeline
Feature selection
Given the constraints on the number of connectivity features that can be included in the partial least 
squares correlation (PLSc) analysis, we performed a univariate feature selection based on Pearson 
correlations. This solution is becoming increasingly adopted for high- dimensional variable sets 
(Figure  2D; Boulesteix, 2004; Wang et  al., 2020). From the connections that passed COMMIT 
filtering, we selected the 200 connectivity features most correlated with any symptom score, to maxi-
mize the number of features included. Given our discovery dataset size, selecting 200 connectivity 
features corresponded to 93% of our sample, a level of granularity comparable to other recent neuro-
imaging studies employing a feature selection step prior to multivariate analyses (Dinga et al., 2019; 
Drysdale et al., 2017).

PLSc
We performed PLSc analyses in R using the tepPLS function from the texposition package (Beaton 
et al., 2014). PLSc involves singular value decomposition on the covariance matrix between connectivity 

of 100% is illustrated here for simplicity). On these connections, we also filtered streamlines by computing 
COMMIT weights. This technique assigns weights to streamlines depending on how well they explain the diffusion 
signal. We identified connections as spurious if all their streamlines had a COMMIT weight of 0. We only retained 
connections that were found to be non- spurious across 90% of participants in the full dataset. We then split the 
dataset into a discovery set (n = 214) and a replication set (n = 92). Using the discovery set, we then constructed 
connectomes of 6 scalar diffusion measures (Fractional Anisotropy (FA), Axial Diffusivity (AD), Mean Diffusivity (MD), 
Radial Diffusivity (RD), Apparent Fiber Density along fixels (AFDf), and Number of Fiber Orientations (NuFO)), 
by computing the average measure across each connection. (C). We stacked all columns from each connectivity 
matrix, creating vectors of every pair of subject and connection, and then joined together these vectors. We 
then performed principal component analysis (PCA) on these matrices. Principal component (PC) scores were 
calculated for each subject/connection combination, thus reconstructing connectomes weighted by PC scores. 
(D). From each these new connectomes, we selected 200 connections based on Pearson correlations with 
symptom- oriented measures. We then performed partial least squares correlation on each of these PC- weighted 
features and symptom measures, which allowed us to obtain pairs of multi- tract connectivity features (‘MCF’) and 
multi- symptom features (‘MSF’). Each multivariate feature is composed of linear combinations (weighted sums, 
illustrated by the black arrows called ‘weights’) of variables from its corresponding feature set.

Figure 2 continued

https://doi.org/10.7554/eLife.70450
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and symptom features, creating pairs of multivariate connectivity and multivariate symptom features 
called multi- tract multi- symptom relationships. Each multi- tract multi- symptom relationship encap-
sulates a linear combination of connectivity features (‘multi- tract features’), a linear combination of 
symptom scores (‘multi- symptom features’), and an eigenvalue (reflective of the amount of explained 
covariance between connectivity and symptom features). Each multi- tract multi- symptom relationship 
is constructed so as to explain a successively smaller portion of the covariance between symptoms 
and connectivity features. We constructed the largest number of possible multi- tract multi- symptom 
relationships, given the dimensionality of the behavioral variable set (k = 19) (Figure 2D).

Selection and interpretation of multi-tract multi-symptom pairs
To reduce the number of multi- tract multi- symptom pairs to retain for interpretation, we performed 
permutation testing by randomly shuffling row labels for the symptom features, without replacement, 
repeating the PLSc and computing eigenvalues at every permutation (2000 iterations). We calcu-
lated p- values as the proportion of permutations that yielded eigenvalues that exceeded the original 
amount.

To interpret symptom and connectivity weights of significant (p < 0.05) multi- tract multi- symptom 
pairs, we performed bootstrap analyses (2000 iterations), using the BOOT4PLSC command from 
the texposition package. At each iteration, labels for data were drawn with replacement, the entire 
PLSc was repeated and the weights for all pairs were obtained. Although the pairs are expected to 
differ between iterations, they are always ordered by the percentage of covariance in inputs they 
explain. This process yields a sampling distribution of weights for each connectivity and symptom 
feature (McIntosh and Lobaugh, 2004). The ratio of the original weights to the standard error of each 
measure’s bootstrap distribution can be interpreted as a z- score, which yielded so- called ‘bootstrap 
ratios’. We used a value of 1.96 to determine which variables significantly contributed to each partic-
ular significant pair.

Comparison of multivariate against univariate approaches
To compare information captured by the PLSc and univariate approaches, we identified, among the 
214 participants from the discovery set, those that had obtained a psychiatric diagnosis. Parents 
of all participants completed the Kiddie- Schedule for Affective and Psychiatric Disorders in School 
Age Children (KSADS), a gold- standard tool to assess the presence of pediatric psychiatric disorders 
(Kaufman et al., 1997). We divided the sample into clinical subgroups based on whether they had 
obtained a diagnosis of attention- deficit/hyperactivity disorder (ADHD). We selected this diagnosis 
because its behavioral manifestations can be easily related to some of the presently- studied concus-
sion symptoms (e.g.: attention problems). It was also the second- most common diagnosis in our 
sample (33/214). Using a threshold of p < 0.05, we computed univariate comparisons of connectivity 
(PC scores) between individuals with and those without a diagnosis of ADHD, thus identifying putative 
‘ADHD- related’ univariate connectivity features.

We were interested in comparing how many of these features were also found to significantly 
contribute to each multi- tract connectivity feature. To do so, we computed a measure of percent 
overlap as follows:

 
%Overlap = Csig(

Su+Sm−Csig
) × 100

 , 

where Csig refers to the number of connections flagged as significant in both approaches, Su to 
the number of connections flagged as significant in the univariate approach, and Sm to the number 
of connections flagged as significant in the multivariate approach. This measure can account for the 
apparent high overlap that can arise when Su and Sm are not equivalent in size.

