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Abstract: The levels of selected volatile components that affected the sensory properties of a lager beer
were optimized under high-gravity brewing conditions (15.5 ◦P) in an industrial plant. The influence
of different pitching rates (6–10 million cells/mL), aeration levels (8–12 mg/L), times (4.5–13.5 h)
of filling CCTs (cylindroconical tanks, 3850 hl), and fermentation temperatures (8.5–11.5 ◦C) on the
contents of acetaldehyde, diacetyl, acetone, 2,3-pentanedion, dimethyl sulfide (DMS), and on the
sensory properties of beer were investigated. Response surface methodology (RSM, Box–Behnken
design) was used to research the possibilities for optimizing the concentration of selected volatile
components and sensory properties of bottom-fermented lager beers. Statistical analyses of the results
showed that the experimental factors had a significant influence (R-squared for the original model
with no significant lack-of-fit) on some of the volatile components. Based on the Multiple Response
Optimization analysis, the values of independent factors that ensured the highest beer sensory quality
were the following: a pitching rate of 10 million cells per mL; a fermentation temperature of 11.5 ◦C;
an aeration level of 12 mg/L; and a CCT filling time of 4.5 h. These results proved that RSM modelling
can be successfully applied to optimize fermentation and lagering processes in an industrial plant to
manufacture lagers of enhanced sensory quality.

Keywords: beer production; bottom fermentation; volatile components; large scale;
response surface methodology

1. Introduction

The main processes that generate a broad range of flavor components in beer include malting,
mashing, and boiling of wort with hops. In addition, yeast cells also synthesize secondary volatile
metabolites along with ethanol and carbon dioxide. Although these secondary substances are mostly
produced at very low concentrations, they comprise many classes of compounds that are thought to be
responsible for the complex aromas of fermented beverages, including beer, wine, and sake [1].

Meilgaard reviewed a list of around 100 flavor constituents responsible for individual flavor
notes and discussed their interactions determining the overall character of a given beer brand [2].
More recently, information provided by Alves and coworkers [3] using headspace solidphase
microextraction followed by gas chromatography mass spectrometry (HS-SPME/GC-MS) identified
an additional 60 volatile organic metabolites at different steps of the beer production processes that
contributed to the sensory quality of a lager beer.

The regulation and control of the synthesis of yeast-derived flavor-active beer compounds such as
ethanol, CO2, carbonyls (aldehydes/ketones), higher/fusel alcohols, esters, vicinal diketones (VDK)
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(diacetyl and 2-3-pentanedione), fatty and organic acids, and sulfur compounds have also been
described [1]. These flavor compounds are known to be intermediates in the catabolic pathways of
wort components (sugars, nitrogenous compounds and sulfur compounds) and precursors to the
synthesis of amino acids, proteins, nucleic acids, and lipids required for yeast growth.

Aldehydes belong to a group of carbonyl compounds that are characterized by a high
flavor-determining potential that exerts a significant influence on the flavor stability of beer.
Vanderhaegen et al. [4] stated that acetaldehyde was one of the first compounds whose concentration
increase was observed in an aged beer. The content of acetaldehyde in beer varies from 1 to 20 mg/L
depending on many processing factors [1,5–7]. Higher concentrations of this metabolite not only
induce unpleasant “young” or “green” off-tastes, but also participate with phenolics in the formation
of beer haze [8]. Acetaldehyde was also listed among the five key contributors to the aged flavor of
lager beer [9].

Several vicinal diketones (VDKs) are present in beer, however diacetyl (2,3-butanedione)
and 2-3-pentanedione have a significant influence on beer flavor. Mechanisms behind diacetyl synthesis
and degradation are very well-understood pathways of yeast metabolism [10]. It is currently accepted
that diacetyl is formed from the spontaneous oxidative decarboxylation of surplusα-acetolactate leaking
from the valine biosynthetic pathway to the extracellular environment. Similarly, 2-3-pentanedione is
formed from α-acetohydroxybutyrate. It seems obvious, therefore, that in order to control the level of
VDKs in beer, the correct concentrations of valine and leucine in wort are crucial [11]. At the end of the
main fermentation and maturation phase, diacetyl is re-assimilated and reduced by yeast to acetoin
and 2,3-butanediol, compounds with definitely higher flavor thresholds.

