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Abstract
Anti-angiogenic therapy has been demonstrated to increase progression-free
survival in patients with many different solid cancers. Unfortunately, the benefit
in overall survival is modest and the rapid emergence of drug resistance is a
significant clinical problem. Over the last decade, several mechanisms have
been identified to decipher the emergence of resistance. There is a multitude of
changes within the tumor microenvironment (TME) in response to
anti-angiogenic therapy that offers new therapeutic opportunities. In this review,
we compile results from contemporary studies related to adaptive changes in
the TME in the development of resistance to anti-angiogenic therapy. These
include preclinical models of emerging resistance, dynamic changes in hypoxia
signaling and stromal cells during treatment, and novel strategies to overcome
resistance by targeting the TME.
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Introduction
Angiogenesis is well recognized as an important step in the  
growth and progression of many tumor types1. Over the last  
15 years, anti-angiogenic therapy has become an effective modal-
ity for cancer therapy. Several vascular endothelial growth  
factor/receptor (VEGF/R) inhibitors have been approved by the 
US Food and Drug Administration for various solid tumors,  
including metastatic colorectal cancer (mCRC), metastatic 
renal cell cancer, metastatic gastric cancer, non-small-cell lung  
cancer, recurrent/metastatic cervical cancer, recurrent ovarian 
cancer, and glioblastoma multiforme (GBM). Although improve-
ments in objective response and progression-free survival (PFS)  
have been seen, the impact of anti-angiogenic therapy on patient 
overall survival (OS) is limited (Table 1) because of a host of  
factors, including the induction of resistance2. The modes of  
resistance to angiogenesis inhibitors, mechanisms of acquired 
or intrinsic resistance, and strategies for overcoming resistance 
have been discussed (see 3–5). Meanwhile, new mechanisms and  
therapies for anti-angiogenic resistance have emerged over the  
last 3–5 years. Evidence suggests that changes in the tumor  
microenvironment (TME) play a critical role in such adaptation6. 
This review focuses mainly on the role of the TME in response 
and resistance to anti-angiogenic therapy (Figure 1), and novel 
strategies to overcome resistance by targeting the TME are also  
discussed.

The role of hypoxia in resistance to anti-angiogenic 
therapy
Previous studies have shown that resistance to anti-angiogenic 
therapy is associated with hypoxia-induced alterations, VEGF-
independent cytokine-driven endothelial growth, mobilization 
of bone marrow-derived pro-angiogenic hematopoietic cells or 
endothelial progenitors, and vessel co-option2–5,7. Anti-angiogenic 
therapy inhibits tumor growth effectively by reducing vessel  
density; however, the subsequent expression of hypoxia-inducible 
factors (HIFs) and the responsive genes (for example, VEGF,  
VEGFR, carbonic anhydrase [CA] IX, and CAXII) can lead to  
therapeutic resistance8. In recent years, there has been growing  
evidence that hypoxia-triggered overexpression of HIF subunits 
and the activated downstream pathways play a critical role in  
resistance to anti-angiogenic therapy.

Role of HIF-1α in anti-angiogenic therapy
There are three α subunits (HIF-1α, -2α, and -3α) and one β subu-
nit in the HIF family. HIF-1α is the oxygen-regulated subunit that 
has been studied in inflammation, diabetes, cardiovascular dis-
ease, and cancer. In the presence of O

2
, prolyl hydroxylase domain  

(PHD) proteins (principally PHD2) can use O
2
 and a-ketoglutarate 

to subject HIF-1α to prolyl hydroxylation on proline  
residue 402/5649. Von Hippel–Lindau protein recruits ubiquitin 
ligase complex by interacting with Elogin C after HIF-1α pro-
lyl hydroxylation. Then, ubiquitinated HIF-1α can be recognized 
and degraded by the proteasome. Meanwhile, factor inhibiting 1  
(FIH-1), which is an asparaginyl hydroxylase, can block HIF-1α 
transcription by blocking the interaction of HIF-1α transactivation 
domain with its co-activators p300 and CBP9. When O

2
 is deprived, 

the inhibition of prolyl hydroxylase (for example, PHD2) and 
asparaginyl hydroxylase activity (for example, FIH-1) increases the 

stability and transcription of HIF-1α and consequently causes the 
dimerization of HIF-1α and HIF-1β to form HIF1. HIF1 can bind 
to target genes and increase gene transcription9.

HIF-1α is a potent pro-angiogenic factor that has been associated 
with the regulation of VEGF, stromal cell-derived factor 1 (SDF1), 
plasminogen activator inhibitor 1 (PAI1), angiopoietins (Ang-1 
and -2), platelet-derived growth factor (PDGF), Tie2 receptor, 
and matrix metalloproteinases (MMP-2 and -9)10,11. The expres-
sion of HIF-1α is driven by hypoxia and mediated by histone  
deacetylase (HDAC). Deacetylation by HDAC is a critical  
post-translational modification to HIF-1α signaling. Upregulation 
of HDACs has been observed in response to increasing HIF-1α  
signaling under hypoxia12. A phase I clinical trial showed that 
the addition of HDAC inhibitor abexinostat to pazopanib led to a 
durable response in some patients who experienced progression  
during anti-VEGF therapy13. In addition, inhibiting HDACs 
can abrogate the expression of HIF-1α protein in hypoxic  
conditions and there is an additive or synergistic effect between 
HDAC and VEGFR inhibitors in resistant cancers12,14. In vitro 
and in vivo data have demonstrated that nucleus accumbens-
associated protein-1 (NAC1), a critical molecule in promoting  
glycolysis under hypoxia, mediates glycolysis via HDAC4- 
mediated stabilization of HIF-1α. The knockdown of NAC1  
exhibits anti-tumor effects of bevacizumab, which means 
that NAC1 may be involved in resistance to anti-angiogenic  
therapy15. Thus, NAC1-HDAC4-HIF-1α signaling might be an 
important pathway in regulating resistance under hypoxia.