Relation to TBI-related and sociodemographic factors
We assessed whether expression of multi- tract connectivity features was related to injury- specific and 
sociodemographic factors (‘external’ variables). Injury- related variables included: the time between 
the last- documented injury and testing, the cause of injury, and the total number of documented 
mTBIs. Sociodemographic variables included: sex, total combined family income in the last 12 months, 
and race/ethnicity. We used the following categories for race/ethnicity: ‘Asian’ (Asian Indian, Chinese, 

https://doi.org/10.7554/eLife.70450
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Filipino, Japanese, Korean, Vietnamese, Other Asian), AIAN (‘American Indian’/Native American, 
Alaska Native), NHPI (Native Hawaiian, Guamanian, Samoan, Other Pacific Islander), Non- Hispanic 
White, Non- Hispanic Black, Hispanic, Other, and Multiple (Heeringa, 2020). To illustrate the influ-
ence of these sociodemographic factors we created scatter plots illustrating expression of connec-
tivity latent factors color- coded by sociodemographic factors (Appendix 1—figure 2). In addition, 
we calculated correlations between multi- tract or multi- symptom feature expression and binary (or 
dummy- coded) variables representing these ‘external’ variables. These simple yet straightforward 
analyses allowed us to quantify the strength of the relationship between multivariate feature expres-
sion and external variables.

Analyses on the replication dataset
To assess the robustness of our analyses, we first computed the percentage of connectivity/symptom 
covariance explained in the replication set by the first multi- tract multi- symptom pair of both PLSc 
analyses performed on the discovery set. We then selected, from the replication set, the same 200 
connectivity features originally selected in the discovery set, and projected them, along with symptom 
features, onto the latent spaces obtained using the discovery set. To assess whether differences existed 
in multi- tract multi- symptom expression between participants from each set, we performed correla-
tions comparing multi- tract multi- symptom feature expression against a binary variable indexing the 
dataset. Finally, we reran our feature selection procedure as well as the PLSc analyses on the drep-
lication set, and compared the number of connectivity features that coincided in both analyses. We 
also performed correlations comparing the loadings of every corresponding multi- tract and multi- 
symptom feature, as well as the expression of these features.

Data availability
Data from the ABCD Study can be accessed by qualified researchers (see Participants section above 
for details). Scripts, supporting documents, and other information necessary to implement all aspects 
of data organization, preparation, and analysis can be found in https://github.com/GuidoGuberman/ 
Multi-tract-multi-symptom-relationships-in-pediatric-concussion, (copy archived at swh:1:rev:4c-
30fa113b2e0d24305a6e82fe8af54a3ed5af1a; Guberman, 2022).

Results
Sample
Out of 434 participants with a history of mild TBI (mTBI, used interchangeably with the term ‘concus-
sion’ in this manuscript), 306 (127F/179 M) had usable data (Figure 1). Table 2 outlines sociodemo-
graphic and injury- related factors, as well as handedness and sex. The majority had sustained an injury 
over 1 year prior to the study. Nuisance variables were well- balanced between participants in the 
discovery and the replication set.

Combined measures of white matter tract microstructure
From all 2850 possible connections, 1,026 survived thresholding. Out of those 1026 connections, 629 
survived COMMIT filtering. The PCA applied across dMRI measures from all 629 connections yielded 
two biologically- interpretable components that together explained 96% of the variance in measures 
(Appendix 1—figure 3). The first appeared to reflect an index of microstructural complexity, whereas 
the second more closely reflected axonal density. Because we retained two PCs, we performed two 
PLSc analyses.

Multi-tract multi-symptom relationships
To parse multi- tract multi- symptom heterogeneity, we performed two PLSc analyses, one using the 
selected microstructural complexity features and another using the selected axonal density features, 
along with all 19 symptom features. Each PLSc analysis yielded 19 latent modes of covariance (termed 
here ‘multi- tract multi- symptom relationships’), each consisting of a pair of multi- tract connectivity 
and multi- symptom features. Based on permutation testing, 16 multi- tract multi- symptom pairs were 
retained from the microstructural complexity PLSc, and 8 from the axonal density PLSc. Appendix 1—
figures 4 and 5 illustrate all the multi- symptom and multi- tract features (respectively) from the retained 

https://doi.org/10.7554/eLife.70450
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https://archive.softwareheritage.org/swh:1:dir:201ea2e89d26f3ead5960648ae4cd630eb3fc1a6;origin=https://github.com/GuidoGuberman/Multi-tract-multi-symptom-relationships-in-pediatric-concussion;visit=swh:1:snp:f1636827734466cab0c9b032610f3e8714ab5713;anchor=swh:1:rev:4c30fa113b2e0d24305a6e82fe8af54a3ed5af1a
https://archive.softwareheritage.org/swh:1:dir:201ea2e89d26f3ead5960648ae4cd630eb3fc1a6;origin=https://github.com/GuidoGuberman/Multi-tract-multi-symptom-relationships-in-pediatric-concussion;visit=swh:1:snp:f1636827734466cab0c9b032610f3e8714ab5713;anchor=swh:1:rev:4c30fa113b2e0d24305a6e82fe8af54a3ed5af1a
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Table 2. Table of sample characteristics.