Unpleasant sulfury flavors whose concentrations must be minimized in the final product originate
mainly from malt and hops, but dimethyl sulfide (DMS), the main sulfur volatile, may also be
generated from dimethyl sulfoxide (DMSO) by yeast during fermentation or may be the metabolite
of wort-spoilage bacteria [11,12]. Dimethyl sulfide (DMS) has a considerable impact on the aroma
of beer and may lead to undesirable flavor impressions. The behavior of DMSO in the brewing
process has not been investigated in detail. During wort heating in hermetically closed systems
15% of the accumulated DMS was oxidized to DMSO. During fermentation significant DMS
formation was observed. DMSO reduction was higher in top fermenting Saccharomyces cerevisiae yeast
(TUM 19 - Technische Universitat Munchen) than in Saccharomyces pastorianus lager yeast
(TUM 34/70) [13]. A DMSO reductase encoding the MXR1 gene has been discovered in Saccharomyces
cerevisiae, providing a potentially novel tool for controlling DMS levels during fermentation [14].
The dialkyl sulfides, of which DMS is the most common component of beer, have a flavor similar to
that of cooked cabbage or sweet corn [15]. The sources of DMS in beer and their relative participation
in total DMS concentrations that are produced under various brewing conditions were reviewed in
Anness and Bamforth [16]. The authors claimed that DMS is beneficial to the taste and aroma of lager
at concentrations below 100 µg/L, but ales usually contain concentrations of this compound that is
lower than its flavor threshold (30 µg/L).

Although chemical analysis has contributed much to our knowledge of beer flavor, the sensory
characteristics remain a key parameter of beer quality. Knowledge of the flavor chemistry of beer,
and particularly of straightforward relationships between beer chemical composition and its sensory
properties, remains scarce [15].

Response surface methodology (RSM) offers many advantages over traditional full factorial
designs, such as a reduced number of trials necessary for process optimization and more precise results.
RSM generates a set of polynomial equations that relate chosen independent (explanatory) variables
with response variables. The equations are further explored for prediction of the values of the response
variables and for process optimization. This methodology has already been successfully applied to
study the effectiveness of commercial enzymes in buckwheat malt mashing [17] and to optimize the
characteristic flavor substances in top-fermented wheat beers in pilot-scale experiments [18].
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In our previous investigations [6,19,20], the effects of pitching rate, wort filling time, and wort
aeration on fermentation, maturation, and volatile compound production in beer produced on an
industrial scale were determined in single factor experiments. The purpose of the current work
was therefore simultaneous optimization of these parameters by applying the RSM methodology.
The optimization was aimed at prediction of relationships among levels of fermentation parameters in
an industrial brewery to achieve the most appropriate concentration of volatile carbonyls and sulfur
compounds, and to ensure the high sensory quality of a bottom-fermented lager beer.

2. Materials and Methods

2.1. Experimental Set-Up

The process of beer fermentation and maturation was investigated in industrial cylindroconical
fermentation vessels (CCTs). Each fermentation tank was filled with three brews. The final wort volume
in each CCT was 3090 hL, whereas the gross CCT capacity was 3850 hL. HGB worts (High Gravity
Brew 15.5 ◦P) were produced using a mix of two pilsner malts from the same two malt houses and
with maintaining the constant percentage share of malts from both suppliers. The process of infusion
mashing took place at a standard scale temperature of 60–76 ◦C. Afterwards, the mash was transferred
to a lauter tun. After boiling, the wort was cooled to 9 ◦C and then aerated. Worts were aerated with
compressed sterile air under 4 bars of pressure pushed through the wort line with a backpressure
of 2.5 bars, during transfer of wort to each of the CCTs and with various intensities so as to have
8–12 mg O2 per L of the wort. The concentrations of dissolved oxygen were measured in the pitching
wort and after filling of the CCTs using an optical oxygen meter (Mettler Toledo, Columbus, OH,
USA) Primary fermentation was performed at 8.5, 10, and 11.5 ◦C whereas the temperature of the
final phase of fermentation was 13 ◦C. The speed of fermentation expressed as an extract drop was
kept as 1.6 ◦P ± 0.2/day in the first 5 days of the fermentation process. The reduction of an apparent
extract content to 3.4 ◦P marked the end of fermentation and the beginning of maturation process.
Both fermentation and maturation were performed in the same tank. High viability of yeast cells and
relatively slow fermentation required for the particular brand of beer tested in the study required low
standard pitching rate (8 mln cells in 1 mL). Viability of pitching yeasts population was in the range of
95.8% to 99% for each of the 54 runs. Pitching rate was calculated based on the total viable cell number.
Depending on the combination of the parameters tested the increase in yeast biomass ranged from 2.2-
to 5-fold. Sample collection started after filling the CCTs and was continued during the consecutive 18
days of the production cycle. Sampling from a tank was performed using a sampling device equipped
with an installed small pump working in a closed loop system, which let the pump take samples of
fermenting wort and mature beer. Samples of beer were taken from CCTs at a point located above the
conical portion, 5 m from the bottom of the tank. To obtain representative samples, the circulation
pump was running during the whole process, except for the switch off (approximately 24 h) before the
yeast harvest. The third generation (yeasts used twice before) of Saccharomyces pastorianus brewers’
yeast was used for pitching. The yeast was added to the first of three brews to each CCT. Yeasts were
pitched using ABER Instruments Ltd. (Aberystwyth, UK) for rate control, which determined the total
viable cell count.

