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INTRODUCTION

Preliminary results from neoadjuvant trials combining
immune checkpoint blockade (ICB) with standard-
of-care chemotherapy suggest high pathologic complete
response rates that range between 50% and 80% in
triple-negative breast cancer (TNBC).1-3 Adding ate-
zolizumab to NAB-paclitaxel for first-line treatment of
metastatic TNBC significantly improved response rate
and progression-free survival compared with NAB-
paclitaxel alone, suggesting synergy between ICB
and chemotherapy.4 However, not all patients respond
to ICB, and a minority exhibit rapid progression of their
disease.5 Patients who experience exceptionally fa-
vorable or unfavorable responses provide unique
opportunities for studying disease biology and for
identifying response markers. Progression during
neoadjuvant chemotherapy is a rare event in TNBC.
Here, we report results from the molecular analysis of
a TNBC that rapidly progressed during neoadjuvant
chemotherapy plus programmed death-ligand 1 (PD-
L1) blockade in a clinical trial Neoadjuvant MEDI4736
Concomitant With Weekly NAB-paclitaxel and Dose-
dense AC for Stage I-III Triple Negative Breast Cancer
(ClinicalTrials.gov identifier: NCT02489448). Among
the first 30 patients in this ongoing trial, no other
participant experienced disease progression. We also
hoped to identify potentially actionable genomic al-
terations or immunologic features.

CASE REPORT

The 41-year-old premenopausal woman presented
with a self-palpated lump in the right breast, and
mammogram revealed multifocal T1N1 disease. Core
needle biopsy (CNB) of the largest breast lesion (1.7
cm) and of an enlarged right axillary lymph node
showed high-grade TNBC. Systemic staging was
negative for distant metastases, and germline cancer-
susceptibility panel testing revealed no deleterious
mutations. Baseline tumor-infiltrating lymphocyte
(TIL) count was 10% (CD4, 5%; CD8, 5%; and CD20,
1%), macrophage (CD68) was 1%, and tumor

cellularity was 50%. TILs were both intratumoral and
stromal (ie, this was not a T-cell excluded tumor). The
patient agreed to participate in a neoadjuvant phase
I/II clinical trial that combined durvalumab (10 mg/kg
once every 2 weeks) with once-per-week NAB-
paclitaxel (100 mg/m2) for 12 cycles and dose-
dense doxorubicin plus cyclophosphamide (ddAC) for
4 cycles. After 8 weeks of NAB-paclitaxel plus dur-
valumab, physical examination showed increased
tumor size and new skin edema confirmed by repeat
mammogram and ultrasonogram. Repeat CNB
showed 60% tumor cellularity but also an increase in
TIL count to 20% (CD4, 10% to 15%; CD8, 5%; and
CD20, 0%) and an increase in macrophages (CD68,
20%). TILs were again noted in the stroma and
intratumorally. NAB-paclitaxel was stopped but be-
cause of the increased immune infiltration, durvalu-
mab was continued, and the patient was administered
ddAC, which led to disease stabilization after four
courses of therapy. Because of the apparent clinical
benefit, she received two additional courses of ddAC
without durvalumab off protocol and underwent right
skin-sparing mastectomy and lymph node dissection.
Pathology showed extensive multifocal disease (largest
focus, 2.4 cm; tumor cellularity, 40%) with lympho-
vascular invasion in the breast and more than 10
positive axillary lymph nodes (ypT2, ypN3). Immune
cell proportions in the mastectomy were TILs, 20%;
CD4, 10%; CD8, 10%; CD20, 1%; and CD68, 10%.

DNA and RNA were extracted from formalin-fixed
paraffin-embedded sections of tumor samples ob-
tained at baseline, at week 8, and from the mastec-
tomy. Blood DNA served as the reference for somatic
mutation calling for whole-exome sequencing. Im-
mune gene messenger RNA expression analysis was
performed by using the Nanostring PanCancer Im-
mune Profiling assay (Nanostring Technologies,
Seattle, WA) as described in the Data Supplement
and as previously reported.6,7 The patient’s gene ex-
pression levels were compared with those from
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a reference cohort (n = 31) of untreated primary breast
cancers analyzed with the same platform.6 The patient’s
result was considered to be a significant outlier if her ex-
pression levels fell outside the 2.5th to 97.5th percentile
range of the bootstrap distribution of the same gene in the
reference cohort. TIL counts and immune cell subtypes were
determined by routine pathology and immunohistochemistry.

When we compared our patient’s baseline expression of 26
immune cell types and 100 immune function metagenes
with those in the reference cohort, her neutrophil metagene
expression was below the 2.5th percentile, whereas the cell
cycle and immunosuppression metagenes were above the
97.5th percentile of the reference distribution (Fig 1A),
indicating a highly proliferative tumor with an immuno-
suppressed microenvironment. All other metagene cate-
gories were within the 2.5th to 97.5th percentile range
(Data Supplement). The tumor also showed low expression
of two previously validated immunotherapy predictive gene
signatures,8,9 indicating low probability of response to ICB
(Fig 1B). Single-gene level analysis revealed significantly
low expression of 27 genes including PDCD1, CD8A, and
KLRC2 (Fig 1C), suggesting impaired T-cell and natural
killer (NK) cell activity. In addition, we found high ex-
pression of 33 genes, including TGFB, HLA-G, CD63,
CCL28, and CXCL16 (Fig 1D), which are associated with an
immune evasive phenotype, increased cell motility, and
invasion. Baseline expression status of all genes is provided
in the Data Supplement.