Demographic and injury data
Discovery set
(n = 214)

Replication set
(n = 92)

Interview Age

Mean (SD) 9.57 (0.496) 9.54 (0.501)

Median [Min, Max] 10.0 [9.00, 10.00] 10.0 [9.00, 10.0]

Sex

F 88 (41.1%) 39 (42.4%)

M 126 (58.9%) 53 (57.6%)

Pubertal Stage

Early 41 (19.2%) 18 (19.6%)

Mid 58 (27.1%) 19 (20.7%)

Prepubertal 115 (53.7%) 52 (56.5%)

Late 0 (0%) 3 (3.3%)

Race/Ethnicity

Asian 2 (0.9%) 2 (2.2%)

Hispanic 27 (12.6%) 18 (19.6%)

Multiple 18 (8.4%) 8 (8.7%)

Non- Hispanic Black 14 (6.5%) 11 (12.0%)

Non- Hispanic White 151 (70.6%) 52 (56.5%)

Other 2 (0.9%) 1 (1.1%)

Combined Family Income

< 5 K 5 (2.3%) 5 (5.4%)

$5,000 - $11,999 5 (2.3%) 1 (1.1%)

$12,000-$15,999 3 (1.4%) 2 (2.2%)

$16,000-$24,999 5 (2.3%) 3 (3.3%)

$25,000-$34,999 12 (5.6%) 4 (4.3%)

$35,000-$49,999 12 (5.6%) 5 (5.4%)

$50,000-$74,999 34 (15.9%) 16 (17.4%)

$75,000-$99,999 31 (14.5%) 13 (14.1%)

$100,000-$199,000 76 (35.5%) 27 (29.3%)

>$200,000 31 (14.5%) 16 (17.4%)

Handedness

LH 10 (4.7%) 10 (10.9%)

RH 175 (81.8%) 69 (75%)

Mixed 29 (13.6%) 13 (14.1%)

Injury Mechanism

Fall/hit by object 135 (63.1%) 48 (52.2%)

Fight/shaken 2 (0.9%) 3 (3.3%)

Motor vehicle collision 14 (6.5%) 3 (3.3%)

Multiple 10 (4.7%) 5 (5.4%)

Table 2 continued on next page

https://doi.org/10.7554/eLife.70450
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pairs from the microstructural complexity PLSc. Individual pairs selected for further discussion are 
shown in Figures 3 and 4. Figure 3 also illustrates the expression of these multi- tract multi- symptom 
pairs (scatter plots). For each pair, the symptom profiles of two example participants, one with high 
feature expression, one with low, are shown. These example participants illustrate how these multi- 
tract multi- symptom features can represent a diversity of symptom profiles.

Across most extracted pairs, the representation of tracts and symptoms formed a continuum, with 
earlier pairs capturing broader symptom categories and more distributed networks of connections, 
and later pairs capturing more idiosyncratic symptom/connectivity relationships. The first multi- tract 
multi- symptom pair from the microstructural complexity PLSc broadly represented most symptoms 
(Figure 3A polar plot) and implicated a broad range of frontal commissural and occipito- temporal 
association tracts (Figure 4, violet brain graph). The third multi- tract multi- symptom pair obtained 
from the axonal density PLSc represented broadly cognitive problems (Figure 3B polar plot). The 
multi- symptom feature from the third pair obtained from the microstructural complexity PLSc also 
represented cognitive problems broadly and implicated a wide array of tracts with a mostly frontal 
focus. Features from subsequent pairs represented individual cognitive problems, such as feature 8 
which represented processing speed, executive function (card sorting), and working memory, and 
implicated almost exclusively frontal tracts. The seventh pair obtained from the same PLSc repre-
sented attention problems almost exclusively, along with decreased sleep and processing speed 
(Figure 3C polar plot). This pair implicated mostly frontal tracts, including a connection between the 
left posterior cingulate and left thalamus, a trajectory that is consistent with the corticospinal tract. 
This pattern whereby pairs ranged from broadly representing symptom categories and distributed 
networks to more specific symptom combinations with more localized connections can be best appre-
ciated in Figure 5. As can be observed, certain groups of connections tended to be represented only 
once alongside broad symptom categories (Figure 5A, orange rectangles). More consistent connec-
tivity/symptom correspondences were only observed for few, more specific single- symptom/single- 
connection combinations (Figure 5A blue rectangle).

Although this pattern was observed in both PLSc analyses, important exceptions were observed 
as well. First, the second multi- tract multi- symptom pair obtained from both PLSc analyses strongly 
represented nausea and vomiting, almost exclusively, and implicated no commissural tracts. Second, 
sleep problems (especially ‘trouble sleeping’) were implicated across several pairs. Interestingly, 
despite being found ubiquitously across pairs, they were not consistently associated with the same 
connections across pairs. In contrast, nearly every time attention problems were implicated in a pair 
(3/4 pairs), they were found alongside two connections with trajectories that correspond to parts 
of the right superior longitudinal fasciculus (right pars opercularis – right post- central sulcus; right 
par opercularis – right sumpramarginal gyrus). However, this type of consistent symptom/connection 
correspondence was more often than not absent (Figure 5). Out of 200 connections selected for the 
microstructural complexity PLSc, 2 were found to be most frequently implicated across all retained 

Demographic and injury data
Discovery set
(n = 214)

Replication set
(n = 92)

Unknown 53 (24.8%) 33 (35.9%)

Time Since Injury (years)

Mean (SD) 3.22 (2.79) 3.23 (2.60)

Median [Min, Max] 2.00 [0.00, 11.0] 2.50 [0.00, 9.00]

Total TBIs

Unknown 53 (24.8%) 33 (35.9%)

1 151 (70.6%) 54 (58.7%)

2 9 (4.2%) 5 (5.4%)

3 1 (0.5%) 0 (0%)

Note: Participants with “Unknown” Injury Mechanism and Total TBIs reported sustaining a TBI but no mechanism of injury was endorsed.

Table 2 continued

https://doi.org/10.7554/eLife.70450
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Figure 3. Illustration of multi- tract multi- symptom pairs 1 and 7 obtained from the microstructural complexity PLSc (A and C respectively), and pair 3 
from the axonal density PLSc (B). Left: Polar plots displaying the weights of all 19 symptom measures for each multi- symptom feature. Bars pointing 
away from the center illustrate positive weights, bars pointing towards the center represent negative weights. White stars illustrate symptoms that 
significantly contributed to the pair. Bar graphs underneath the polar plots illustrate the % covariance explained by each pair, with the currently- shown 

Figure 3 continued on next page
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pair highlighted. Right: Scatter plots showing the expression of multi- tract features (x- axis) and multi- symptom features (y- axis). In each scatter plot, 
the same 6 participants are labeled (1 through 6). Small bar graphs illustrate the scaled symptom measures (i.e.: not the expression of multi- symptom 
features) for two participants, one expressing low levels of a pair, the other expressing high levels. For each illustrated participant, positive bars illustrate 
symptoms that are higher than the sample average, negative bars represent symptoms that are lower. The black dashed line illustrates 1 standard 
deviation above the group mean. Participants with ADHD diagnoses are illustrated in black. Correlation coefficients inset in each scatter plot represent 
Pearson correlations between expression of multi- tract features (near x- axis), or multi- symptom features (near y- axis) and a binary variable indexing 
whether or not a participant had a diagnosis of ADHD.