2.2. Analytical Procedures

Extract marking was performed using an automatic wort and beer analyzer (Beer Analyzer DMA
4500+ Anton Paar, Graz, Austria), at 20 ◦C, and the specific weight was measured using an oscillating
densitometer. The Tabarié formula was the basis for ‘Alcolyzer’ beer calculations [21].

Qualitative and quantitative analysis of volatile components (the identification was done on
the basis of retention time) was performed using gas chromatograph (GC) 8000 (Fisons Instruments,
Ipswich, UK) fitted with a flame ionization detector GC-FID (Gas Chromatography—Flame Ionization
Detector) and detector GC-ECD (Gas Chromatography—Electron Capture Detector) for detection of
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diacetyl, 2,3-pentanedione. A mixture of 3-panthenol and n-butanol was used as an internal standard
for the determination acetaldehyde and DMS. Concentrations were calculated using a quantitative
computer program based on the calculated peak area. Before and after each series of measurements,
a comparative analysis was carried out with a beer sample used as a control (reference) batch. The full
details of the gas chromatography were given in details in our previous work [22].

2.3. Sensory Analysis

Sensory evaluation of bottling beer used a comparison test, with the test sample compared to the
reference beer profile. Profile tests involved the evaluation of attributes of the beer, including fruity
aroma esters, hops, bitterness, sulfur compounds, sweetness, acidity, fullness, balance, and flavor.
The sensory analysis panel consisted of nine employees from the production, analysis, and technology
departments. The sample coding procedures used ensured objective evaluations. The sensory quality
of beer was evaluated using a gradation scale from 50 to 75 points. The full details of the sensory
evaluation of bottled final beer was given in detail in our previous work [22].

2.4. Statistical Analyses

Processing factors were tested using the Experimental Design Module of the Statgraphics Centurion
XVII ver. 17.1.12 (Professional Edition statistical software, Statpoint Technologies, Inc., Warrenton,
VA, USA).

2.4.1. Optimization of the Volatiles and Sensory Quality of Beer

Processing factors that influenced acetaldehyde, diacetyl, acetone, 2-3-pentanedione,
DMS concentrations, and the sensory properties of beer were tested using the Experimental Design
Module of the Statgraphics Centurion XVII ver. 17.1.12 (Professional Edition statistical software,
Statpoint Technologies, Inc., Warrenton, Virginia). The design employed was a fully randomized
Box–Behnken design with four factors at three levels each, including pitching rate at 6, 8, and 10 million
yeast cells per ml, aeration level of the cold wort at 8, 10, and 12 mg/L, filling time of the CCTs at
4.5, 9, and 13.5 h and fermentation temperature at 8.5, 10, and 11.5 ◦C, (where the final wort volume
in each CCTs was in average 3090 hL) and two blocks, including 3 centerpoints per block, which in
54 runs provided 38 error degrees of freedom. Independent variables, their codes, and actual values
are presented in Table 1, whereas the levels of acetaldehyde, diacetyl, acetone, 2-3-pentanedione,
DMS concentrations, and sensory analyses were collected in each of the 54 runs. To evaluate the
statistical significance of the secondary-order polynomial model, the coefficient of determination (R2),
and the probability of the lack-of-fit values were calculated. The fitted polynomial equation was then
utilized in the “Optimize Response” procedure or analyzed in the form of contour and surface plots
to illustrate the relationship between the responses and the experimental levels of the independent
variables utilized in this study. The module “Multiple Response Optimization” was employed to study
areas where the significant process parameters optimized volatiles and the sensory characteristic of
beer. The relationship between the measured exposures and fermentation process parameters were
expressed using second-order polynomial equations:

y = β0 + β1x1 + β2x2 + β3x3+ β4x4+ β11x1
2 + β22x2

2+ β33x3
2 + β44x4

2 + β12x1x2+ β13x1x3+

β23x2x3 + β14x1x4 + β24x2x4 + β34x3x4 +γ

where y is a volatile concentration or sensory quality; x1 is the pitching rate (mln yeast cells/mL of
wort); x2 is the fermentation temperature (◦C); x3 is the aeration level (mg O2/L); x4 is the total time
used for CTT filling (h); β0 is the intercept coefficient; β1–4 are the linear coefficients; β11, β22, β33 and
β44 are the quadratic coefficients; and β12, β13, β23, β14, β24, and β34 are the interaction coefficients
whereas γ is the block effect.
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Table 1. Coded and actual values of the variables for the Box–Behenken design.

Independent Variables Units Symbol Coded Levels

−1 0 +1
Pitching rate Mln cells/mL x1 6 8 10

Fermentation temperature ◦C x2 8.5 10 11.5
Aeration level mg/L x3 8 10 12

Total time of CCT filling h x4 4.5 9 13.5

The established models were subjected to ANOVA and Pareto chart (data not shown) analyses,
and the non-significant (p > 0.05) components were removed from the models. To evaluate the statistical
significance of the secondary-order polynomial model, the coefficient of determination (R2), and the
probability of the lack-of-fit values were calculated.

2.4.2. Multiple Response Optimization Procedures

The module Multiple Response Analysis of the Statgraphics Centurion XVII ver. 17.1.12
(Professional Edition statistical software, Statpoint Technologies, Inc., Warrenton, Virginia), was used
to establish the values of technological parameters that simultaneously optimized the content of a few
measured responses.

3. Results and Discussion

3.1. Model Fitting

Within the studied ranges of pitching rate, aeration level, times of filling CCTs, and fermentation
temperature, the experimental factors had a significant influence on the acetaldehyde and DMS
content, as well as on the sensory quality of the beer, but failed to be significant for diacetyl, acetone,
and 2-3-pentanedione concentrations (Table 2).

Table 2. Analysis of variance of the selected volatile components and sensory analysis: significance of
model components and assessment of adequacy of the models.

Dependent
Parameter

Analysis of Variance

R2 Lack-of- Fit x1 x2 x3 x4
Significant Components

of the Model

Probability

acetaldehyde 84 0.6945 0.0241 0.0027 ns 0.0008 0.0389 x3x4

diacetyl 35 0.4778 ns 0.0284 ns ns ns

acetone 45 0.8257 ns ns ns ns ns

2,3-pentanedione 45 0.5567 ns ns ns ns 0.0199 blocks

DMS 76 0.4652 0.0057 0.0045 0.0363 0.0132
0.0115 x1x2
0.0397 x1x3
0.0192 x2x4

sensory analysis 71 0.0716 0.0145 0.0010 0.0048 0.0316

0.0014 x1
2

0.0294 x1x2
0.0294 x1x4
0.0036 x2

2

0.0018 x2x3
0.0058 x3

2

0.0164 x4
2

* ns—not significant.
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With the exception of acetone and 2-3-pentanedione concentrations, the temperature of
fermentation exerted significant effects on each of the dependent variables, whereas wort aeration
affected the DMS levels and sensory characteristics of the beer. It seems to be of interest that the pitching
rate and the total time of CCTs filling influenced beer volatile components and the sensory properties
of the beer in quite a similar manner. Low R2 values for diacetyl, acetone, and 2-3-pentanedione
concentrations excluded these models from further consideration.

3.2. Polynomial Equations

3.2.1. Acetaldehyde

Table 3 shows the analysis of variance for acetaldehyde content in mature beer after removing
insignificant components from the model. The relationship between the four factors and the predicted
responses of acetaldehyde concentrations was calculated to be:

y1 = 28.93 − 0.317 x1 - 0.789 x2 − 1.029 x3 − 1.405 x4 + 0.104 x3 x4 (1)

where y1 denotes acetaldehyde concentration in mg/L, x1 stands for pitching rate in mln cells in mL,
x2 represents fermentation temperature in ◦C, x3 symbolizes aeration level in mg/L, and x4 denotes
total time of CCT filling in hours.