MET signaling
HIF-1α can also regulate the c-MET/HGF pathway, which can 
induce tumor angiogenesis through stimulation of endothelial 
cell (EC) proliferation, migration, and tubulogenesis16. Hypoxia 
enhances c-MET/HGF signaling by activating HIF-1α in several 
types of cancers such as lung, ovarian, and cervical cancers17.  
MET and VEGFR pathways share common downstream mol-
ecules such as mitogen-activated protein kinase (MAPK), ERK, 
AKT, and focal adhesion kinase (FAK), and the activation of  
c-MET/HGF might lead to the activation of VEGFR signaling. 
It has been shown that MET enhances the expression of VEGFA 
by interacting with src homology 2 domain containing and  
suppressing angiogenesis suppressor thrombospondin118. Other 
studies have also demonstrated that MET contributes to resist-
ance to VEGF(R) inhibitors via the activation of ERK–MAPK 
and PI3K–AKT signaling19. To identify mediators of resistance to  
anti-angiogenic therapy, Jahangiri et al.20 generated a novel glioma 
cell-derived bevacizumab-resistant xenograft model by injecting 
cells subcutaneously and harvesting the least responsive  
xenograft tumor cells and implanting them into mice with long- 
term treatment of bevacizumab (10 mg/kg). After the tumors were 
serially passaged subcutaneously (three cycles) in vivo, a stably 
resistant xenograft model was developed20. Microarray analysis 
of this model showed upregulation of c-Met; adding a MET  
inhibitor with bevacizumab treatment impeded tumor invasion 
and prolonged survival in resistant mice20. Cabozantinib, a multi- 
targeting inhibitor of MET, VEGFR2, AXL, and RET, can  
overcome HGF/MET signaling-mediated resistance to pan-
VEGFR inhibition in neuroblastoma mouse models21. Furthermore,  
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Figure 1. Schematic illustration of the role of the tumor microenvironment in resistance to anti-angiogenic therapy. Anti-angiogenic 
therapy inhibits tumor growth by reducing vessel density; however, the subsequent hypoxia and the responsive genes can cause resistance 
to such therapy. The hypoxia-related metabolic symbiosis, invasion and metastasis, vessel co-option, and vasculogenic mimicry (VM) lead 
to resistance to anti-angiogenic therapy. The recruitment of stromal cells also plays a critical role in resistance to anti-angiogenic therapy. 
Ang1/2, angiopoietin 1/2; CXCR4, C-X-C chemokine receptor type 4; EMT, epithelial-to-mesenchymal transition; EphA2, Eph receptor A2; 
FAK, focal adhesion kinase; FGF, fibroblast growth factor; GLUT1, glucose transporter-1; HGF, hepatocyte growth factor; HIF-1α, hypoxia-
inducible factor 1α; IGF, insulin-like growth factor; LIAS, lipoic acid synthase; MCT4, monocarboxylate transporter 4; MDSC, myeloid-derived 
suppressor cell; MIF, macrophage migration inhibitory factor; mTOR, mammalian target of rapamycin; mtROS, mitochondria reactive oxygen 
species; OGDH, oxoglutarate dehydrogenase; PDGF, platelet-derived growth factor; PECAM, platelet endothelial cell adhesion molecule; 
SDF1, stromal cell-derived factor 1; TEM; Ties-expressing macrophage; Treg, regulatory T cell; VE-cadherin, vascular endothelial cadherin; 
VEGF, vascular endothelial growth factor.

c-MET can form a complex with β1-integrin extensively in  
bevacizumab-resistant GBM and result in increased migration48.  
It has been demonstrated in some preclinical studies that  
increased invasiveness and metastasis is caused by c-MET  
activation due to the inhibition of VEGF signaling, which also 
results in resistance to anti-angiogenic therapy.

c-MET/HGF signaling leads to the activation of numerous 
signaling cascades, especially those related to epithelial-to- 
mesenchymal transition (EMT). Anti-angiogenic treatment can 
activate the EMT repressor ZEB2 by upregulating HIF-1α. 
ZEB2 can downregulate ephrinB2 through promoter binding to  
enhance tumor invasiveness49. The development of EMT has 

been confirmed in a multi-generational glioblastoma xenograft  
model, which is established by selecting the fastest growing 
tumor during bevacizumab treatment in each generation and  
reimplanting them into new mice. The authors observed that  
critical EMT transcription factors SNAI2 and ZEB2 were upreg-
ulated during bevacizumab treatment50. A recent study showed 
a synergistic effect of c-MET and VEGFR inhibitor (sunitinib) 
in reducing invasiveness and metastasis of RIP-Tag2 and Panc-1  
tumors51. Similarly, another study demonstrated that VEGF 
could directly and negatively regulate GBM invasion by inhib-
iting MET activation, which is dependent on VEGFR252.  
Consequently, the broad use of anti-angiogenic therapy could 
restore and increase MET levels and induce EMT, which is  
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confirmed in GBM patients who are resistant to bevacizumab52. 
Overall, these data suggest that HGF/MET signaling plays a  
crucial role in increased invasiveness, metastasis, and drug  
resistance during anti-angiogenic therapy. The phase III METEOR 
trial demonstrated that cabozantinib (MET, VEGFR, and AXL 
inhibitor) treatment resulted in improvements in PFS, OS, and 
objective response rate in patients with advanced renal cell can-
cer and bone metastases after previous VEGFR inhibition  
therapy53. Similarly, a phase II study showed that the dual MET/
VEGFR2 inhibitor foretinib had anti-tumor activity in patients 
with papillary renal carcinoma and a high response rate in 
patients with germline MET mutations54. These studies suggest a 
promising future for combining MET and VEGF/R inhibitors to  
overcome drug resistance.