Figure 3 continued

Figure 4. Line plot showing the percent overlap between univariate analyses and each multi- tract connectivity feature. Highest overlap occurred for 
the first multi- tract connectivity feature from both PLSc analyses. Brain renderings shown above graph illustrate which connections were found to 
be significant for univariate comparisons of microstructural complexity (red), univariate comparisons of axonal density (blue), multi- tract connectivity 
feature 1 from the microstructural complexity PLSc (violet), multi- tract connectivity feature 3 from the axonal density PLSc (turquoise), and multi- 
tract connectivity feature 7 from the microstructural complexity PLSc (green). The percent overlap score for each of the three illustrated multi- tract 
connectivity features are identified in the line plot with a circle of the corresponding color. Univariate brain graphs show connections significant at p 
< 0.01 for illustrative purposes. Multivariate brain graphs show connections significant at p < 0.05. Brain renderings were visualized with the BrainNet 
Viewer (Xia et al., 2013).

https://doi.org/10.7554/eLife.70450
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Figure 5. Patterns of connection/symptom correspondences across multi- tract multi- symptom pairs. (A). Adjacency matrix, illustrating the number 
of multi- tract multi- symptom pairs from the microstructural complexity PLSc where a given significant connection corresponded to a given significant 
symptom (based on bootstrap analyses). Darker colors illustrate more consistent correspondences. Symptom categories are illustrated in colors 
(green: somatic, black: sleep problems, purple: mood problems, yellow: cognitive problems). Orange rectangles highlight three connections (right 
lateral occipital – right precuneus; left putamen – left rostral anterior cingulate; left putamen – left lingual) that were only present in one multi- tract 
multi- symptom pair (pair 3), which also represented broadly all cognitive problems. This pair is illustrated in B, where cognitive problems are illustrated 
in color and all other symptoms are illustrated in black, and the highlighted connections are circled in orange. Although only three connections 
are highlighted, several such ‘broad cognitive problems’ connections can be observed. The blue rectangle highlights two connections (right pars 
opercularis – right post- central; right pars opercularis – right supramarginal) that were present in 4 multi- tract multi- symptom pairs, all of which also 
implicated attention problems. These pairs are illustrated in panel C, where attention problems are illustrated in color, all other symptoms are illustrated 
in black, and the highlighted connections are circled in blue.

https://doi.org/10.7554/eLife.70450
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pairs. These were the two connections mentioned above that were related to attention problems, the 
right pars opercularis – right post- central gyrus, and the right pars opercularis to the right supramar-
ginal gyrus. They were implicated in 4 pairs each, two of which were the same (pairs 1 and 8). Callosal 
tracts were not among the most often implicated connections.

Overall, these results illustrate how different symptom profiles are associated with different combi-
nations of tracts. Earlier pairs consisted of broad symptom categories and implicated wider networks 
of connectivity features, whereas more idiosyncratic pairs consisted of more localized connectivity 
features that were associated with more symptom- specific profiles. However, some symptoms such as 
sleep problems were implicated across the spectrum of different multi- tract multi- symptom pairs, illus-
trating how some symptoms do not demonstrate a one- to- one relationship with connectivity features 
across multi- tract multi- symptom pairs. No tracts were widely implicated across all pairs.

Multi-tract multi-symptom features and clinical subgroup membership
We identified 33 individuals in the discovery set with diagnoses of ADHD obtained from the KSADS 
(Dodd et al., 2014). These individuals are shown in black in Figure 3 (scatter plots). Despite forming 
a clinical subgroup based on a gold- standard measure of psychiatric pathology, these individuals were 
heterogeneous in their expression of multi- tract and multi- symptom features. Further, we computed 
correlations between the expression of these multivariate features and clinical subgroup membership, 
and found weak, albeit significant correlations (see Figure 3 scatter plots and Supplementary file 3).

Multivariate vs univariate approaches
We compared microstructural complexity and axonal density scores across all 200 connections between 
individuals with and without an ADHD diagnosis, and calculated the percent overlap between each 
multi- tract connectivity feature and the set of tracts found to be significant in univariate comparisons 
(ostensibly ‘ADHD- related’ tracts). The percent overlap scores are presented in Figure 4. Notably, 
the highest overlap occurred with multi- tract connectivity feature 1 (10–13%) from both PLSc anal-
yses, which implicated a wide network of white matter tracts and were associated with general prob-
lems. In contrast, the overlap with multi- tract connectivity feature 7, which implicated mostly frontal 
connections and was associated with attention problems almost exclusively, was low (5%). Neither of 
the two univariate analyses implicated the two connections discussed above (right pars opercularis 
– right post- central sulcus; right par opercularis – right sumpramarginal gyrus) that were consistently 
associated with attention problems. These results suggest that the putative ‘ADHD- related’ connec-
tions identified in univariate comparisons of microstructural complexity and axonal density measures 
between individuals with ADHD and those without are mostly non- overlapping with the connections 
identified in an attention- problems specific multi- tract multi- symptom pair.