Next, we examined expression changes across the three
time points. Overall, greater changes were observed be-
tween week 8 and mastectomy (ddAC treatment) than
between baseline and week 8 (NAB-paclitaxel treatment).
We observed upregulation of FOS, ABCB1, KIR3DL3,
GZMA, and GZMK in the mastectomy (single-gene and
metagene expression changes are provided in the Data
Supplement). Most immune metagenes increased during
the second period (Fig 2A), consistent with an increase of
immune cell (mainly T and NK cells) infiltration. The
upregulation of ABCB1, a multidrug resistance drug efflux
pump, was also apparent and may have contributed to
chemotherapy resistance in tumor cells. We also observed
a concurrent decrease in immunosuppression, leukocyte
functions, and leukocyte migration metagene categories,
suggesting a potentially ineffective immune response. To
study this further, we next analyzed T-cell exclusion and
dysfunction features using the tumor immune dysfunction
and exclusion (TIDE) method (Data Supplement).10 In
concordance with our previous findings, cytotoxic T-cell
infiltration increased during the second period. However,
this was accompanied by an increase in T-cell dysfunc-
tion score, indicating an ineffective immune response (Fig 2B).

We also performed whole-exome sequencing of the
baseline and mastectomy specimens. We identified 80
somatic mutations, including one cancer driver gene, TP53
(R175H). Other mutations with the highest variant allele

frequency at baseline included ZNF385C, CACNA1E,
NXPE1, and DYNC1H1, which have poorly understood
functions in cancer (Fig 2C; Data Supplement). We also
detected amplifications in FGFR1, FGF2, FGF3, MYC,
MCL1, CCND1, and TGFB2 and deletions in CDKN2A and
CDKN2B (Data Supplement). By using Sciclone (Waltham,
MA)11 and ClonEvol,12 we identified four distinct tumor
clones, all present at baseline and in the mastectomy
specimen, with little evidence for clonal selection during
therapy (Figs 2C-D). In the germline, 32 highly functional
impact variants were detected by using Ingenuity Variant
Analysis (QIAGEN Bioinformatics, Redwood City, CA; Data
Supplement). Of note, the patient was heterozygous for an
11-nucleotide frameshift-indel + insertion in the MH2
domain of the SMAD6 gene (NC_000015.9:g.67073715_
67073726delinsA). This domain is essential for the function
of SMAD6 as a negative regulator of TGFβ signaling. SMAD6
sequesters SMAD2 in the cytoplasm and prevents its
translocation to the nucleus.13 Another potentially rele-
vant germline variant was a heterozygous JAK3 frame-
shift mutation in the JH5 domain (NC_000019.9:g.
17953278delG). JAK3 is expressed in T and NK cells
and mediates signal transduction by different inter-
leukin receptors. Compound heterozygous JAK3
inactivating mutations cause severe combined immune
deficiency.14

DISCUSSION

This cancer showed primary resistance to NAB-paclitaxel
and ddAC chemotherapy concurrent with an anti-PD-L1
agent. The tumor harbored several poor prognostic geno-
mic alterations at diagnosis, including a p53 mutation and
coamplification of MYC and MCL1, both of which are im-
plicated in chemotherapy resistance.15,16 The expression of
permeability glycoprotein (P-glycoprotein; ABCB1), a drug-
efflux transporter that mediates taxane and anthracycline
resistance in vitro, also increased during treatment.17 We
observed a measurable increase in intratumor in-
flammatory response by the end of the treatment (Data
Supplement), but unfortunately this did not translate into
clinical antitumor activity. The cancer had a persistently
high TGFβ expression, and the patient also carried
a germline heterozygous deletion of the negative regulator
of TGFβ signaling, SMAD6. TGFβ activation in cancers has
been linked to primary chemotherapy resistance and
also to immune evasion and resistance to PD-L1 blockade
in multiple experimental systems.18-21 Furthermore, the
R175H p53 mutation that this cancer harbored has been
shown to render cancers insensitive to the growth inhibitory
effects of TGFβ.22 On the basis of these findings, we hy-
pothesize that the high expression of TGFB2 by this tumor
may have contributed to its immune escape and its re-
sistance to chemotherapy. Another notable feature of this
cancer was the low level of expression of programmed cell
death protein 1 (PD1) at the time of diagnosis and the high
level of expression of HLA-G. Low PD-L1 expression has
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been consistently linked to lesser benefit from ICB, and
HLA-G is a self-signal that shields placental cells from
immune attack, which mediates immune tolerance in

pregnancy.23 It is impossible to ascertain which of these
mechanisms played the dominant role in mediating treatment
resistance in this case, or if the multiple anomalies collectively
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contributed to the poor outcome. However, the findings pose
at least one testable therapeutic hypothesis: TGFβ-targeting
therapies (eg, galunisertib, M7824, TEW7197, LY-3200882,
fresolimumab, and NIS793) may have improved the efficacy
of PD-L1 blockade in this particular individual.

In summary, this case demonstrates the complexity of
chemotherapy and immunotherapy resistance mechanisms

and suggests that multiple different biologic processes
may contribute to disease progression during treatment.
We find it reassuring that previously published ICB re-
sponse signatures predicted low sensitivity to PD1/PD-L1
blockade for this patient. If this is confirmed in larger
cohorts, these signatures could become useful for pa-
tient selection.
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