Vascular mimicry
Tumor cells have a complex vasculature system that can  
develop compensatory mechanisms to evade therapeutic effect, 
such as revascularization. Vasculogenic mimicry (VM) is a 
blood supply system whereby vascular-like channels may form  
independently of ECs55. VM is regulated by various molecules, 
including vascular endothelial cadherin (VE-cadherin), ephrin 
type-A receptor 2 (EphA2), platelet EC adhesion molecule  
(PECAM), VEGF, and FAK56. In addition, hypoxia-related  
pathways, especially HIF-1α, are important regulatory mecha-
nisms in the process of VM57. Growing evidence indicates that  
tumor cells are capable of mimicking EC characteristics to form 
VM. It is reported that the VEGFR2 inhibitor sunitinib can  
increase VM under hypoxia by transforming tumor cells into 
endothelial-like cells58. Another study showed that PECAM1 
(also known as CD31, a mediator of angiogenesis that regulates  
EC–cell interactions) positive melanoma cells have the ability 
to form tube-like structures in vitro and could incorporate with  
vascular lumens in vivo59,60. It was also confirmed that PECAM1+ 
melanoma cells are enriched and might lead to resistance  
during anti-VEGF therapy60. Similarly, in a breast cancer mouse 
model, VM channels were increased after treatment with sunitinib 
and related to increased hypoxia. However, this vessel regrowth 
exists only in the models bearing cells with the ability to form 
VM61. Those findings showed that the process of VM depends 
mainly on specific tumor cell characteristics that can resemble 
EC features. Anti-angiogenic therapy-induced VM is highly  
related to hypoxia and leads to angiogenic rebound by forming 
endothelium-independent vascular channels.

Blood vessel co-option
In addition to VM, cancer cells can develop another vascu-
lar network for the resupply of oxygen and nutrients to escape  
anti-angiogenic therapy by blood vessel co-option62. Vessel  
co-option is a process whereby cancer cells “hijack” pre-existing 
vasculature and migrate along the vessels of host organs to 
gain a blood supply63. It has been shown that vessel co-option  
occurs mainly in well-vascularized organs such as the brain, 
lungs, and liver in both human cancers and animal models of  
cancer63,64. A more recent study revealed that vessel co-option  
also occurs in lymph node metastases where it supports the  
growth of lymph node metastatic lesions. Furthermore, clinical  
evidence suggests that anti-angiogenic therapy (for example,  

bevacizumab) may not reduce vessel density in lymph node  
metastases from patients who received bevacizumab treatment65.  
Other studies in preclinical models of glioblastoma and 
melanoma brain metastases have shown that tumor progression  
during treatment with anti-angiogenic drugs is associated with 
the induction of vessel co-option, which results in therapy  
resistance66,67. In human lung metastases from breast, colorectal,  
or renal cancer, vessel co-option appears to be common, and in  
preclinical models of lung metastasis, vessel co-option was  
shown to be associated with resistance to sunitinib. The pre-
dominant mechanism of vessel co-option in metastatic tumors  
in the lungs is a process whereby cancer cells invade alveolar 
spaces and co-opt alveolar walls and their constituent alveo-
lar capillaries. Subsequently, pneumocytes are lost from these  
co-opted alveolar walls, leaving behind the co-opted alveolar  
capillaries68,69. Another preclinical study revealed that the VEGFR 
inhibitor sorafenib induces vessel co-option in an orthotopic  
model of hepatocellular carcinoma (HCC) and that this increase 
in vessel co-option was associated with resistance to sorafenib70. 
Several pro-EMT transcription factors (for example, vimentin,  
ZEB1, and ZEB2) were upregulated significantly in the  
sorafenib-resistant tumors, which suggested a link between EMT 
and vessel co-option70. Also, CD34+ microvessels and α-smooth  
muscle actin (αSMA)+ pericytes were depleted in both sorafenib 
-sensitive and -resistant tumor tissues compared with tissues  
without treatment, which indicates that the acquired resist-
ance was not induced by the re-induction of angiogenesis70.  
Importantly, other studies have also demonstrated that anti- 
angiogenic therapy can promote cancer cell invasion and induce 
an EMT switch, which is linked to acquired resistance71,72.  
However, the molecular pathways involved in the induction of 
vessel co-option during anti-angiogenic therapy remain unclear.  
In addition, one study has shown that mCRC with histopathologi-
cal features of co-opted vessels is associated with worse response 
to bevacizumab than patients with angiogenic metastases73.  
However, further studies using patient samples obtained after  
treatment with anti-angiogenic therapy are needed to fully clarify 
the clinical association between vessel co-option and resistance  
to anti-angiogenic therapy.

Metabolic symbiosis
Another compensatory mechanism to hypoxia is metabolic  
symbiosis, a process in which tumor cells in the oxygenated 
region can use lactate from hypoxic, glycolytic tumor cells to 
produce ATP74. This metabolic shift is driven by HIF-1α and is  
associated with the activation of glycolytic genes75. Pisarsky  
et al.76 established a mouse orthotopic model with a stable 
murine breast cancer cell line (Py2T) and developed an evasive  
resistance model with long-term treatment with nintedanib  
(potent inhibitor of fibroblast growth factor [FGF] receptor 1 
[FGFR1], 2, and 3, PDGF receptor α/β, and VEGFR1, 2, and 
3). In this model, evasive resistance was found to be associated 
with the establishment of metabolic symbiosis but not tumor  
revascularization74,76. Allen et al. observed similar metabolic sym-
biosis with anti-angiogenic therapy in the RIP1-Tag2 transgenic  
mouse pancreatic neuroendocrine tumor (PanNET) model77. 
Upregulation of glucose transporter 1 (GLUT1) and monocar-
boxylate transporter 4 (MCT4) in the hypoxic regions can be  
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abrogated by knocking out HIF-1α77. Furthermore, the mamma-
lian target of rapamycin (mTOR) signaling pathway is involved in  
metabolic symbiosis during anti-angiogenic therapy, and the 
addition of rapamycin, an inhibitor of mTOR, can block this  
metabolism shift77. Another study in a renal cell carcinoma  
patient-derived xenograft model showed that the metabolic  
symbiosis phenotype is involved in anti-angiogenic resistance 
and can be halted by blocking mTOR signaling78. Inhibition of 
the upstream AKT/mTOR pathway can also sensitize renal cancer  
cells to multi-kinase inhibitor regorafenib79.