Relationship with sociodemographic and injury-related factors
Appendix  1—figure 2 illustrates the expression of multi- tract connectivity features color- coded 
by sociodemographic strata defined by sex, total combined household income, and race/ethnicity. 
Qualitatively, no clusters defined by these sociodemographic strata are apparent. Further, correla-
tions between multi- tract/multi- symptom feature expression and binary (or dummy- coded) variables 
defining each strata are overall weak and non- significant (Appendix 1—figure 2). Out of 24 retained 
multi- tract multi- symptom pairs, time since the latest injury was only significantly correlated to the 
expression of one multi- tract connectivity features (Supplementary file 2) and no multi- symptom 
features. Only the expression of two multi- tract connectivity features (features 2 and 15 from the 
microstructural complexity PLSc) were significantly different between groups defined by injury cause 
(Appendix  1—figures 6 and 7, respectively). Only the expression of one multi- tract connectivity 
features, feature 15 from the microstructural complexity PLSc (Appendix 1—figure 8) significantly 
differed between groups defined by the total number of TBIs.

Results on the replication dataset
We first analyzed the amount of connectivity/symptom covariance explained by each of the multi- 
tract/multi- symptom pairs. We found that approximately 26% of the connectivity/symptom cova-
riance in the replication set was explained by the first multi- tract/multi- symptom pair from the 
microstructural complexity PLSc, and 40% was explained by the corresponding pair from the 
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axonal density PLSc. However, with permutation testing, these percentages were not found to 
be significantly higher than expected by chance. We then projected the replication dataset onto 
the latent spaces obtained using the discovery set, and ran correlations comparing multi- tract 
multi- symptom feature expression against a binary variable indexing the dataset. We found very 
low, non- significant correlations (all coefficients lower than 0.01) between multi- tract and multi- 
symptom feature expression and set membership. Finally, we reran our PCA and PLSc analyses on 
the replication set, and compared the features obtained against the original results. The loadings 
obtained from the PCA performed on the replication set are illustrated in Appendix 1—figure 9. 
The loadings for the first two PCs from both sets of analyses were highly correlated (r = 0.9997, p 
< 0.001; r = 0.996, p < 0.001). Out of the 200 connections originally selected in the discovery set, 
73 were also selected in the replication set. Appendix 1—figure 10 illustrates the loadings for all 
the multi- symptom features retained after permutation testing. Correlations between the loadings 
of these new multi- symptom features and the ones obtained from the original PLSc analyses were 
low to high (0.087–0.810). The correlations between the loadings of the 73 connections that were 
common to both PLSc analyses were very low to moderate (0.006–0.227). However, the correla-
tions between expression of multi- symptom features obtained from the PLSc performed on the 
replication dataset and those obtained by projecting the replication set onto the original latent 
spaces reached higher values (0.01–0.979), which was also found for those between expression 
of multi- tract features (0.02–0.67). Altogether, these results suggest that despite having mostly 
different connectivity inputs due to the feature selection step, the analyses led to similar multi- tract 
multi- symptom features.

Sensitivity analyses
We first tested the impact that changing the number of retained connections would have on PLSc 
results. The percentage of covariance explained by the first multi- tract multi- symptom pair from the 
microstructural complexity PLSc is illustrated in Appendix 1—figure 11. Initially, the percentage of 
covariance explained increased with an increasing number of connections, and stabilized around 200 
connections. These results suggest that a selection of 200 connections is close to the optimal amount 
that could have been selected.

We then assessed the impact of modifying our resampling approach, attempting instead to shuffle 
the original connectivity features before the feature selection step. Using this stricter approach yielded 
no significant multivariate pairs on permutation testing.

We then assessed the impact of using different thresholds to retain connections (t = 85%, 95%, 
100%). All 629 connections that had survived COMMIT in the original analyses (t = 90%) were among 
the 1,142 connections that survived the t = 85% threshold, and the 877 connections that survived 
the t = 95% threshold. Hence, after COMMIT, the same 629 connections were selected in all three 
thresholds, which led to identical data going into all subsequent analyses. Differences were only seen 
for t = 100%, where 258 connections survived thresholding. After COMMIT, 252 connections survived, 
suggesting that only 6 connections that were considered ‘spurious’ were found across 100% of partic-
ipants. These results suggest that highly consistent connections also tended to be the ones found by 
COMMIT to be ‘non- spurious’. Compared to the original threshold, the connectivity features obtained 
from the t = 100% threshold after PCA (Appendix 1—figure 3), and the weights of the multi- symptom 
features (Appendix 1—figure 12) were highly similar. However, using permutation testing, only two 
multi- tract multi- symptom pairs (12 and 15) were found to be significant (although in the figure, the 
same multi- symptom features that had been retained using the 90% threshold are shown, to facilitate 
comparison with Appendix 1—figure 4). Correlations between expression of multi- tract connectivity 
features at t = 90% and t = 100% are illustrated in the appendix (Appendix 1—figure 13). Correla-
tions between the expression of the corresponding multi- tract connectivity features (e.g.: multi- tract 
feature 1 from t = 90%, multi- tract feature 1 from t = 100%) had high correlations overall, with excep-
tions arising around the middle features (7- 14). As can be observed in both Appendix 1—figures 
4 and 12, these middle features appeared to be switched in order. For instance, multi- symptom 
feature 8 from the microstructural complexity PLSc using the t = 90% threshold was similar to the 
multi- symtom feature 7 from the PLSc using the t = 100% threshold, and the expression of these two 
features were highly correlated as well. Overall, these results indicate that features obtained from the 
PLSc analyses were similar across thresholds (Appendix 1—figure 13).

https://doi.org/10.7554/eLife.70450
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Discussion
In the present study, we leveraged novel dMRI methods and a double- multivariate approach to parse 
heterogeneity in the relationship between white matter structure and symptoms in a large sample 
of previously- concussed children. By applying PLSc on biologically interpretable measures of dMRI 
obtained from PCA, we found cross- demographic multi- tract multi- symptom features that captured 
information about structure/symptom relationships that traditional approaches missed. More repre-
sentative multi- tract multi- symptom pairs represented broader symptom categories and implicated 
wider networks of connections, whereas more idiosyncratic pairs represented more specific symptom 
combinations and implicated more localized connections. Whereas certain symptom/tract correspon-
dences were consistent across the pairs that implicated them, more often than not, tracts were not 
consistently associated with the same symptoms across pairs. This finding was especially apparent 
for sleep problems, which were implicated across most pairs. These results suggest that rather than 
a clean and consistent set of one- to- one symptom/tract relationships, concussions may instead be 
composed of subsets of symptom combinations that are associated with combinations of structural 
alterations of different white matter tracts.