Table 3. Analysis of variance: the empirical model for predicting acetaldehyde.

Source Sum of Squares Df Mean Square F-Ratio p-Value

x1 9.6203 1 9.6203 12.49 0.0241
x2 33.630 1 33.630 43.68 0.0027
x3 0.7902 1 0.7902 1.03 0.3683
x4 63.798 1 63.798 82.85 0.0008

x3 x4 7.0500 1 7.0500 9.16 0.0389
Blocks 0.8676 1 0.8676 1.13 0.3483

Lack-of-fit 34.349 43 0.7988 1.04 0.5630
Pure error 3.0800 4 0.7700

Total
(correlation) 153.18 53

Within the studied range of the fermentation process parameters, no quadratic component of the
model was found to be significant, and the polynomial equation was linear in nature. The subsequent
analysis, by means of the Optimize Response module, revealed that over the studied range of
independent factors, x1 = 10, x2 = 11.3, x3 = 8, and x4 = 13.5 minimized the predicted acetaldehyde to a
value of 0.908 mg/L, which is well below the maximal recommended level of this flavor component
in beer. There have been multiple attempts to assess the impact of technological factors on the
acetaldehyde concentration in the course of beer fermentation. All of the independent factors researched
in this study are known to have a direct impact on yeast growth and metabolism and, consequently,
on acetaldehyde accumulation in beer. Jonkova and Petkova [5] reported that higher fermentation
temperature stimulated early acetaldehyde formation but also increased its reduction rate at later
fermentation and maturation phases, leading to its lower concentration in the final beer. Furthermore,
in their study, the increased pitching rate significantly reduced the acetaldehyde content in beer.
In the previous works performed under conditions almost identical to those employed in this study,
we reported quite similar findings [6,20]. However, in another experiment [19], the wort filling time
had a significant, positive impact on the course of fermentation and the reduction in acetaldehyde
concentrations. Yokoyama and Ingledew [23] also confirmed that CCTs filled multiple times provided
better beer quality. Increased breaks in the completion of the filling of CCTs caused better conditions for
yeast multiplication at the beginning of fermentation process, particularly because the whole yeast dose
was added to the first brew, and prolonged breaks in filling-up the CCTs contributed to an improved
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vitality of yeast cells in the fermented wort and, consequently, to the reduction in acetaldehyde content.
In addition to the total filling time of CCTs, fermentation temperature also had a significant impact on
the acetaldehyde production in beer. With increasing temperature, the amounts of acetaldehyde in
beer significantly decreased. Similar results were reported by Jones et al. [24], who confirmed that the
content of acetaldehyde fell with the increase in the temperature of fermentation to 22 ◦C. It is known
that a reduction in acetaldehyde increases within a temperature range from 5 to 20 ◦C. It seems obvious
that fermentation temperature (x2), wort aeration rate (x3), and total time of CCTs filling (x4) directly
influenced the level of oxygen dissolved in the fermenting wort and directly modulated ergosterol,
unsaturated fatty acids, bilayer, and mitochondrial structures of growing yeast cells and their potential
for acetaldehyde biosynthesis and bioconversion [1,25]. Although early acetaldehyde production rates
in Saccharomyces pasterianus were found to be strain-dependent, the fermentation lag-phase duration
was strongly affected by the pitching rate (x1). To the best of our knowledge, Equation 1, for the first
time, provides an insight into the relative significance and mutual interrelationships between the basic
technological parameters of high-gravity brewing under industrial conditions that may lead to the
control and optimization of acetaldehyde content in a lager beer.

3.2.2. DMS

In comparison with acetaldehyde, the corrected model for DMS concentration comprised more
significant elements but also lacked any significant quadratic components (Table 4).

Table 4. Analysis of variance: the empirical model for predicting dimethyl sulfide (DMS).