Mitochondria contribute to the major part of oxygen consump-
tion and have been found to influence cell signaling by producing  
reactive oxygen species (ROS) and metabolites80. Tie-2  
receptors and one of the ligands, Ang-1, are related to the acti-
vation of ROS and angiogenic response. Mitochondrial ROS  
can be triggered by Ang1/Tie2 signaling, and the released 
ROS can mediate the Ang1/Tie2 pathway and pro-angiogenic  
response81. In breast and lung cancer models, a multi-kinase  
inhibitor could induce hypoxia-mediated tumor glycolysis and 
switch it to long-term reliance on mitochondrial respiration82. 
Mutation in two mitochondrial genes—oxoglutarate dehydro-
genase (OGDH) and lipoic acid synthase (LIAS)—can stabilize  
HIF-1α in a non-hydroxylated form, and the depletion of OGDH 
or LIAS leads to increased HIF-1α83. The induction of metabolic  
symbiosis in response to anti-angiogenic therapy enables tumor 
cells to circumvent the anti-tumor effects of therapeutic agents 
by using cell survival pathways. It is clear that mitochondria, 
as the primary energy factory, are highly involved in hypoxia  
responses and help tumor cells survive anti-angiogenic therapy.

Invasion and metastasis
Many studies have shown that anti-angiogenic therapy promotes 
tumor invasion and metastasis, which might be triggered 
by an anti-angiogenic therapy-associated increase in tumor  
hypoxia49,51,52,71,84. The transcription of HIF-regulated genes is 
in control of diverse steps of tumor invasion and metastasis,  
including EMT, activation of MET signaling, recruitment of  
stromal cells, VM, and vessel co-option. It is reported that a  
triple-negative breast cancer mouse model exhibits increased  
MMP2 levels after discontinuation of sunitinib and VM channels 
were also observed accompanied by reduced endothelium- 
dependent vessel development61. Data from patient samples 
revealed that the development of VM has a positive correlation  
with high expression of HIF-1α, MMP2, VE-cadherin, and  
CD3161. In breast cancer, right open reading frame (RIO) kinase 
3, a conserved protein of atypical serine/threonine protein  
kinases, is involved in promoting hypoxia-induced invasion and 
metastasis via maintaining actin cytoskeletal organization85. 
Hypoxia induces circadian clock gene period 2 (PER2) deg-
radation and enhances invasion and activation of EMT genes 
(TWIST1, SLUG, and SNAIL) in breast cancer86. Two independent 
signaling loops have been clarified to be involved in hypoxia- 
stimulated breast cancer invasion and metastasis: (i) in C-X-C 
chemokine ligand 16 (CXCL16) signaling, cancer cells secrete 
CXCL16, which binds to C-X-C chemokine receptor type 6 
(CXCR6) on mesenchymal stem cells (MSCs), and in turn MSCs 
secrete CXCL10, which binds to CXCR3 on cancer cells, and  

(ii) MSCs secrete chemokine ligand 5 (CCL5), which binds to  
C-C chemokine receptor type 5 (CCR5) on cancer cells, and  
cancer cells release colony-stimulating factor 1 (CSF1), which 
binds to CSF1R on MSCs87. These two pathways are both  
dependent on HIF activity and promote the recruitment of tumor-
associated macrophages (TAMs) and myeloid-derived suppressor 
cells (MDSCs)87. Hence, hypoxia induced by anti-angiogenic 
therapy could promote tumor invasion by accelerating the  
development of VM, vessel co-option, and EMT phenotypes. 
As mentioned above, the HIF-1α–ZEB2–ephrinB2 axis is an  
important regulatory pathway in promoting tumor invasiveness 
and evasive resistance in glioma during bevacizumab treatment49. 
Anti- angiogenic agents induced the accumulation of Tie2- 
expressing macrophages (TEMs) at the invasive front of glioma 
tumor and TEMs can enhance the invasiveness of glioma tumor 
by secreting MMPs88. Altogether, these studies offer opportunities  
for overcoming invasion and metastasis resulting from anti- 
angiogenic therapy.

The role of stromal cells in resistance to anti-angiogenic 
therapy
TME is composed of resident (ECs and fibroblasts) and infiltrat-
ing (lymphocytes and macrophages) cells, extracellular matrix 
(collagen and fibronectin), and released molecules (cytokines,  
chemokines, antibodies, proteases, and angiogenic factors). One 
possible mechanism for resistance to anti-angiogenic therapy  
might be due to the recruitment of stromal cells. We and others  
have studied the complex interplay between ECs, platelets,  
pericytes, cancer-associated fibroblasts (CAFs), and white blood 
cells in the context of response to anti-angiogenic therapy11,89.