Defining concussions as a clinical syndrome characterized by a set of symptoms stemming from 
a set of alterations of brain structure and function, multi- tract multi- symptom pairs can be thought 
of as subtypes of concussion (i.e.: of structure/symptom relationships), not of concussion patients. 
Patients with concussions can express these different concussion subtypes to varying degrees. We 
theorize that the combination of these different subtypes and how much they are expressed is what 
determines the clinical syndrome a person will display. The pairs explaining the most covariance can 
be interpreted as the subtypes that are most commonly expressed across individuals. Whether these 
subtypes are dataset- specific remains to be explored. Multi- tract relationships may be driven by the 
metabolic demands imposed by the network structure of the brain, which is known to predict the 
course of several brain diseases (Crossley et al., 2014), by biomechanical constraints imposed by the 
skull and other structures exposing certain areas to more shearing strain (Hernandez et al., 2019), or 
by both factors simultaneously (Anderson et al., 2020). These possibilities need to be tested further. 
Multi- symptom relationships may be driven by feedback mechanisms, with symptoms potentiating 
each other. One example is sleep: sleep disturbances were implicated in nearly all multi- tract multi- 
symptom pairs, but showed no consistent correspondence with any particular connection. This result 
suggests that sleep disturbances across concussed patients may not be associated with the same 
neural substrate, but may instead arise, in some concussions, as a consequence of other symptoms. 
Previous theoretical work has proposed that sleep may play a central role in concussions, given that 
it can arise as a consequence of certain symptoms but can also potentiate other symptoms (Kenzie 
et al., 2018). The current findings are consistent with this previous work.

Concussion heterogeneity has been identified as a major obstacle (Kenzie et al., 2017; Hawryluk 
and Bullock, 2016) in response to decades of failed attempts to translate basic science findings into 
successful clinical trials and novel therapies. Heterogeneity in symptoms, impact of injury on brain 
structure and function, and pre- injury factors pose a particular problem for most concussion neuro-
imaging studies which have traditionally employed univariate comparisons between concussed and 
healthy or orthopedic injury control groups, or between patients with and without persistent symptoms 
(Dodd et al., 2014; Hulkower et al., 2013). These sources of inter- subject variability are believed to 
be problematic because they decrease the statistical power needed for group comparisons and multi-
variable models to detect the often- subtle effects of concussions (Maas et al., 2013). To overcome 
this challenge, landmark initiatives such as the IMPACT (Maas et al., 2013), InTBIR (Tosetti et al., 
2013), CENTER TBI (Maas et al., 2015), and TRACK TBI (Bodien et al., 2018) aim to standardize and 
pool multi- center data collected across sociodemographic strata, to identify and statistically correct 
for pre- injury factors known to impact brain structure, and develop diagnostic and prognostic tools 
leveraging multimodal data and increasingly sophisticated machine- learning approaches.

In this study, we posited that disease- specific concussion heterogeneity is also problematic because 
by pooling across patients, idiosyncratic patterns of connectivity that may be more symptom- specific 
are sacrificed in favour of shared ones. By assuming that symptoms map cleanly and consistently 
onto shared connectivity abnormalities in a one- to- one fashion, erroneous inferences could be made 
about relationships between group- level patterns of connectivity differences and specific symptoms. 
Our results are consistent with this idea: univariate comparisons between a clinical subgroup defined 
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by a diagnosis of ADHD and the rest of the sample identified connectivity features that mostly over-
lapped with the first multi- tract multi- symptom pair obtained from both PLSc analyses. These pairs, 
which accounted for the most covariance, reflected general problems and not specifically ADHD. 
Both these pairs and the univariate ‘ADHD- related’ connections implicated a distributed network of 
tracts. Instead, a multi- tract multi- symptom pair that more uniquely represented attention problems 
implicated mostly frontal connections, including a connection that was part of the corticospinal tract. 
These findings are consistent with prior literature showing differences in white matter structure, espe-
cially in the corticospinal tract, among children with ADHD (Silk et al., 2016; Wu et al., 2020; Puzzo 
et al., 2018). Nonetheless, children with ADHD were heterogeneous in the expression of this more 
attention- specific multi- tract multi- symptom pair, suggesting that this clinical subgroup of children 
with TBIs may have important differences that can be further investigated. Across pairs, nearly every 
time attention problems were implicated, they were found alongside two connections with trajecto-
ries that correspond to parts of the right superior longitudinal fasciculus. This result is consistent with 
previous work that has shown differences in the structure of the right superior longitudinal fasciculus 
in children and adults with ADHD (Cortese et al., 2013; Hamilton et al., 2008; Konrad et al., 2010; 
Makris et al., 2008; Wolfers et al., 2015). Overall, these results suggest that univariate comparisons 
in concussed children, even when performed in such a way as to identify a diagnosis- specific set of 
connectivity features, identified only the most consistent group- level connectivity differences at the 
expense of more symptom- specific idiosyncratic ones.

The present findings must be contrasted to the nascent literature addressing concussion hetero-
geneity. A few recent studies have parsed inter- subject heterogeneity in concussion symptoms, using 
clustering analyses to group concussion patients into discrete subtypes (Langdon et al., 2020; Si 
et al., 2018; Yeates et al., 2019). The symptoms displayed by these reported subgroups differed 
from those implicated in the multi- symptom features found in the present study. Differences between 
symptom profiles arose because our multi- symptom features are associated with white matter struc-
ture and not driven by variability in symptoms alone. Other prior studies have attempted to address 
inter- subject heterogeneity in white matter structure in concussions (Stojanovski et al., 2019b; Taylor 
et  al., 2020; Ware et  al., 2017). Using two different approaches, these studies generated point 
summaries that accounted for the high- dimensional variability of white matter structure to better 
distinguish patients from controls. These prior studies, using a variety of approaches, have all focused 
on parsing down inter- subject heterogeneity in symptoms or white matter structure. Our approach 
focuses instead on disease- specific heterogeneity in structure/symptom relationships.