Source Sum of Squares Df Mean Square F-Ratio p-Value

x1 833.553 1 833.553 29.11 0.0057
x2 953.568 1 953.568 33.30 0.0045
x3 27.727 1 274.727 9.59 0.0363
x4 515.968 1 515.968 18.02 0.0132

x1 x2 560.455 1 560.455 19.57 0.0115
x1 x3 258.781 1 258.781 9.04 0.0397
x2 x4 411.845 1 411.845 14.38 0.0192

Blocks 65.2081 1 65.2081 2.28 0.2058
Lack-of-fit 1619.13 41 39.4911 1.38 0.4201
Pure error 114.53 4 28.6325

Total
(correlation) 5607.77 53

Fermentation temperature and pitching rate were among factors that most influenced DMS
concentrations in beer, but aeration levels and the filling time of CCTs were also significant, similarly as
different two-factor interactions. The nature and power of these effects are given in the following
equation:

y2 = 79.06 + 16.628 x1 + 8.551 x2 − 13.067 x3 − 9.599 x4 − 2.79 x1 x2 + 1.421 x1 x3 + 1.063 x2 x4 (2)

where y2 denotes DMS concentration in µg per litre of beer, x1 stands for pitching rate in mln cells
in 1 mL, x2 represents fermentation temperature in ◦C, x3 symbolizes aeration level in mg/L, and x4

denotes total time of CCT filling in hours. Using the Equation (2) in the Optimizing Response module,
the levels of fermentation parameters that minimized DMS to 42 µg/L were the following: x1 = 6,
x2 = 11.5, x3 = 12, and x4 = 4.5 (see Table 4). The smallest content of DMS was analyzed in beer
when the pitching rate and wort filling times were kept at low levels, whereas the wort aeration
rate and fermentation temperature were maximized. From among independent factors, Equation (2)
distinctively indicates the predominant role of the pitching rate in affecting levels of DMS in lager beer.
The results presented by Verbelen et al. [26,27] did not suggest such a relationship. Different ranges
of the inoculum studied by these researchers in laboratory (not industrial-scale) experiments may
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provide an explanation for these discrepancies. Judging by the significance of the impact on DMS
concentrations in beer, the second factor was aeration level. The organo-sulfur volatile concentrations
in lager beer were reduced with an increased aeration rate, most likely due to increased purging effects
of the CO2 formed [14]. As shown in the study by the Verbelen team [28], the exchange of air with pure
oxygen reduced DMS content in a lager beer; therefore, it may be concluded that the concentration of
oxygen dissolved in fermenting wort may be important for the control of DMS, likely because of more
vigorous fermentation [26].

3.3. Sensory Analysis

The proper and unchanging sensory quality of beer is one of the most important problems in
brewing. The flavor stability and repeatability of the sensory properties of beer was maintained
throughout the current study and the marks ranging from 65.7 to 66.7 points ensured “good” overall
sensory quality. This formed a background for the assumption that modeling and optimizing process
parameters should not exert a negative impact on the sensory quality of the final product. Details of
the statistical analyses of sensory data, and particularly analysis of variance of the empirical model
predicting the sensory quality of beer have been given in our previous work [22]. It should be
emphasized that a higher beer quality resulting from higher fermentation temperatures reported by
Engan [29] and Brown and Hammond [30] was claimed to be due to beneficial changes in the volatile
components content. The direct relationship between correct wort oxygenation during fermentation
and the sensory quality of beer observed in this study is supported by a few previous contributions [28].

3.4. Multiple Response Optimization Procedures

The Multiple Response Optimization procedure is a part of the Design of Experiments module of
the statistical software used in this work that allows the simultaneous optimization of many dependent
factors to be performed. This approach was used to study the possibilities of finding levels where
the content of both significant volatiles, i.e., acetaldehyde and DMS, were optimized. Furthermore,
we attempted to perform simultaneous minimization of these volatiles and maximization of the
sensory quality of beer (“optimize all”). Table 5 compares the results of a single response optimization
(which were described earlier) with those originating from the Multiple Response Optimization
procedures. This table also includes the predicted values of acetaldehyde and DMS concentrations, as
well as the sensory quality of the beer. Findings presented in Table 5 may have interesting theoretical
and practical consequences.