Endothelial cells
The crosstalk between ECs and other stromal cells plays a 
critical role in response to anti-angiogenic therapy. Ang/Tie  
signaling is one of the central pathways that controls blood vessel 
growth, cell–cell interactions, and anti-angiogenic resistance. 
Ang2-regulated interactions between ECs and pericytes/myeloid 
cells are among the resistance mechanisms to anti-angiogenic 
therapy. For instance, bevacizumab could enhance Ang2/Tie2 
signaling in ECs and upregulate Ang2 expression, which leads 
to reduced pericyte coverage and increased macrophage infiltra-
tion in brain cancer90. Heterogeneity of tumor ECs (TECs) might 
also contribute to resistance to anti-angiogenic therapy. TECs 
are different from normal ECs in many ways, including cell  
proliferation, migration, gene expression profile, and response 
to therapy. TECs are resistant to some chemotherapeutic drugs 
such as vincristine, 5-fluorouracil, and paclitaxel owing to the 
upregulation of drug resistance-associated genes91. CXCR4 is  
selectively expressed in TECs, and CXCR4+ TECs are related to 
poor outcome in patients with HCC. Functional studies revealed 
that CXCR4 is enriched in HCC angiogenic tip cells and  
overexpression of CXCR4 in ECs could stimulate vessel forma-
tion and sprouting in vivo and in vitro, implicating an important 
role for CXCR4+ TECs in angiogenesis92. Furthermore, sorafenib  
shows higher anti-tumor efficacy in HCC tumors with high  
CXCR4+ expression92. Interestingly, the recruitment of collagen 
type I+/CXCR4+ fibrocyte-like cells can contribute to acquired 
resistance to bevacizumab93. The activation of CXCR4, mediated 
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mainly by CXCL12 (ligand for CXCR4), is induced by HIF-1α 
in hypoxic conditions93. Similarly, a CXCR4 antagonist could 
interfere with neovascularization by preventing the interaction 
of CXCR4+ bone marrow-derived myeloid cells (BMDCs) and  
SDF-1α94. Collectively, these findings reveal potential markers 
for predicting response to anti-angiogenic therapy. Although the  
pathways by which TECs mediate resistance to anti-angiogenic 
therapy are not fully understood, such research holds promise for 
enhancing anti-angiogenic therapy.

Tumor-associated macrophages
BMDCs play a crucial role in the progression of angiogenesis  
and resistance to anti-angiogenic therapy. Many studies have  
shown that recruitment of BMDCs in GBM can cause resist-
ance to vatalanib treatment and correspondingly the depletion of  
BMDCs can potentiate the effects of vatalanib95–97. Hypoxia-
regulated neuropilin-1 (Nrp1), a marker of pro-angiogenic  
macrophages, can regulate the infiltration of TAMs into tumor 
hypoxic regions, and loss of Nrp1 in macrophages reduced  
angiogenesis and tumor growth98. Future studies are needed 
to determine whether Nrp1 contributes to the acquisition of  
resistance to angiogenesis inhibitors and the underlying mecha-
nisms. Another study revealed that the recruitment of TAMs in 
bevacizumab-resistant xenografts is caused by proliferation of 
differentiated macrophages and macrophage polarization and 
increases in numbers of pro-angiogenic macrophages99. Bevaci-
zumab can reduce macrophage inhibitory factor (MIF) expres-
sion at the edge of the tumor during early treatment while the loss  
of MIF leads to increased proliferation of TAMs in this area 
and eventual reprogramming into pro-angiogenic macrophages,  
even while treatment is continued99. Pro-angiogenic macro-
phages promote tumor growth and invasion by secreting factors  
(for example, VEGFA, tumor necrosis factor alpha [TNFα], and 
interleukin-2 [IL-2]), eventually resulting in resistance to beva-
cizumab. In addition, hypoxia-induced chemokines (CXCL) 
and their receptors (CXCLR) have been shown to enhance 
the recruitment of TAMs and contribute to the emergence of  
therapeutic resistance89.

Tie2-expressing macrophages
TEMs are a subpopulation of TAMs. Crosstalk between TEMs 
and other stromal cells can enhance pro-angiogenic effects. For  
example, the interaction of TEMs and Tie2+ endothelial tip cells 
can promote vascular anastomoses during embryonic angiogen-
esis, and the blockade of the Ang2/Tie2 pathway in mannose  
receptor (MRC1)-expressing TEMs can impede angiogenesis100,101. 
In the RIP1-Tag2 pancreatic neuroendocrine tumor model,  
VEGFR2 inhibition upregulates Ang2 levels and enhances  
infiltration of TEMs. It can be halted by applying dual inhibi-
tors of Ang2 and VEGFR2, which indicates that the adaptive  
enforcement of Ang2/Tie2 signaling induced by VEGFR inhibi-
tion may contribute to resistance102. Similarly, in a murine GBM 
mouse model, blockade of Ang2 and VEGF resulted in decreased  
vascular permeability, decreased TEMs, and increased pericyte 
coverage and intratumoral T lymphocytes. Ang2 comes mainly 
from ECs and can mediate the interaction of ECs and myeloid 
cells90. A strategy of dual blockade of Ang2 and VEGFR has  
shown better vascular normalization and TAM-phenotype shift  

than single-agent therapy103. However, a recent phase II study 
showed that trebananib, an Ang1/2 inhibitor, was not effective 
as monotherapy in recurrent glioblastoma and did not improve  
outcomes in combination with bevacizumab. It is possible that 
such a dual inhibition strategy would be more effective in other  
cancer types104.

Pericytes
Pericytes play an important role in angiogenesis and vessel  
maturation, although the specific mechanisms involved are only 
partially elucidated105. Angiogenic sprouting of ECs is facilitated 
by the detachment of pericytes, and vessel maturation requires 
the recruitment of supporting pericytes. The interactions between 
pericytes and ECs mediated by Ang/Tie signaling are a crucial 
step for blood vessel stabilization106,107. A previous study demon-
strated a bidirectional, reciprocal relationship between ECs and 
pericytes via Ang/Tie2 signaling, as pericytes can also express 
functional Tie2 receptor108. Several studies have focused on  
elucidating the mechanisms of pericytes in vessel stabilization or  
dysfunction106,109–111. In terms of whether targeting pericytes 
could alleviate resistance to anti-angiogenic therapy, there is  
variability in the preclinical data. Recruitment of pericytes to 
tumor blood vessels is mediated by PDGF signaling and dual  
targeting of VEGF-mediated angiogenesis, and PDGF-mediated 
pericyte recruitment was found to be more effective than  
targeting VEGF-mediated angiogenesis alone in a RIP1-Tag2 
mouse model112. However, a subsequent study demonstrated that 
the absence of pericytes in tumors does not enhance the efficacy  
of anti-VEGF therapy in pericyte-deficient pdgfbret/ret mouse  
models113.