The present results should be considered in light of methodological limitations. Data on mTBI 
occurrence was collected retrospectively. Participants did not have baseline data, and additionally had 
highly variable times since injury. Most individuals with concussions recover from their injury (Leddy 
et al., 2012) which should have led to a concussed group where most participants were similar to 
healthy controls. Interestingly, our PCA yielded combinations of diffusion measures that differed from 
those of two prior studies that have used this approach (Chamberland et al., 2019; Geeraert et al., 
2020). These prior studies used samples of typically developing children without neurological insults. 
To the extent that the PCs reported in these prior studies reflect healthy neurotypical brains, our PCs 
suggest that our concussed sample was not as similar in white matter structure to healthy controls as 
expected. However, variable time since injury made the interpretation of patterns of microstructure 
difficult. Further, due to the cross- sectional nature of this data, the difference between symptoms and 
pre- existing characteristics are difficult to discern, especially since some behavioral measures often 
believed to be symptoms of concussion, such as attention problems, can also be risk factors for brain 
injury (Guberman et al., 2020b). Heterogeneity has several forms, including in symptoms, duration, 
severity, neuropathology (Bigler and Maxwell, 2012), lesion location (Ware et al., 2017), sociode-
mographics (Maas et al., 2013), genetics (Stojanovski et al., 2019a), behavior (Guberman et al., 
2020b), pre- injury comorbidities (Yue et al., 2019), and environmental differences, including access 
to and quality of care (Yue et al., 2020). These factors have been theorized to interact in complex ways 
(Kenzie et al., 2017). This study only addressed a minority of these complex relationships, further 
studies integrating more variable sets are needed to address these other drivers of heterogeneity. The 
connectivity features that were studied came from connectomes, not from well- known bundles. This 
choice was made to obtain a larger coverage of white matter structure, but as a result, sacrificed inter-
pretability. The reason is that the connectivity features studied here may or may not represent true 
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anatomical units, and hence cannot be interpreted easily on their own. Instead, we relied on patterns 
across tracts, such as counting the number of connections that corresponded to the same symptom 
across different multi- tract multi- symptom pairs. Future studies should contrast this approach against 
procedures used to extract large well- known bundles. Lastly, methodological choices are a central 
part of this study. As illustrated by the sensitivity analyses and analyses performed on the replication 
set, some parts of the analytical pipeline were robust to methodological variations, whereas others 
were not. For instance, the PLSc procedure was robust to variations in input data. This was evidenced 
by the non- significant correlations between multi- tract multi- symptom feature expressions and a vari-
able indexing the dataset, as well as the similarities observed after running the PLSc analyses on the 
replication set. However, the univariate feature selection approach was not as robust, as shown by 
the low overlap of connections when using different input datasets, as well as the loss of significant 
permutation test results when using a stricter resampling method that reshuffled prior to feature 
selection. Importantly, this study was not attempting to identify a single best analytical approach for 
studying multi- tract multi- symptom relationships. Rather, this project aimed to present a fundamen-
tally different way of understanding concussions. Among the myriad of options available, we found a 
compromise between novel, cutting- edge techniques, and established, well- known ones. However, 
for parts of the analytical pipeline, refinements can be made. Future iterations of this work will need 
to exert better control of time since injury, perform longitudinal follow- up, develop predictive models 
for clinical outcomes, and assess the impact of choices made among the panoply of alternatives along 
key steps of the analytical pipeline.

Conversely, this study leveraged some of the most recent and important advances in dMRI to 
address the major limitations of conventional approaches. We used high- quality multi- shell dMRI data 
(Jones et al., 2013), as well as modeling approaches, tractography techniques, and microstructural 
measures robust to crossing fibers, partial volume effects, and connectivity biases (Girard et al., 2014; 
Descoteaux et al., 2009; Tournier et al., 2007; Raffelt et al., 2012; Dell’Acqua et al., 2013; Cham-
berland et al., 2019). We used PCA to combine dMRI measures into meaningful indices of white 
matter structure. Lastly, we used gold- standard measures of psychiatric illness to divide the sample 
into meaningful clinical subgroups.

In conclusion, leveraging advanced dMRI and a pattern- learning algorithm to parse white matter 
structure/symptom heterogeneity, we have found clinically- meaningful, cross- demographic multi- tract 
multi- symptom relationships. As the field moves towards large- scale studies which aim to statistically 
control for sociodemographic sources of heterogeneity to detect a putative consistent white matter 
signature of concussion across patients, the fundamental insight of this study should be taken into 
consideration: when pooling across patients, disease- specific multi- tract multi- symptom heteroge-
neity is lost, leading to the loss of informative, clinically- meaningful, symptom- specific patterns of 
connectivity abnormalities. Future studies aiming to better understand the relationship between white 
matter abnormalities and concussion symptomatology should look beyond the group- comparison 
design and consider multi- tract multi- symptom heterogeneity.
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Appendix 1