In all optimizations, the best temperature of wort fermentation was found to be the highest level
of 11.5 ◦C (+1). With the exception of acetaldehyde optimization, the same was true for the wort
aeration level. The best values of the pitching rate and total filling time of CCTs were either at the
low (−1) or high (+1) levels, which again suggests the existence of more than one local optimal area.
This hypothesis may further be supported by the total filling time, which, at 13.5 h (+1), was optimal
for acetaldehyde and sensory properties, but for “volatalites” and “all” optimizations, 4.5 h (−1)
was calculated. Perhaps the most important observation that can be made here is the striking similarity
of technological parameters that minimized volatiles with those that optimized volatiles along with
the sensory quality of beer “Optimize All”. This may be an indication that acetaldehyde and DMS
content were among the most important volatiles that affected the sensory quality of the lager beer
studied in this work. Although the sensory scores were certainly related to the brewery taste panel
training, the tasters, after identifying a particular defect in beer, were also obliged to relate it to specific
compounds like DMS, or/and H2S, or/and SO2. The importance of acetaldehyde as a key contributor
to the aged flavor of a lager beer has been established by Saison et al. [9]. In the fundamental work
on the taste and flavor of beer, Yonezawa and Fushiki [7] concluded that “Through well-designed
experiments coupled with well-trained sensory observers, more precise and more precious knowledge
will be compiled without doubt in the future”. In the work presented here, we tested a novel approach
in an attempt to find cause-and-effect relationships of sensory evaluation with beer components as
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suggested by Bamforth et al. [31]. The endeavors reported here were undertaken under standard
industrial conditions using the full-scale fermentation plant of a commercial brewery.

Table 5. Values of independent factors that optimized acetaldehyde, and DMS concentration
in the tested beer, its sensory quality, the results from the multiple response optimization
(volatiles = acetaldehyde + DMS) and all = volatiles + sensory quality and corresponding predicted
values of optimization.

Technological
Parameters

Optimum/Goal

Levels Acetaldehyde DMS Sensory Volatiles All

−1 +1 Minimize Minimize Maximize Minimize Optimize

Pitching rate
[mln cells/mL] 6.0 10.0 10.0 6.0 6.0 9.9 10.0

Temperature of
fermentation [◦C] 8.5 11.5 11.3 11.5 11.4 11.5 11.5

Wort aeration level
[mg/L] 8.0 12.0 8.0 12.0 10.6 12.0 12.0

Total filling time
CCTs [h] 4.5 13.5 13.5 4.5 13.1 4.5 4.50

Volatiles/sensory Predicted values

Acetaldehyde
(mg/L) 0.908 3.65 3.69

DMS (µg/L) 42.0 48.4 49.3

Sensory quality (pts) 67.0 66.7

4. Conclusions

Response surface methodology (RSM; Box–Behnken design) was used to study the relationships
between volatile carbonyls and sulfur compounds of a commercial lager beer and its sensory
quality. Optimization tests were conducted using four variables: yeast pitching rate; temperature of
fermentation; wort aeration level; and total filling time of CCTs. Second-order polynomial equations
were employed to find technological parameters that optimize the biosynthesis of volatiles, carbonyls
and sulfur compounds, particularly acetaldehyde and DMS content, as well as the sensory quality
of beer. Multiple response optimization procedures allowed simultaneous optimization of beer
volatiles and the sensory properties to be performed. The levels of independent factors that minimized
acetaldehyde and DMS contents (pitching rate 10 million cells in mL; temperature of fermentation
11.5 ◦C; wort aeration level 12 mg/L; time of filling CCTs 4.5 h) did not change when the sensory quality
of beer was also included in the optimization procedure. The results suggest that RSM modelling
can be successfully used under industrial conditions for both prediction and control of important
fermentation parameters to achieve desirable flavor and aroma of bottom-fermented lager beers.
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K.K. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Olaniran, A.O.; Hiralal, L.; Mokoena, M.P.; Pillay, B. Flavour-active volatile compounds in beer: Production,
regulation and control. J. Inst. Brew. 2017, 123, 13–23.



Foods 2020, 9, 1043 10 of 11

2. Meilgaard, M. The flavor of beer. Tech. Q. Master Brew Assoc. Am. 1991, 28, 132–148.
3. Alves, V.; Gonçalves, J.; Figueira, J.A.; Ornelas, L.P.; Branco, R.N.; Câmara, J.S.; Pereira, J.A.M. Beer volatile

fingerprinting at different brewing steps. Food Chem. 2020, 326, 126856. [CrossRef] [PubMed]
4. Vanderhaegen, B.; Necen, H.; Verachtert, H.; Derdelinckx, G. The chemistry of beer aging—A critical review.

Food Chem. 2007, 95, 357–381. [CrossRef]
5. Jonkova, G.; Petkova, N. Effects of some technological factors on the content of acetaldehyde in beer. J. Univ.

Chem. Technol. Metall. 2011, 46, 57–60.
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