Several pericyte-targeted therapies (by targeting PDGFR, 
VEGFR, and Tie2) are aimed at reducing tumor angiogenesis 
by blocking EC–pericyte interactions114. For example, treba-
nanib (Ang2 inhibitor) and nintedanib (VEGFR/FGFR/PDGFR  
inhibitor) show clinical benefits for patients with advanced  
ovarian cancer when combined with chemotherapy (Table 1). 
One study in patients with breast cancer has shown that an  
increased pericyte-covered microvascular density (MVD), a  
marker of vascular normalization, is associated with improved  
pathologic response during post-bevacizumab monotherapy115.  
Some studies suggest that pericytes can be used for predicting 
response to anti-angiogenic therapy. A retrospective study has 
revealed that PDGFR-β which is related to pericyte maturation 
can predict bevacizumab efficacy in patients with colon cancer116.  
Similarly, it was shown that, in triple-negative breast cancer,  
tumors with high PDGFRβ+/low desmin+ pericytes coverage 
were more responsive to anti-angiogenic therapy117. However,  
elucidating the mechanisms of pericytes mediating resistance to 
anti-angiogenic therapy still requires additional work.

Endothelial progenitor cells
Endothelial progenitor cells (EPCs) have been shown to pro-
mote the angiogenic switch in solid tumors, and the recruitment 
of EPCs from bone marrow can directly contribute to tumor  
development and colonization. The recruitment of EPCs is 
induced primarily by hypoxia, and their contribution to tumor  
vasculature might stimulate resistance to anti-VEGF therapies89,118. 
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Various factors are involved in the activation and mobilization of 
EPCs, including HIF-1α, VEGF, SDF1, MMPs, and membrane 
-bound kit ligand (mbKitL)89. A recent study showed that  
interactions between EPCs and ECs are independent of hypoxia 
and the pro-angiogenic effects of EPCs on ECs were not  
completely dependent on the presence of VEGFA119. Thus, VEGF-
independent activation of EPCs could counteract the effects 
of anti-VEGF therapy and result in resistance. The circulating  
EPC frequency and the level of phospho-ERK in EPCs are a  
potential biomarker of sorafenib efficacy120.

Myeloid-derived suppressor cells
MDSCs can promote metastasis in animal models and cancer 
patients by supporting tumor cell survival, angiogenesis, inva-
sion, and metastasis121,122. The role of immature myeloid cells/
MDSCs in mediating resistance to anti-angiogenic therapy was  
first reported in preclinical studies by Shojaei et al.123,124. It 
has been suggested that MDSCs cause tumor resistance to 
anti-angiogenic therapy in several different ways, includ-
ing (i) enhanced recruitment and infiltration of MDSCs,  
(ii) altered gene expression, (iii) phenotype differentiation, and 
(iv) activation of alternative growth factors89,125–127. A persistence 
of intratumoral MDSCs is observed in sunitinib-resistant mouse 
models and may be related to local expression of granulocyte 
macrophage colony-stimulating factor (GM-CSF) and activation 
of STAT5126. This is confirmed in patients with sunitinib-treated 
tumors that show persistent elevation in MDSCs with increasing  
levels of pro-angiogenic factors such as MMPs and IL-8126.  
However, the detailed pathways of MDSC-mediated resistance to 
anti-angiogenic therapy and their clinical relevance are not fully  
understood.

Platelets
As a well-known mediator for thrombosis and hemostasis,  
platelets have been recognized as a critical component of ang-
iogenesis, metastasis, and tumor progression via releasing  
pro-angiogenic and anti-angiogenic factors128,129. Although the 
functional role of platelets in regulating angiogenesis has been 
reviewed130, little is known about the role of platelets in response 
to anti-angiogenic therapy. Platelets might mediate resistance 
to anti-angiogenic therapy by secreting various growth factors  
and cytokines, interaction with EPCs and pericytes, uptaking anti-
VEGF drugs, and promoting tumor invasion and metastasis89.  
Platelet contents such as PDGF, FGF, angiostatin, and insulin-
like growth factor (IGF) contribute to the development of tumors 
by interacting with myeloid cells or stimulating angiogenic  
factors131,132. A recent study demonstrated that platelet releasate 
exhibits a powerful pro-angiogenic effect on GBM-derived ECs 
and contains a high level of VEGF in patients with GBM as  
compared with normal controls133.

Other mechanisms
CAFs play a critical role in the TME. The expression of SDF1 
and PDGF-C in CAFs has been reported in drug-resistant  
tumors89. Crawford et al. first reported a role of CAFs in  
mediating resistance to anti-angiogenic therapy in a preclinical 
study134. A recent study reported that CD44+ CAFs are increased 
following treatment with angiogenesis inhibitors and contribute  
to the maintenance of cancer stem cell populations, which  

associate with drug resistance135. Marrow-derived fibrocyte-like 
cells with expression of alpha-1 type I collagen and CXCR4 
have been demonstrated to contribute to acquired resistance to  
bevacizumab by producing FGF293. Anti-angiogenic therapy has 
been shown to modulate and enhance the immune response in 
patients with cancer. For example, decreased regulatory T (Treg) 
cells have been noted during bevacizumab treatment in patients 
with mCRC and GBM136. Recent studies found that bevacizumab 
could increase CD4+ lymphopenia, which is associated with poor  
survival in GBM patients and immune response suppression136. 
However, another study showed that bevacizumab did not change 
the number, proliferation, or activation status in T-cell subsets 
within tumors but rather increased the percentage of M1/pro- 
inflammatory-polarized anti-tumor TAMs137. A similar study 
showed that bevacizumab did not increase circulating suppressive 
MDSCs (lineage–HLADR–CD11b+CD33+) but can increase the 
circulating concentration of soluble VEGFA136.