Appendix 1—figure 1. Illustration of the effects of regressing out scanner. (A) Weights of each diffusion measure 
for each principal component obtained after running a principal component analysis on data that was processed 
without regressing out scanner. (B) Barplot illustrating the expression of multi- tract connectivity feature 1 averaged 
across all participants for each scanner. The blue bar illustrates the scanner with the lowest multi- tract connectivity 
feature 1 expression, and the red bar illustrates the scanner with the second highest multi- tract connectivity feature 
1 expression (the scanner with the highest expression only had one participant, so it was not chosen for illustrative 
purposes). (C) Scatter plot illustrating expression of multi- tract multi- symptom pair 1 from the microstructural 
complexity PLSc using data that was processed without regressing out scanner. The blue dots illustrate participants 
from the scanner with the lowest average multi- tract connectivity feature 1 expression, the red dots illustrate 
participants from the scanner with the second- highest feature 1 expression. These two groups are distinguishable 
in their multi- tract connectivity feature 1 expression. (D) Scatter plot illustrating expression of multi- tract multi- 
symptom pair 1 from the microstructural complexity PLSc using data where scanner had been regressed out. The 
same participants identified in scatter plot C are illustrated in scatter plot D. After regressing out scanner, these 
two groups are not distinguishable in their multi- tract connectivity feature 1 expression.

https://doi.org/10.7554/eLife.70450
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Appendix 1—figure 2. Scatter plots illustrating the expression of three multi- tract multi- symptom pairs (first 
column: pair 1 from the microstructural complexity PLSc, second column: pair 3 from the axonal density PLSc, 
third column: pair 7 from the microstructural complexity PLSc), color- coded by total family income (first row), race/
ethnicity (second row), and sex (third row). The upper and bottom rows illustrate the correlation coefficient for the 
expression of multi- tract features (over x- axis) and multi- symptom features (over y- axis) and variables representing 
family income (top), and sex (bottom). For race/ethnicity, correlations were performed between multivariate feature 
expression and dummy- coded variables representing each specific race/ethnicity. The correlation coefficients are 
presented in the bar graphs following the same order as listed in the color code.

https://doi.org/10.7554/eLife.70450
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Appendix 1—figure 3. Plots illustrating the weights of each diffusion measure for each principal component for 
different connectome thresholds (85%, 90%, 95%, 100%). The interpretation of the first two principal components 
are consistent across thresholds.

https://doi.org/10.7554/eLife.70450
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Appendix 1—figure 4. Polar plots illustrating the weights of each symptom measure for every retained multi- 
symptom feature obtained from the microstructural complexity PLSc performed using all 19 symptom measures as 
well as connectivity features selected from connectomes thresholded at T = 90%. Black stars indicate symptoms 
that significantly contributed to the multi- tract multi- symptom pair based on bootstrapping analyses.

https://doi.org/10.7554/eLife.70450
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Appendix 1—figure 5. Brain graphs illustrating the connections that were found to be significant (P < 0.05 based 
on bootstrap analysis) for each of the retained multi- tract features from the microstructural complexity PLSc. Brain 
renderings were visualized with the BrainNet Viewer (Xia et al., 2013). 

https://doi.org/10.7554/eLife.70450
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Appendix 1—figure 6. Bar graph illustrating the expression of multi- tract connectivity feature 2 from the 
microstructural complexity PLSc, averaged according to subgroups of participants defined by Injury Mechanism. 1: 
Fall/hit by object; 2: Fight/shaken; 3: Motor vehicle collision; 4: Multiple; 5: Unknown.

https://doi.org/10.7554/eLife.70450
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Appendix 1—figure 7. Bar graph illustrating the expression of multi- tract connectivity feature 15 from the 
microstructural complexity PLSc, averaged according to subgroups of participants defined by Injury Mechanism. 1: 
Fall/hit by object; 2: Fight/shaken; 3: Motor vehicle collision; 4: Multiple; 5: Unknown.

https://doi.org/10.7554/eLife.70450
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Appendix 1—figure 8. Bar graph illustrating the expression of multi- tract connectivity feature 15 from the 
microstructural complexity PLSc, averaged according to subgroups of participants defined by Total TBIs. 0: 
Unknown. Other numbers represent the total number of TBIs.

https://doi.org/10.7554/eLife.70450
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Appendix 1—figure 9. Plot illustrating the weights of each diffusion measure for each principal component for 
the PCA performed on the replication set data using a threshold of 90% during processing.

https://doi.org/10.7554/eLife.70450
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Appendix 1—figure 10. Polar plots illustrating the weights of each symptom measure for every retained multi- 
symptom feature obtained from the microstructural complexity PLSc performed using all 19 symptom measures 
as well as connectivity features selected from connectomes thresholded at T = 90% using the replication dataset. 
Black stars indicate symptoms that significantly contributed to the multi- tract multi- symptom pair based on 
bootstrapping analyses.

https://doi.org/10.7554/eLife.70450
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Appendix 1—figure 11. Percentage of covariance explained by the first multi- tract multi- symptom pair from 
the microstructural complexity PLSc as a function of the number of features selected from the univariate feature 
selection step. The connectivity features are selected based on decreasing strength of correlation with any 
symptom. The number of features tested ranged from 19 to 214.

https://doi.org/10.7554/eLife.70450
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Appendix 1—figure 12. Polar plots illustrating the weights of each symptom measure for multi- symptom features 
that were obtained from the microstructural complexity PLSc performed using all 19 symptom measures as well as 
connectivity features selected from connectomes thresholded at T = 100%. Only the multi- symptom features that 
were found to be significant in the corresponding PLSc performed at a threshold of T = 90% are shown here, for 
comparison with those multi- symptom features (Appendix 1—figure 4). All Black stars indicate symptoms that 
significantly contributed to the multi- tract multi- symptom pair based on bootstrapping analyses.
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Appendix 1—figure 13. Matrix illustrating correlation coefficients between the expression of every pair of multi- 
tract connectivity features obtained from the microstructural complexity PLSc. The matrix illustrates the correlation 
between features obtained from the PLSc analysis performed on connectivity features obtained from the 90% and 
100% thresholds. Given that this matrix is symmetrical, only the bottom triangular is shown. The main diagonals 
illustrate autocorrelations. These matrices illustrate how corresponding multi- tract connectivity features between 
thresholds (e.g.: multi- tract connectivity feature 1 from T = 90%, multi- tract connectivity feature 1 from T = 100%) 
are highly correlated.
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