Targeting tumor microenvironment to overcome 
therapeutic resistance
The compensatory mechanisms such as the expression of other  
pro-angiogenic factors, hypoxia, and the crosstalk between tumor 
and stromal cells can be a new target to overcome resistance 
to anti-angiogenesis therapy. The emerging strategies targeting  
TME include new specific inhibitors, combined pathway  
inhibitors, multi-targeting strategies, and new approaches for drug 
delivery.

New inhibitors
Several specific antagonists of VEGF(R) have been investi-
gated in recent years. iVR1, a new inhibitor of VEGFR1, could 
inhibit colorectal cancer growth, macrophage migration, and 
monocyte mobilization by blocking the phosphorylation of  
VEGFR1138. Meanwhile, new antibodies are being investigated 
to target different molecules except for VEGF. For example,  
monoclonal antibodies against endoglin (CD105), a protein  
receptor of the transforming growth factor-beta (TGF-β) super-
family, showed a promising anti-vascular effect139. A single-chain  
fragment of anti-human Ang2 has been shown to inhibit tumor 
growth, reduce vascular permeability, and extend survival in a 
bevacizumab-treatment GBM mouse model140. Delta-like ligand 
4-NOTCH1 signaling has been demonstrated to mediate tumor 
resistance to anti-VEGF therapy in preclinical models by  
activating multiple pathways141. In preclinical ovarian cancer 
models, we have shown that dual targeting of DLL4 and VEGF 
exhibits superior anti-tumor effects142. Two humanized DLL4 
antibodies—enoticumab (REGN421) and demcizumab (OMP-
21M18)—have shown preliminary anti-tumor activity in  
ovarian cancer and other solid tumors in phase I studies143,144. A  
bispecific DLL4/VEGF (OMP-305B83) antibody is also in  
phase Ib investigation with paclitaxel in ovarian cancer (Clinical-
Trials.gov identifier: NCT03030287).

Combined pathway inhibitors
As hypoxia plays a critical role in cancer progression, metasta-
sis, and resistance to anti-angiogenic therapy, the development 
of hypoxia inhibitors could be a powerful approach for cancer  
treatment. A novel small molecule named saltern amide A (SA) 
can inhibit HIF-1α in various human cancer cells. SA suppressed  

Page 11 of 19

F1000Research 2018, 7(F1000 Faculty Rev):326 Last updated: 15 MAR 2018



PI3K/AKT/mTOR, p42/44 MAPK, and STAT3 signaling145.  
Results from a phase I trial of bortezomib (a HIF-1α transcrip-
tional activity suppressor) plus bevacizumab demonstrated  
clinical activity in patients with various tumors, including renal 
cell, breast, and ovarian/fallopian tube cancers146. A phase I study 
in a combination with bevacizumab and EZN-2208 (PEGylated 
SN-38), another HIF-1α transcriptional activity inhibitor, showed 
acceptable toxicity in patients with refractory solid tumors. 
However, owing to the limited number of patients, the results  
did not demonstrate a conclusive effect of EZN-2208 on the activ-
ity of HIF-1α147. The combination of an HDAC inhibitor and  
anti-angiogenic agents can downregulate HIF-1α and VEGF  
expression13. Similarly, another study showed that the combi-
nation of metronomic topotecan and pazopanib can improve  
treatment response compared with the single drugs alone in  
metastatic triple-negative breast cancer106. The potential mecha-
nism might be related to the downregulation of HIF-1α induced  
by low-dose, continuous topotecan treatment148. HIF-1α dimeri-
zation inhibitor acriflavine can enhance the anti-tumor efficacy 
of sunitinib by inhibiting VEGF and TGF-β expression and the  
accumulation of MDSCs in the spleen149.

Given the adaptation of the immune cells during anti-angiogenic 
therapy, combination of anti-angiogenic agents with immune 
drugs is being investigated. Immune checkpoint inhibitors such 
as ipilimumab, nivolumab, and pembrolizumab show prom-
ising anti-tumor effects by augmenting anti-tumor immune  
responses150,151. Programmed cell death-1 (PD-1) receptor, the 
negative immune checkpoint regulator, and its ligand, PD-L1,  
which can suppress immune response, have been shown to be 
upregulated during anti-angiogenic therapy152,153. Thus, it provides 
feasible approaches to enhance response to anti-angiogenic  
therapy by adding immune checkpoint inhibitors. Several  
studies have reported that adding immune checkpoint agents  
shows improved clinical benefit compared with anti-angiogenic 
monotherapy154. A2V, a novel bevacizumab-based bispecific  
human IgG1 antibody that targets Ang2 and VEGFA, has been 
found to promote anti-tumor immunity by activating tumor- 
infiltrating CD8+ T cells, increasing tumor antigen presentation, 
and enhancing perivascular T-cell accumulation152. Also, A2V 
can increase PD-L1 expression via interferon-gamma (IFNγ)  
signaling and combining PD-1 blockade and A2V can improve 
the anti-tumor activity in certain tumor models152. The enhanced 
effect of adding PD-L1 inhibitor to anti-angiogenic therapy is  
dependent on the induction of high endothelial venules, which 
can facilitate lymphocyte infiltration via lymphotoxin β receptor  
signaling153. A series of clinical trials of combined anti-angiogenic 
therapy with immune checkpoint therapy is ongoing154.

As VEGF-independent angiogenesis pathways can contribute 
to resistance to anti-VEGF therapy, the combination treatment 
of chemotherapeutic agents and anti-VEGF therapy may  
overcome such drug resistance. A study of the combination of 
vascular disrupting agents (VDAs) and sunitinib was found to  
result in improved treatment efficacy in a colorectal liver 
metastasis mouse model by reducing tumor proliferation and  
vasculature and increasing tumor apoptosis155. Similarly, a phase 
II trial showed that the addition of VDAs to bevacizumab can  
extend PFS duration in patients with recurrent ovarian cancer30. 

The combination of VEGF/VEGFR inhibitors with anti- 
invasive drugs or vessel co-option inhibitors may provide  
another possibility to overcome resistance. A recent phase I 
study in patients with recurrent GBM tested the combined effect 
of the VEGFR inhibitor cediranib with the invasion inhibitor  
cilengitide. Although no increased toxicities were observed  
in the combination treatment of cediranib and cilengitide, no  
survival benefit was shown156. However, recent preclinical work 
has shown that cilengitide can in fact promote tumor invasion,  
tumor growth, and tumor angiogenesis and therefore may not 
be the ideal drug to combine with anti-angiogenic therapy in the  
clinic157,158. Despite the promising future of combining anti- 
angiogenic therapy with anti-invasive agents or vessel co-
option inhibitors, successful clinical translation has yet to be  
achieved.

Multi-targeting strategy
Based on the compensatory responses to anti-VEGF therapy,  
combining treatments that target multiple angiogenic signals  
could be important. Preclinical models showed that the  
combination of multi-tyrosine kinase inhibitors lenvatinib  
(VEGFR, FGFR, and RET inhibitor) and golvatinib (E7050;  
c-Met, Tie2, and EphB4 inhibitor) could inhibit the development 
of pericytes and infiltration of TEMs in thyroid and endometrial  
cancer models159. Apart from VEGF/VEGFR inhibitors, targeting 
PDGF/PDGFR signaling can also improve the efficacy of current 
therapy and reduce tumor growth, invasion, and metastasis160. 
Nonetheless, one study showed that the depletion of pericytes 
by imatinib and sunitinib not only can reduce tumor growth but  
also can increase metastasis and EMT progression161. Another 
study revealed that depletion of PDGFRβ+ pericytes at early  
stages of tumor progression reduced metastasis but enhanced 
metastasis at later stages; further study implicated Ang2 as a key 
mediator of the metastatic phenotype162. Notably, the increased 
metastasis induced by pericyte depletion can be limited by  
additional MET or Ang2 inhibitors, which may provide a new 
and efficient strategy to suppress tumor growth while minimiz-
ing the risk of metastasis161,162. A heparin-derived angiogenesis  
inhibitor, LHT7, targeting FGF2 and PDGF-β, could inhibit 
the maturation of endothelium and can serve as a potential drug  
together with VEGF inhibitors to overcome resistance163.  
Further study indicated that the combination of LHT7 and a selec-
tive cyclooxygenase-2 (COX2) inhibitor (celecoxib) showed a  
stronger therapeutic effect than anti-angiogenic drugs 
alone164. COX2 has been reported to counteract the efficacy of  
anti-angiogenic agents164. Lucitanib (a multi-target inhibi-
tor of VEGFR1 to 3, PDGFRα/β, and FGFR1 to 3) has demon-
strated activity in phase I/II clinical testing in patients with breast  
cancer165. Another novel method to overcome resistance to  
bevacizumab therapy is combining VEGF inhibitors with peri-
cyte-targeted drugs (mostly inhibitors of Ang or PDGFRβ). Ang2  
and the VEGFA inhibitor A2V exert anti-tumor effects in a  
variety of ways, including impairing tumor angiogenesis, reducing 
metastasis, and increasing the infiltration of pro-inflammatory 
macrophages137,166. In a xenograft model of ovarian cancer, dual  
targeting of VEGF and Ang has been shown to result in greater  
inhibition of tumor angiogenesis and metastasis than monotherapy 
with either VEGF or Ang inhibitors167. Another study showed 
that VEGF inhibitor and Ang2 inhibitor can potentially reduce  
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resistance to anti-angiogenic therapy90. Furthermore, imat-
inib could inhibit PDGFR+ pericyte-like cells and disrupt tumor 
vascular integrity as well as EC survival168. While trebananib  
(a first-in-class peptibody targeting Ang2) exhibited clinical  
benefit in patients with ovarian cancer, it was ineffective as 
monotherapy and did not enhance the effect of bevacizumab in  
patients with recurrent glioblastoma104,169. As first-line therapy, 
brivanib (a dual inhibitor of VEGFR and FGFR) had a similar  
anti-tumor effect but was less well tolerated compared with  
sorafenib in a phase III study170. Another phase III study showed 
that brivanib as second-line therapy did not result in improved  
outcomes of HCC patients who did not respond to sorafenib171. 
Additional work is needed to understand the true efficacy of  
multi-targeted therapy in different cancer types.

Drug delivery
Nanoparticles can be designed with specific target proteins to 
deliver drugs into target cells. New sorafenib-loaded CXCR4-
targeted nanoparticles have been designed to treat HCC. The 
results of in vitro and in vivo studies show that it can reduce 
the infiltration of TAMs and enhance anti-angiogenic effects. 
Nanoparticles designed to deliver sorafenib into tumors  
efficiently could be an innovative approach to overcome drug  
resistance172.

Conclusions
Although mechanistic links between TME and anti-angiogenic 
therapy have been studied, the overall mechanisms of  
resistance to anti-angiogenic therapy require additional work. 
The combination of VEGF(R) inhibitors and other pathway  
inhibitors, including hypoxia inhibitors or immune checkpoint 
inhibitors, is being evaluated in various clinical trials. Unfor-
tunately, reliable biomarkers for predicting response or the  
emergence of resistance have not been identified. It is likely 
that combination treatments will be required for overcoming 
drug resistance and prolonging patient survival. In summary, 
anti-angiogenesis therapies remain a highly effective avenue 
for cancer therapy. Understanding the mechanisms of adaptive 
resistance will allow an improved understanding of the com-
plex underlying biology and holds tremendous potential for  
innovative drug development.
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